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Abstract—In this paper we define and study a new Birkhoff
type integral (Bw)

∫
A
fdµ (called Birkhoff weak) for a real

function f with respect to a set multifunction µ taking values in
the family of all nonempty subsets of a real Banach space. Some
classical properties are presented, such as heredity, monotonicity
(relative to the function f , to the set multifunction µ and to the
set A), homogeneity (with respect tof and µ) and additivity
(relative to f , µ and A). Birkhoff weak integrability properties
on atoms are also established.

Keywords– Birkhoff weak integral, integrable function, mul-
timeasure, monotone set multifunction, atom.

I. I NTRODUCTION

Beginning with the work of Choquet [7], the theory of set-
valued integrals started to develop due to its remarkable ap-
plications in statistics, evidence theory, data mining problems,
decision making theory, subjective evaluations, medicine.

Different types of set-valued integrals have been defined and
studied by many authors (e.g., [1], [3], [4], [5], [6], [8], [10],
[12-16], [17], [20], [21], [22-25], [26], [27], [28], [29], [30]).

The Birkhoff integral [2] was defined for a vector function
f : T → X with respect to a complete finite measure

m : A → [0,+∞), using series of type
∞∑
n=1

f(tn)m(An)

determined by a countable partition{An}n∈N∗ of T and
tn ∈ An, for everyn ∈ N∗. This definition was generalized
(for example in [11]) for the case of a vector multifunctionF
and a complete finite measurem : A → [0,+∞) using series

of type
∞∑

n=1

F (tn)m(An).

In [18] Gould defined an integral for a vector function
f : T → X relative to a complete finite measurem : A →

[0,+∞) using finite sums of type
n∑

k=1

f(tk)m(Ak) determined

by a finite partition{Ak}nk=1
of T and tk ∈ Ak for every

k ∈ {1, 2, . . . , n}.
Considering countable partitions and finite sums instead of

series, in this paper we define and study a new Birkhoff type
integral for real functions with respect to set multifunctions
taking values in the family of all nonempty subsets of a real
Banach space. This definition is more simple, easier handle

and may be placed between the Birkhoff integral and the Gould
integral.

The paper is organized as follows: Section 1 is for introduc-
tion. In the second section we give some basic concepts and
results. In Section 3 we define a new Birkhoff type integral
(Bw)

∫
A
fdµ (called Birkhoff weak) for a real functionf

with respect to a set multifunctionµ taking values in the
family of all nonempty subsets of a real Banach space. We
present some classical properties of this integral, such as
heredity, monotonicity (relative to the functionf , to the set
multifunctionµ and to the setA), homogeneity (with respect
to f andµ) and additivity (relative tof , µ andA). Section
4 contains some particular cases concerning Birkhoff weak
integrability on atoms. The final Section 5 highlights some
conclusions.

II. PRELIMINARIES

Let be T a nonempty set,P(T ) the family of all subsets
of T andRT the set of all real functions defined onT . Let
also be (X, ‖ · ‖) a real Banach space with the metricd
induced by its norm,P0(X) the family of all nonempty subsets
of X , Pc(X) the family of all nonempty convex subsets of
X , Pf(X) the family of all nonempty closed subsets ofX ,
Pbf (X) the family of all nonempty bounded closed subsets
of X , Pbfc(X) the family of all nonempty bounded closed
convex subsets ofX andPkc(X) the family of all nonempty
compact convex subsets ofX .

For everyM,N ∈ P0(X) and everyα ∈ R, let M +N =
{x+ y|x ∈ M, y ∈ N} andαM = {αx|x ∈ M}. We denote
by M the closure ofM with respect to the topology induced
by the norm ofX .

By ”
•

+” we mean the Minkowski addition onP0(X), that
is,

M
•

+N = M +N, ∀M,N ∈ P0(X).

Let h be the Hausdorff metric given by

h(M,N) = max{e(M,N), e(N,M)}, ∀M,N ∈ P0(X),

wheree(M,N) = sup
x∈M

d(x,N) andd(x,N) = inf
y∈N

d(x, y).
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It is well-known that (Pbf (X), h) and (Pkc(X), h) are
complete metric spaces ([19]).

We denote|M | = h(M, {0}), for everyM ∈ P0(X), where
0 is the origin ofX .

By i = 1, n we meani ∈ {1, 2, . . . , n}, for n ∈ N∗, where
N∗ = N\{0} and N = {0, 1, 2 . . .}. We also denoteR+ =
[0,∞). In the following proposition we recall some properties
regarding the excess and the Hausdorff metric ([19]).

Proposition 1:Let A,B,C,D,Ai, Bi ∈ P0(X), for every
i = 1, n andn ∈ N∗. Then:

(i) h(A,B) = h(A,B).
(ii) e(A,B) = 0 if and only if A ⊆ B.
(iii) h(A,B) = 0 if and only if A = B.
(iv) h(αA, αB) = |α|h(A,B), ∀α ∈ R.
(v) h(

∑n

i=1
Ai,
∑n

i=1
Bi) ≤

∑n

i=1
h(Ai, Bi).

(vi) h(αA, βA) ≤ |α− β| · |A|, ∀α, β ∈ R.

(vii) h(αA
•

+ βB, γA
•

+ δB) ≤ |α− γ| · |A|+ |β − δ| · |B|,
∀α, β, γ, δ ∈ R.

(viii) h(A + C,B + C) = h(A,B), for every A,B ∈
Pbfc(X) andC ∈ Pb(X).

