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Abstract—In this paper we define and study a new Birkhoff and may be placed between the Birkhoff integral and the Gould
type integral (Bw) [, fdu (called Birkhoff weak) for a real integral.
function f with respect to a set multifunction . taking values in The paper is organized as follows: Section 1 is for introduc-

the family of all nonempty subsets of a real Banach space. Somet. In th d ti . basi t d
classical properties are presented, such as heredity, monotonicity /0" N the Ssecond section we give some basic concepts an

(relative to the function f, to the set multifunction x and to the ~results. In Section 3 we define a new Birkhoff type integral
set A), homogeneity (with respect tof and x) and additivity (Bw) fA fdu (called Birkhoff weak) for a real functiorf

(relative to f, . and A). Birkhoff weak integrability properties  with respect to a set multifunctiop taking values in the

on atoms are also established. family of all nonempty subsets of a real Banach space. We
Keywords— Birkhoff weak integral, integrable function, mul- present some classical properties of this integral, such as

timeasure, monotone set multifunction, atom. heredity, monotonicity (relative to the functiof to the set

multifunction . and to the setd), homogeneity (with respect

to f and i) and additivity (relative tof, u and A). Section

4 contains some particular cases concerning Birkhoff weak

o ) integrability on atoms. The final Section 5 highlights some
Beginning with the work of Choquet [7], the theory of setzgnclusions.

valued integrals started to develop due to its remarkable ap-
plications in statistics, evidence theory, data mining problems,
decision making theory, subjective evaluations, medicine.
Different types of set-valued integrals have been defined and Il. PRELIMINARIES
studied by many authors (e.qg., [1], [3], [4], [5], [6], [8], [10], Let beT a nonempty setP(T") the family of all subsets
[12-16], [17], [20], [21], [22-25], [26], [27], [28], [29], [30]). of T andR” the set of all real functions defined dn Let
The Birkhoff integral [2] was defined for a vector functioralso be (X, || - ||) a real Banach space with the metic
f : T — X with respect to a complete finite measurénduced by its norniP,(X) the family of all nonempty subsets
. i i — of X, P.(X) the family of all nonempty convex subsets of
e A_ = [0,+00), using serles-c-)f typiglf(tn)m(An) X, P#(X) the family of all nonempty closed subsets &f,
determined by a countable partitiopA,},en- of 7" and p,.(X) the family of all nonempty bounded closed subsets
tn € Ay, for everyn € N*. This definition was generalizedgf x| Pyse(X) the family of all nonempty bounded closed
(for example in [11]) for the case of a vector multifunctiéh  convex subsets ak andP;.(X) the family of all nonempty
and a complete finite measure: A — [0, +oo) using series compact convex subsets af.
of type i F(tn)m(Ay). For everyM, N € Py(X) and everya € R, let M + N =
{z+ylz € M,y e N} andaM = {az|x € M}. We denote
r‘loyﬁ the closure ofM with respect to the topology induced
by the norm ofX.

By ” 1 we mean the Minkowski addition OBy (X), that

I. INTRODUCTION

=1
In [1§] Gould defined an integral for a vector functio
f: T — X relative to a complete finite measune : A —
n

[0, +00) using finite sums of type . f(tx)m(Ax) determined

by a finite partition{A;}}_, ofkT1 andt, € Ay for every s, .

ke{1,2,...,n}. M+N=M+N, VYM,N € Py(X).
Considering countable partitions and finite sums instead of

series, in this paper we define and study a new Birkhoff type

integral for real functions with respect to set multifunctions (A1, N) = max{e(M, N),e(N, M)}, VM, N € Py(X),

taking values in the family of all nonempty subsets of a real )

Banach space. This definition is more simple, easier handfgeree(M, N) = S d(z,N) andd(z, N) = 7}2]{, d(z,y).

Let i be the Hausdorff metric given by
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It is well-known that (Py;(X),h) and (Px.(X),h) are  (iv) finitely additiveif (AU B) = u(A) 4+ w(B) for every

complete metric spaces ([19]). disjoint A, B € A.
We denoteé M| = h(M, {0}), for everyM € Py(X), where (v) null-additiveif u(AUB) = u(A), for every A, B € A,
0 is the origin of X.. with p(B) = {0}.

By i =\ {1_? Wedmeam'{e {1,2,-}-,71}, f?rn de N*, where  (vi) g-null-null-additive if 1( u 2) = {0}, VA4, € A,
N* = N\{0} andN = {0,1,2 We also denotR; = n=0
[0, 00). In the following proposition we recall some propertles g €N with ju(An) = {0},

regarding the excess and the Hausdorff metric ([19]). Definition 4: Let ;1 : A — Po(X) be a setvalued set

function.