(ix) α(A+B) = αA+ αB, ∀α ∈ R.
(x) (α+β)A = αA+βA, for everyα, β ∈ R, with αβ ≥ 0

and every convexA ∈ P0(X).
(xi) αA ⊆ βA, for everyα, β ∈ R+, with α ≤ β and every

convexA ∈ P0(X), with {0} ⊆ A.
(xii) If X = R, thenh([a, b], [c, d]) = max{|a− c|, |b−d|},

for everya, b, c, d ∈ R, a ≤ b, c ≤ d.

In the sequel, letA be aσ-algebra of subsets ofT .

Definition 2: (i) A finite (countable, respectively) partition
of T is a finite (countable, respectively) family of nonempty
sets P = {Ai}i=1,n ({An}n∈N, respectively)⊂ A such

that Ai ∩ Aj = ∅, i 6= j and
n⋃

i=1

Ai = T (
⋃
n∈N

An = T ,

respectively).
(ii) If P andP ′ are two finite (or countable) partitions of

T , thenP ′ is said to befiner thanP , denoted byP ≤ P ′ (or,
P ′ ≥ P ), if every set ofP ′ is included in some set ofP .

(iii) The common refinementof two finite or countable
partitions P = {Ai} and P ′ = {Bj} is the partition
P ∧ P ′ = {Ai ∩Bj}.

Obviously,P ∧ P ′ ≥ P andP ∧ P ′ ≥ P ′.
We denote byP the class of all partitions ofT and if A ∈ A
is fixed, byPA we denote the class of all partitions ofA.

All over the paper,µ : A → P0(X) will be a set
multifunction, withµ(∅) = {0}.

Definition 3:µ is said to be:
(i) monotoneif µ(A) ⊆ µ(B), ∀A,B ∈ A, with A ⊆ B.
(ii) subadditiveif µ(A ∪ B) ⊆ µ(A) + µ(B), for every

A,B ∈ A, with A ∩B = ∅.
(iii) a multisubmeasureif µ is monotone and subadditive.

(iv) finitely additiveif µ(A∪B) = µ(A) +µ(B) for every
disjoint A,B ∈ A.

(v) null-additive if µ(A ∪B) = µ(A), for everyA,B ∈ A,
with µ(B) = {0}.

(vi) σ-null-null-additive if µ(
∞

∪
n=0

An) = {0}, ∀An ∈ A,

n ∈ N, with µ(An) = {0}.

Definition 4: Let µ : A → P0(X) be a set-valued set
function.

(i) The variationµ of µ is the set functionµ : P(T ) →

[0,+∞] defined byµ(E) = sup{
n∑

i=1

|µ(Ai)|}, for everyE ∈

P(T ), where the supremum is extended over all finite families
of pairwise disjoint sets{Ai}ni=1 ⊂ A, with Ai ⊆ E, for every
i = 1, n.

(ii) µ is said to beof finite variation onA if µ(T ) < ∞.
(iii) µ̃, defined, for everyA ⊆ T , by

µ̃(A) = inf{µ(B);A ⊆ B,B ∈ A}.

Remark 5:
I. If E ∈ A, then in definition ofµ we may consider the

supremum over all finite partitions{Ai}
n
i=1 ⊂ A, of E.

II. |µ(A)| ≤ µ(A), for everyA ∈ A;
III. µ is monotone and super-additive onP(T ), that is

µ(
⋃
i∈I

Ai) ≥
∑
i∈I

µ(An), for every finite or countable partition

{Ai}i∈I of T .
IV. If µ is finitely additive, thenµ is finitely additive.
V. If µ is a multisubmeasure, thenµ is null-additive.

Remark 6:SupposeX is a Banach lattice and we denote
by Λ the positive cone ofX , i. e. Λ = {x ∈ X ;x ≥ 0}.
If m : A → Λ is a set function, we considerthe induced
set multifunction(see [13])µ : A → Pbf (X), defined by
µ(A) = [0,m(A)], for everyA ∈ A. Then:
I. |µ(A)| = ‖m(A)‖, ∀A ∈ A;
II. µ = m on P(T );
III. µ̃ = m̃ on P(T );
IV. If m is monotone (σ-subadditive,σ-additive, respectively),
thenµ is monotone (σ-subadditive,σ-additive set-valued mea-
sure, respectively).

Definition 7: A property (P) about the points ofT holds
almost everywhere(denotedµ-a.e.) if there existsA ∈ P(T )
so thatµ̃(A) = 0 and (P) holds onT \A.

Definition 8: I. A set A ∈ A is said to be anatom of µ
if µ(A) ) {0} and for everyB ∈ A, with B ⊂ A, we have
µ(B) = {0} or µ(A\B) = {0}.

II. µ is said to befinitely (countably, respectively)purely
atomic if there is a finite (countable, respectively) disjoint
family {Ai}

n
i=1({An}n∈N, respectively)⊂ A of atoms ofµ

so thatT =
n
∪
i=1

Ai(T =
∞⋃

n=0

An, respectively).
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Lemma 9:Let µ : A → P0(X), with µ(∅) = {0} and let
A ∈ A be an atom ofµ.

I. If µ is monotone and the setB ∈ A is so thatB ⊆ A and
µ(B) ) {0}, thenB is also an atom ofµ andµ(A\B) = {0}.
Moreover, ifµ is null-additive, thenµ(B) = µ(A).

II. If µ is monotone and null-additive, then for every finite
partition{Bi}ni=1 of A, there exists only onei0 = 1, n so that
µ(Bi0) = µ(A) andµ(Bi) = {0} for every i = 1, n, i 6= i0.

III. Supposeµ is monotone, null-additive andσ-null- null-
additive. Then for every countable partition{Bn}n∈N of A,
there is an uniquen0 ∈ N so that µ(Bn0

) = µ(A) and
µ(Bn) = {0} for everyn ∈ N, n 6= n0.

Proof. I. SinceA is an atom andµ(B) 6= {0}, it results
µ(A\B) = {0}. Let be C ∈ A, C ⊆ B. SinceC ⊆ A
and A is an atom, it followsµ(C) = {0} or µ(A\C) =
{0}. If µ(A\C) = {0}, by the monotonicity ofµ, it results
µ(B\C) = {0}. So,B is an atom ofµ. If moreoverµ is null-
additive, sinceµ(A) = µ((A\B) ∪ B) andµ(A\B) = {0},
we obtainµ(B) = µ(A).

II. If µ(Bi) = {0} for everyi = 1, n, by the null-additivity
of µ, it resultsµ(A) = {0}, false! Then there isi0 = 1, n
such thatµ(Bi0) 6= {0}. From I, it follows µ(Bi0) = µ(A)
andµ(A\Bi0) = {0}. But Bi ⊆ A\Bi0 for every i = 1, n,
i 6= i0 and sinceµ is monotone, it resultsµ(Bi) = {0}, for
every i = 1, n, i 6= i0.

III. The proof is analogous to that of II. �

In the sequel letT be a locally compact Hausdorff topolog-
ical space,K be the lattice of all compact subsets ofT , B be
the Borelσ-algebra (that is the smallestσ-algebra containing
K) andτ be the class of all open sets belonging toB.

In order to state our next theorems, some results of Gavriluţ
[14] will be presented.

Definition 10:A set multifunctionµ : B → P0(X) is called
regular if for each setA ∈ B and eachε > 0, there exist
K ∈ K andD ∈ τ such thatK ⊆ A ⊆ D and|µ(D\K)| < ε.

Theorem 11:Let µ : B → Pf (X) be regular multisubmea-
sure. If A ∈ B is an atom ofµ, then there exists an unique
point a ∈ A such thatµ(A) = µ({a}).

Corollary 12: Let µ : B → Pf (X) be a regular multisub-
measure. IfA ∈ B is an atom ofµ, then there exists an unique
point a ∈ A such thatµ(A\{a}) = {0}.

Remark 13:Supposeµ : B → Pf (X) is a finitely purely
atomic regular multisubmeasure. So there exists a finite family
{Ai}ni=1 ⊂ A of pairwise disjoint atoms ofµ so thatT =
n⋃

i=1

Ai. By Corollary 12, there are uniquea1, a2, . . . , an ∈ T

such thatµ(Ai\{ai}) = {0}, for every i = 1, n. Then we
have

µ(T \{a1, . . . , an}) ⊂ µ(T \{a1}) + . . .+ µ(T \{an}) = {0},

which implies µ(T \{a1, . . . , an}) = {0}. Now, sinceµ is
null-additive, it followsµ(T ) = µ({a1, . . . , an}).

III. B IRKHOFF WEAK INTEGRABILITY OF REAL

FUNCTIONS RELATIVE TO A SET MULTIFUNCTION

In this section we define a Birkhoff type integral (named
Birkhoff weak) of real functions with respect to a set multi-
function and present some of its classical properties.

In the sequel, suppose(X, ‖ · ‖) is a Banach space,T is
infinite, A is aσ-algebra of subsets ofT andµ : A → P0(X)
is a set multifunction of finite variation such thatµ(∅) = {0}.

Definition 14: I. [9] Let m : A → [0,∞) be a non-negative
set function. A functionf ∈ RT is said to beBirkhoff weak
m-integrable(on T ) if there existsa ∈ R having the property
that for everyε > 0, there exist a countable partitionPε of
T and nε ∈ N such that for every other countable partition
P = {An}n∈N of T , with P ≥ Pε and everytn ∈ An, n ∈ N,

it holds |
n∑

k=0

f(tk)m(Ak)− a| < ε, for everyn ≥ nε.

The reala is calledthe Birkhoff weakm-integral of f (on T )
and is denoted by(Bw)

∫
T
fdm or simply

∫
T
fdm.

II. A function f ∈ RT is said to beBirkhoff weakµ-integrable
on T (shortlyµ-integrable) if there existsE ∈ P0(X) having
the property that for everyε > 0, there exist a countable
partition Pε of T and nε ∈ N such that for every other
countable partitionP = {An}n∈N of T , with P ≥ Pε and

every tn ∈ An, n ∈ N, it holds h(
n∑

k=0

f(tk)µ(Ak), E) < ε,

for everyn ≥ nε.
The setE is calledthe Birkhoff weakµ-integral of f on T
and is denoted by(Bw)

∫
T
fdµ or simply

∫
T
fdµ.

f is called Birkhoff weakµ-integrable on a setE ∈ A if the
restrictionf |E is Birkhoff weakµ-integrable on(E,AE , µ)
and its integral is denoted by(B)

∫
E
fdµ or simply

∫
E
fdµ.

Remark 15:If they exist, the integrals in Definition 14 are
unique.

Example 16: I. SupposeT = {tn|n ∈ N} is count-
able, {tn} ∈ A and let be f : T → R such that

the series
∞∑

n=0

f(tn)µ({tn}) is unconditionally convergent.

Then f is Birkhoff weak µ-integrable and(Bw)
∫
T
fdµ =

∞∑
n=0

f(tn)µ({tn}).

II. Supposem : A → [0,∞) is a non-negative set function
andµ : A → Pkc(R+) is the set multifunction induced bym,
that isµ(A) = [0,m(A)], for everyA ∈ A. Let f : T → R+

be a function. Thenf is Birkhoff weakµ-integrable onT if
and only if f is Birkhoff weakm-integrable onT . Moreover,
(Bw)

∫
T
fdµ = [0, (Bw)

∫
T
fdm].

This follows by Definition 14 and Proposition 1-(xii).

In the sequel we present some classical integral properties.
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Theorem 17: Letf ∈ RT be bounded. If f = 0 µ-ae, then
f is µ-integrable and

∫
T
fdµ = {0}.

Proof. Since f is bounded, there existsM > 0 so that
|f(t)| ≤ M , for everyt ∈ T .
DenotingA = {t ∈ T ; f(t) 6= 0} and sincef = 0 µ-ae, we
have µ̃(A) = 0. Then, for everyε > 0, there existsBε ∈ A
so thatA ⊆ Bε andµ(Bε) < ε/M. Let Pε = {Ci}i∈N be a

partition of T , such thatC0 = T \Bε and
∞⋃
i=1

Ci = Bε.

Consider now an arbitrary partitionP = {Di}i∈N of T so that
P ≥ Pε. Let ti ∈ Di, i ∈ N be arbitrarily chosen. Without
any loss of generality, we may considerP = P ′ ∪ P ′′, P ′ =
{D

′

i}i∈N, P ′′ = {D
′′

i }i∈N, where
⋃
i∈N

D
′

i = C0 and
⋃
i∈N

D
′′

i =

Bε.
Now, for everyn ∈ N it holds:

|
n∑

i=0

f(ti)µ(Di)| ≤ |
n∑

i=0

f(ti)µ(D
′′

i )| ≤

≤ M ·
n∑

i=0

|µ(D
′′

i )| ≤ M · µ(Bε) < ε.

Hence,f is µ-integrable and
∫
T
fdµ = {0}. �

Theorem 18: [10] Letf : T → R be a real function. Then
f is µ-integrable onA ∈ A if and only iffχA is µ-integrable
on T , whereχA is the characteristic function ofA.

Theorem 19: Let beµ : A → Pc(X) and f, g : T → R

µ-integrable functions so thatf(t) · g(t) ≥ 0, for everyt ∈ T .
Thenf + g is µ-integrable and∫

T

(f + g)dµ =

∫

T

fdµ
•

+

∫

T

gdµ. (1)

Proof. Sincef is µ-integrable, then for everyε > 0, there exist
P1 ∈ P andn1

ε ∈ N so that for everyP ∈ P , P = {An}n∈N,
with P ≥ P1 and everytn ∈ An, n ∈ N, we have

h

(
n∑

k=0

f(tk)µ(Ak),

∫

T

fdµ

)
<

ε

2
, ∀n ≥ n1

ε. (2)

Analogously, becauseg is µ-integrable, there existP2 ∈ P
and n2

ε ∈ N so that for everyP ∈ P , P = {Bn}n∈N, with
P ≥ P2 and everytn ∈ Bn, n ∈ N, we have

h

(
n∑

k=0

g(tk)µ(Bn),

∫

T

gdµ

)
<

ε

2
, ∀n ≥ n2

ε. (3)

Let beP0 = P1 ∧ P2 andn0 = max{n1
ε, n

2
ε}.

Then for every partitionP = {Cn}n∈N ∈ P , with P ≥ P0

and tn ∈ Cn, n ∈ N, by (2) and (3) we get

h(

n∑

k=0

(f + g)(tk)µ(Ck),

∫

T

fdµ+

∫

T

gdµ) =

= h(

n∑

k=0

f(tk)µ(Ck) +

n∑

k=0

g(tk)µ(Ck),

∫

T

fdµ+

∫

T

gdµ) ≤

≤ h(

n∑

k=0

f(tk)µ(Ck),

∫

T

fdµ)+

+h(

n∑

k=0

g(tk)µ(Ck),

∫

T

gdµ) <
ε

2
+

ε

2
= ε.

Hencef + g is µ-integrable and (1) is satisfied. �

Theorem 20: Iff, g : T → R are µ-integrable bounded
functions, then

h

(∫

T

fdµ,

∫

T

gdµ

)
≤ sup

t∈T

|f (t)− g(t)|·µ(T ).

Proof. Sincef is µ-integrable, then for everyε > 0, there exist
P1 ∈ P andn1

ε ∈ N so that for everyP = {An}n∈N ∈ P ,
with P ≥ P1 and tn ∈ An, n ∈ N, we have

h(

∫

T

fdµ,

n∑

k=0

f(tk)µ(Ak)) <
ε

4
, ∀n ≥ n1

ε. (4)

Analogously, becauseg is µ-integrable, there existP2 ∈ P
and n2

ε ∈ N such that for everyP = {Bn}n∈N ∈ P , with
P ≥ P2,

h(

∫

T

gdµ,

n∑

k=0

g(tk)µ(Bk)) <
ε

4
, ∀n ≥ n2

ε. (5)

Let beP1 ∧ P2 ∈ P , P = {Cn}n∈N ∈ P , with P ≥ P1 ∧ P2

and tn ∈ Cn, n ∈ N arbitrarily. Consider a fixedn ∈ N, n ≥
max{n1

ε, n
2
ε}. Then from (4) and (5) it results

h(

∫

T

fdµ,

∫

T

gdµ) ≤ h(

∫

T

fdµ,

n∑

k=0

f(tk)µ(Ck))+

+ h(

n∑

k=0

f(tk)µ(Ck),

n∑

k=0

g(tk)µ(Ck))+

+ h(
n∑

k=0

g(tk)µ(Ck),

∫

T

gdµ) <<
ε

2

+ h(

n∑

k=0

f(tk)µ(Ck),

n∑

k=0

g(tk)µ(Ck)) ≤

≤
ε

2
+

n∑

k=0

|f(tk)− g(tk)||µ(Ck)| <
ε

2

+ sup
t∈T

|f(t)− g(t)| · µ(T ),

for every ε > 0. This implies h(
∫
T
fdµ,

∫
T
gdµ) ≤

sup
t∈T

|f(t)− g(t)| · µ(T ). �

As a consequence of the previous theorem we obtain:

Corollary 21: If f : T → R is a µ-integrable bounded
function, then

|

∫

T

fdµ| ≤ sup
t∈T

|f (t)|·µ(T ).

The next proposition easily follows from Definition 14-II.

Theorem 22: Let bef : T → R a µ-integrable function and
α ∈ R. Then:

I) αf is µ-integrable and
∫

T

αfdµ = α

∫

T

fdµ;
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II) f is αµ-integrable and
∫

T

fd(αµ) = α

∫

T

fdµ.

Theorem 23: Supposeµ : A → Pc(X) is so that 0 is in
µ(A) for everyA in A. If f, g : T → R+ are µ-integrable
functions onT so thatf ≤ g on T, then

∫
T
fdµ ⊆

∫
T
gdµ.

Proof. Sincef is µ-integrable, for everyε > 0, there exist
P1 ∈ P and n1

ε ∈ N so that for everyP = {An}n∈N ∈
P , P ≥ P1 and everytn ∈ An, n ∈ N

h(

∫

T

fdµ,

n∑

k=0

f(tk)µ(Ak)) <
ε

3
, ∀n ≥ n1

ε.

Analogously, becauseg is µ-integrable, there existP2 ∈ P
andn2

ε ∈ N such that for everyP = {Bn}n∈N ∈ P , P ≥ P2

and everytn ∈ Bn, n ∈ N

h(

∫

T

gdµ,

n∑

k=0

g(tk)µ(Bk)) <
ε

3
, ∀n ≥ n2

ε.

Consider P0 = P1 ∧ P2. Let P ∈ P be arbitrarily
chosen, with P = {Cn}n∈N ≥ P0. Then P ≥ P1

and P ≥ P2. Let be tn ∈ Cn, n ∈ N and n ≥

max{n1
ε, n

2
ε}. We get thath(

∫
T
fdµ,

n∑
k=0

f(tk)µ(Ck)) < ε
3

and (
∫
T
gdµ,

n∑
k=0

g(tk)µ(Ck)) <
ε
3
, which imply

e(

∫

T

fdµ,

∫

T

gdµ) ≤ h(

∫

T

fdµ,

n∑

k=0

f(tk)µ(Ck))+

+ e(

n∑

k=0

f(tk)µ(Ck),

n∑

k=0

g(tk)µ(Ck))+

+ h(

n∑

k=0

g(tk)µ(Ck),

∫

T

gdµ)) <

<
2ε

3
+ e(

n∑

k=0

f(tk)µ(Ck),

n∑

k=0

g(tk)µ(Ck)).

According to (xi) and (ii) of Proposition 1, it holds
e(
∫
T
fdµ,

∫
T
gdµ) < 2ε

3
, for every ε > 0, which implies∫

T
fdµ ⊆

∫
T
gdµ. �

Theorem 24: Let beµ1, µ2 : A → P0(X), with µ1(∅) =
µ2(∅) = {0} and supposef : T → [0,+∞) is both µ1-
integrable andµ2-integrable. Ifµ : A → P0(X) is the set
multifunction defined byµ(A) = µ1(A) + µ2(A), for every
A ∈ A, thenf is µ-integrable and

∫

T

fd(µ1 + µ2) =

∫

T

fdµ1

•

+

∫

T

fdµ2.

Proof. Sincef is µ1-integrable, then for everyε > 0, there
exist P1 ∈ P andn1

ε ∈ N so that for everyP = {An}n∈N ∈
P , P ≥ P1 and tn ∈ An, n ∈ N we have

h

(∫

T

fdµ1,

n∑

k=0

f(tk)µ1(Ak)

)
<

ε

2
, ∀n ≥ n1

ε. (6)

Sincef is µ2-integrable, there existP2 ∈ P andn2
ε ∈ N so that

for everyP = {Bn}n∈N ∈ P , P ≥ P2 and tn ∈ Bn, n ∈ N

we have

h(

∫

T

fdµ2,
n∑

k=0

f(tk)µ2(Bk)) <
ε

2
, ∀n ≥ n2

ε. (7)

Let ben ≥ max{n1
ε, n

2
ε}, P = {Cn}n∈N ∈ P , P ≥ P1 ∧ P2

and tn ∈ Cn, n ∈ N.
Then, by (6) and (7), we get

h(

n∑

k=0

f(tk)µ(Ck),

∫

T

fdµ1 +

∫

T

fdµ2) =

= h(

n∑

k=0

f(tk)[µ1(Ck) + µ2(Ck)],

∫

T

fdµ1 +

∫

T

fdµ2) =

= h(

n∑

k=0

f(tk)µ1(Ck) +

n∑

k=0

f(tk)µ2(Ck),

∫

T

fdµ1 +

∫

T

fdµ2)

≤ h(

n∑

k=0

f(tk)µ1(Ck),

∫

T

fdµ1)+

+ h(

n∑

k=0

f(tk)µ2(Ck),

∫

T

fdµ2) <
ε

2
+

ε

2
= ε,

which implies thatf is µ-integrable and
∫
T
fd(µ1 + µ2) =

∫
T
fdµ1

•

+
∫
T
fdµ2. �

Theorem 25: Let beµ1, µ2 : A → P0(X) set multifunctions
and f : T → R a simultaneouslyµ1-integrable andµ2-
integrable function. Ifµ1(A) ⊆ µ2(A), for everyA ∈ A,
then

∫
T
fdµ1 ⊆

∫
T
fdµ2.

Proof. Let ε > 0 be arbitrarily. Sincef is µ1-integrable, there
exist P1 ∈ P andn1

ε ∈ N so that for everyP = {An}n∈N ∈
P , P ≥ P1 and tn ∈ An, n ∈ N

h(

∫

T

fdµ1,

n∑

k=0

f(tk)µ1(Ak)) <
ε

3
, ∀n ≥ n1

ε.

Analogously, sincef is µ2-integrable, there existP2 ∈ P and
n2
ε ∈ N such that for everyP = {Bn}n∈N ∈ P , P ≥ P2 and

tn ∈ Bn, n ∈ N

h(

∫

T

fdµ2,

n∑

k=0

f(tk)µ2(Bk)) <
ε

3
, ∀n ≥ n2

ε.

Let P0 = P1 ∧ P2, and let P ∈ P be arbitrarily chosen,
with P = {Cn}n∈N ≥ P0. Let be tn ∈ Cn, n ∈ N and
n ≥ max{n1

ε, n
2
ε}.
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We get that h(
∫
T
fdµ1,

n∑
k=0

f(tk)µ1(Ck)) < ε
3

and

h(
∫
T
fdµ2,

n∑
k=0

f(tk)µ2(Ck)) <
ε
3
, which imply

e(

∫

T

fdµ1,

∫

T

fdµ2) ≤ e(

∫

T

fdµ1,

n∑

k=0

f(tk)µ1(Ck))+

+ e(

n∑

k=0

f(tk)µ1(Ck),

n∑

k=0

f(tk)µ2(Ck))+

+ e(

n∑

k=0

f(tk)µ2(Ck),

∫

T

fdµ2) <

<
2ε

3
+ e(

n∑

k=0

f(θk)µ1(Ck),

n∑

k=0

f(tk)µ2(Ck)).

According to Proposition 1-(ii), we have

e(

n∑

k=0

f(tk)µ1(Ck),

n∑

k=0

f(tk)µ2(Ck)) = 0.

Consequently,e(
∫
T
fdµ1,

∫
T
fdµ2) < ε, for every ε > 0,

which implies the equalitye(
∫
T
fdµ1,

∫
T
fdµ2) = 0. Apply-

ing again Proposition 1-(ii), it results
∫
T
fdµ1 ⊆

∫
T
fdµ2. �

Theorem 26: Supposeµ is finitely additive. LetA,B ∈ A,
with A ∩ B = ∅. If f : T → R is µ-integrable onA and
µ-integrable onB, then f is µ-integrable onA∪B, and,
moreover, ∫

A∪B

fdµ =

∫

A

fdµ
•

+

∫

B

fdµ.

Proof. Let beε > 0. Sincef is µ-integrable onA, there exist
a partitionP ε

A = {Cn}n∈N ∈ PA andn1
ε ∈ N so that for every

P = {En}n∈N ∈ PA, P ≥ P ε
A and tn ∈ En, n ∈ N, we have

h(

∫

A

fdµ,
n∑

k=0

f(tk)µ(Ek)) <
ε

2
, ∀n ≥ n1

ε.

Analogously, sincef is µ-integrable onB, we find a
partitionP ε

B = {Dn}n∈N ∈ PB andn2
ε ∈ N so that for every

P = {En}n∈N ∈ PB, with P ≥ P ε
B, andtn ∈ En, n ∈ N, we

have

h(

∫

B

fdµ,

n∑

k=0

f(tk)µ(Ek)) <
ε

2
, ∀n ≥ n2

ε.

Consider P ε
A∪B = {Cn, Dn}n∈N ∈ PA∪B and n ≥

max{n1
ε, n

2
ε}. Let P = {En}n∈N ∈ PA∪B such thatP ≥

P ε
A∪B, then we have

h(

n∑

k=0

f(tk)µ(Ek),

∫

A

fdµ
•

+

∫

B

fdµ) =

= h(

n∑

k=0

f(tk)[µ(Ek ∩ A) + µ(Ek ∩B)]),

∫

A

fdµ
•

+

∫

B

fdµ)

≤ h(

n∑

k=0

f(tk)µ(Ek ∩ A),

∫

A

fdµ)+

+ h(

n∑

k=0

f(tk)µ(Ek ∩B),

∫

B

fdµ) <
ε

2
+

ε

2
= ε.

The proof is thus finished. �

Theorem 27: Supposeµ is monotone. Let beA,B ∈ A, with
A ⊆ B. If f : T → R is µ-integrable onA and µ-integrable
on B, then ∫

A

fdµ ⊆

∫

B

fdµ.

Proof. Sincef is µ-integrable onA, for everyε > 0, there
exist P 1

ε = {Cn}n∈N ∈ PA and n1
ε ∈ N so that for every

P = {En}n∈N ∈ PA, with P ≥ P 1
ε , and tn ∈ En, n ∈ N we

have

h(

∫

A

fdµ,

n∑

k=0

f(tk)µ(Ek)) <
ε

2
, ∀n ≥ n1

ε. (8)

Analogously, there existP 2
ε = {Dn}n∈N ∈ PB andn2

ε ∈ N

such that for everyP = {En}n∈N ∈ PB, with P ≥ P 2
ε , and

tn ∈ En, n ∈ N

h(

∫

B

fdµ,
n∑

k=0

f(tk)µ(Ek)) <
ε

2
, ∀n ≥ n2

ε. (9)

We considerP̃ 1
ε = {Cn, B \ A}n∈N. Then P̃ 1

ε ∈ PB and
P̃ 1
ε ∧ P 2

ε ∈ PB.
Let also be an arbitrary partitionP = {En}n∈N ∈ PB, with

P ≥ P̃ 1
ε ∧ P 2

ε .
We observe thatP ′′

ε = {En ∩ A}n∈N is also a partition
of A andP ′′

ε ≥ P 1
ε . Considernε = max{n1

ε, n
2
ε}. Let tn ∈

En ∩ A, n ∈ N.
Then by (8) and (9), for a fixedn ≥ nε, we have

h(

∫

B

fdµ,

n∑

k=0

f(tk)µ(Ek)) <
ε

2

and

h(

∫

A

fdµ,

n∑

k=0

f(tk)µ(Ek ∩ A)) <
ε

2
.

According to Proposition 1-(ii), we obtain

e(

∫

A

fdµ,

∫

B

fdµ) ≤ h(

∫

A

fdµ,
n∑

k=0

f(tk)m(Ek ∩A))+

+e(
n∑

k=0

f(tk)µ(Ek ∩ A),
n∑

k=0

f(tk)µ(Ek))+

+h(
n∑

k=0

f(tk)µ(Ek),
∫
B
fdµ) ≤

ε

2
+

ε

2
= ε,

for everyε > 0. Then
∫
A
fdµ ⊆

∫
B
fdµ, as claimed. �

Theorem 28:Supposeµ : A → P0(X) is finitely additive.
Let f, g : T → R be bounded functions so that:

(i) f is µ-integrable and
(ii) f = g µ-ae.
Theng is µ-integrable and

∫
T
fdµ =

∫
T
gdµ.

Proof. Let M = max{sup
t∈T

|f(t)|, sup
t∈T

|g(t)|}. If M = 0, then

f = g = 0 and the conclusion is evident. SupposeM > 0. Let
ε > 0 be arbitrarily. Sincef is µ-integrable, there existPε =
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{An}n∈N
∈ P andnε ∈ N so that for everyP = {Bn}n∈N,

with P ≥ Pε and everytn ∈ Bn, n ∈ N

h(

n∑

k=0

f(tk)µ(Bk)),

∫

T

fdµ) <
ε

2
, ∀n ≥ nε.

Let E ⊂ T be such thatf = g on T \E and µ̃(E) = 0.
By the definition ofµ̃, there isA ∈ A so thatE ⊆ A and
µ(A) < ε

4M
.

Consider P0 = {A ∩ An, An\A}n∈N ∈ P . Let also be
the arbitrary partitionP = {Bn}n∈N ∈ P , with P ≥ P0

and tn ∈ Bn, n ∈ N. Then, without any loss of generality
we suppose thatBn = B

′

n ∪ B
′′

n , with
⋃

n∈N

B
′

n = A and
⋃
n∈N

B
′′

n = T \ A. Considering a fixedn ≥ nε, we prove that

h(
∫
T
fdµ,

n∑
k=0

g(tk)µ(Bk)) < ε (theng is µ-integrable onT

and
∫
T
fdµ =

∫
T
gdµ).

Indeed,

h(

∫

T

fdµ,

n∑

k=0

g(tk)µ(Bk)) ≤ h(

∫

T

fdµ,

n∑

k=0

f(tk)µ(Bk))+

+ h(

n∑

k=0

f(tk)µ(Bk),

n∑

k=0

g(tk)µ(Bk)) <

<
ε

2
+ h(

n∑

k=0

f(tk)µ(Bk),

n∑

k=0

g(tk)µ(Bk)).

Now, sinceµ is finitely additive, we get

h(

n∑

k=0

f(tk)µ(Bk),

n∑

k=0

g(tk)µ(Bk)) =

= h(

n∑

k=0

f(tk)µ(B
′

k) +

n∑

k=0

f(tk)µ(B
′′

k ),

n∑

k=0

g(tk)µ(B
′

k) +

n∑

k=0

g(tk)µ(B
′′

k ))

≤ h(

n∑

k=0

f(tk)µ(B
′

k),

n∑

k=0

g(tk)µ(B
′

k))+

+ h(
n∑

k=0

f(tk)µ(B
′′

k ),
n∑

k=0

g(tk)µ(B
′′

k ))

≤
n∑

k=0

|f(tk)− g(tk)||µ(B
′

k|+
n∑

k=0

|f(tk)− g(tk)||µ(B
′′

k )|.

Therefore,

h(

∫

T

fdµ,

n∑

k=0

g(tk)µ(Bk)) <
ε

2
+

n∑

k=0

|f(tj)− g(tj)| · |µ(B
′

k|

+

n∑

k=0

|f(tj)− g(tj)| · |µ(B
′′

k )|.

Since for everyk = 0, n, B
′′

k ⊂ T \A ⊂ T \E andf = g on
T \E, thenf(tk) = g(tk), for everyk = 0, n. Consequently,

h(

∫

T

fdµ,
n∑

k=0

g(tk)µ(Bk)) <

<
ε

2
+

n∑

k=0

|f(tj)− g(tj)| · |µ(B
′

k)| ≤

≤
ε

2
+ 2M ·

n∑

k=0

|µ(B
′

k)| ≤
ε

2
+ 2M ·

n∑

k=0

µ(B
′

k) =

=
ε

2
+ 2M · µ(

n⋃

k=0

B
′

k) ≤
ε

2
+ 2M · µ(A) <

<
ε

2
+ 2M ·

ε

4M
= ε,

so the proof is finished. �

IV. B IRKHOFF WEAK INTEGRABILITY ON ATOMS

In this section we obtain some properties regarding Birkhoff
weak integrability on atoms and on finitely purely atomic set-
valued measure spaces.

In the sequel, suppose(X, ‖ · ‖) is a Banach space,T is
infinite, A is aσ-algebra of subsets ofT andµ : A → P0(X)
is a set multifunction of finite variation such thatµ(∅) = {0}.

Firstly, we present a characterization result of Birkhoff weak
integrability on atoms.

Theorem 29:Supposeµ : A → P0(X) is a σ-null-null-
additive multisubmeasure andA ∈ A is an atom ofµ. Let
f : T → R be a real function. Thenf is Birkhoff weak
µ-integrable onA if and only if there existsE ∈ P0(X)
having the property that for everyε > 0 there exist a countable
partitionPε = {An}n∈N of T andnε ∈ N such that for every
tn ∈ An we have

h(

n∑

k=0

f(tk)µ(Ak), E) < ε, ∀n ≥ nε.

Proof. Let P
′

= {Bn}n∈N be a countable partition ofA.
SinceA is an atom ofµ, according to Lemma 9-III, we may
suppose without any loss of generality thatB1 is an atom of
µ, µ(B1) = µ(A) andµ(Bn) = {0}, for everyn ≥ 2. If we
considerP = {Cn}n∈N another countable partition ofA, with
P ≥ P , then, reasoning as before, we may suppose thatC1

is an atom ofµ, µ(C1) = µ(A) andµ(Cn) = {0}, for every
n ≥ 2.
SinceP ≥ P

′

, we discuss two cases:
I. C1 ⊂ B1. In this case,µ(C1) = µ(B1) = µ(A).

II. C1 ⊂
∞⋃

n=2

Bn. We observe thatµ(C1) ⊂ µ(
∞⋃

n=2

Bn) = {0}.

(False!) �

In the sequel,T is a locally compact Hausdorff topological
space andB is the Borelσ-algebra ofT .

Theorem 30:Supposeµ : B → Pf (X) is a regularσ-
null-null-additive multisubmeasure. Iff : T → R is Birkhoff
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µ-integrable on an atomA ∈ B, then
∫
A
fdµ = f(a)µ(A),

wherea ∈ A is the single point resulting by Theorem 11.
Proof. Let be ε > 0. Since f is Birkhoff µ-integrable,

by Definition 14-II there existsPε = {Bn}n∈N a countable
partition ofA so that for everytn ∈ Bn, n ∈ N, we have

h(

n∑

k=0

f(tk)µ(Bk),

∫

A

fdµ) < ε. (10)

Suppose (by Lemma 9-III) thatµ(B0) = µ(A) andµ(Bn) =
{0}, for everyn ∈ N∗. According to Theorem 11, there is an
uniquea in A so thatµ(A) = µ({a}). Supposea /∈ B0. Then
there exists an uniquek0 ∈ N∗ such thata ∈ Bk0

. Sinceµ
is monotone andµ(Bk0

) = {0}, it follows µ({a}) = {0} =
µ(A), false!

So a ∈ B0. Taking t0 = a, from (10) we obtain

h(f(a)µ(A),

∫

A

fdµ) < ε,

for everyε > 0, which shows that
∫
A
fdµ = f(a)µ(A). �

Corollary 31: Supposeµ : B → Pf (X) is a finitely
purely atomic regularσ-null-null-additive multisubmeasure,

with T =
n⋃

i=1

Ai, where{Ai}ni=1 ⊂ A are pairwise disjoint

atoms ofm. If the real functionf : T → R is m-integrable,

then
∫
T
fdµ =

n∑
i=1

f(ai)µ(Ai), whereai ∈ Ai is the single

point resulting by Theorem 11, for everyi = 1, n.
Corollary 32: Supposeµ : B → Pbf (X) is a regularσ-

null-null-additive multisubmeasure and letf , fn : T → R be
m-integrable on an atomA ∈ B of µ, such that lim

n→∞

fn(a) =

f(a), wherea ∈ A is the single point resulting from Theorem
11. Then lim

n→∞

∫
A
fndµ =

∫
A
fdµ.

V. CONCLUSIONS

In this paper we have defined a new Birkhoff type integral
(Bw)

∫
A
fdµ (called Birkhoff weak) for a real functionf with

respect to a set multifunctionµ taking values in the family of
all nonempty subsets of a real Banach space. Some classical
properties of this integral are presented, such as heredity,
monotonicity (relative tof , µ and A), homogeneity (with
respect tof andµ) and additivity (byf , µ andA). Birkhoff
weak integrability properties on atoms are also established.

Our future research on this integral concerns comparative
results with other set-valued integrals, such as the integrals
of Aumann type, Gould type or Choquet type and a Radon-
Nikodym type theorem for Birkhoff weak integrability.
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Doctorat, Univ. des Sci. et Tech. du Languedoc, Montpellier, 1975.

[18] Gould, G.G. –On integration of vector-valued measures,Proc. London
Math. Soc. 15 (1965), 193-225.

[19] Hu, S., Papageorgiou, N.S. –Handbook of Multivalued Analysis, vol. I,
Kluwer Acad. Publ., Dordrecht, 1997.

[20] Kandilakis D.A.–On the extension of multimeasures and integration with
respect to a multimeasure, Proc. Am. Math. Soc., 1992, 116, 85-92.
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