Proposition 1:Let 4, B,C, D, 4;, B; € Po(X), for every () The variationz of 1 is the set functiori : P(T) —

i=1,n andn € N*. Then:

(i) h(A, B) = h(4,B). B [0, +oc] defined byzi(E) = sup{Z (A}, for every E' €
(i) e(4,B)=01ifand only if A C B. P(T), where the supremum is extended over all finite families
(iii) n(A, B) =0 if and only if A = B. of pairwise disjoint set§A;}"_, C A, with A; C E, for every
(iv) h(aA,aB) = |a|h(A, B), Ya € R. i=T.n.
(V) h(Xoimy Ai 2oy Bi) < 32y h(Ai, Bi). (i) 1 is said to beof finite variation onA if 7i(T) < oo.
(Vi) h(ad, BA) < |a — |- |A], Vo, B € R. (iii) 7z, defined, for everyA C T, by
(vii) h(aA+ BB,vyA+0B) < |a—~|-|A[+|8 4| |B|, . e
Va, B,7,6 € R. u(A) = inf{u(B); AC B,B € A}.

(vii) h(A+ C,B+ C) = h(A,B), for every A,B € Remark 5:

Poge(X) andC € Py(X). I. If E € A, then in definition ofz we may consider the

(iX) a(A+ B) = aA+aB, Va € R. ) supremum over all finite partitionA;}" , C A, of E.
(X) (a+B)A = aA+ A, for everya, 8 € R, withaf >0 . |u(A)] <7(A), for every A € A;
and every convexi € P(X). ll. 7 is monotone and super-additive d?(T), that is

(xi) aA C BA, for everya, 5 € Ry, with a < § and every A;) > S 7(A,), for every finite or countable partition
convexA € Py(X), with {0} C A. AY 4 2 2 A, y P

(xii) If X =R, thenh([a,b], [c,d]) = max{|a—c|,|b—d|}, {Ai}icr Of T.

for everya,b,c,d € R, a < b, ¢ < d. IV. If p is finitely additive, thery is finitely additive.
V. If p is a multisubmeasure, thenis null-additive.
In the sequel, letd be ac-algebra of subsets df.
Remark 6:SupposeX is a Banach lattice and we denote

Definition 2: (i) A finite (countable, respectively) partitionby A the positive cone ofX, i. e. A = {z € X;z > 0}.
of T' is a finite (countable, respectively) family of nonemptyf m : A — A is a set function, we considehe induced
sets P = {Ai},_17 ({An }HGN, respectively)C A such set multifunction(see [13])u : A — Ppr(X), defined by
that 4,1 A; = 0,i # j and U A =T (U A, = T, u(A) =10,m(A)], for every A € A. Then:

e Z L |u(A)] = [m(A)]|,YA € 4

respectively) Il. @ =m on P(T);

(i) If P and P are two finite (or countable) partitions oflil. z = m on P(T);
T, thenP" is said to befiner thanP, denoted byP < P’ (or, IV. If m is monotone ¢-subadditiveg-additive, respectively),
P' > P), if every set of P’ is included in some set aP. theny is monotone ¢-subadditiveg-additive set-valued mea-

(i) The common refinemenof two finite or countable sure, respectively).
partiions P = {4;} and P’ = {B;} is the partition
PAP ={A;N B,}. Definition 7: A property (P) about the points ofl’ holds

Obviously,PA P' > P and P A P' > P'. almost everywherédenotedy-a.e) if there existsA € P(T')
We denote byP the class of all partitions df and if A € A gg thatji(A) = 0 and (P) holds onT\ A.
is fixed, byP4 we denote the class of all partitions df

Definition 8:1. A set A € A is said to be aratom of p
) if ©(A) 2 {0} and for everyB € A, with B C A, we have
All over the paper,u : A — Po(X) will be a set 1(B) = {0} or u(A\B) = {0}.
multifunction, with (@) = {0}.
Il. n is said to befinitely (countably respectively)purely

Definition 3: 12 is said to be: atomic if there is a finite (countable, respectively) disjoint
(i) monotonef y(A) C u(B), VA, B € A, with AC B, family {A;}7;({An}ney, respectivelyy A of atoms of

(i) subadditiveif u(A U B) C u(A) + u(B), for every so thatT = U AT = U A,,, respectively).
A,B e A, with AN B = (. n=0
(iif) a multisubmeasurd 1 is monotone and subadditive.
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Lemma 9:Let u : A — Py(X
A € A be an atom ofu.

I. If uis monotone and the sét € A is so thatB C A and
w(B) 2 {0}, thenB is also an atom of: andu(A\B) = {0}.
Moreover, if . is null-additive, theru(B) = u(A).

), with 1(0) = {0} and let

Il. If u is monotone and null-additive, then for every finite

partition{B;}"_, of A, there exists only ong = 1,n so that
wu(Bi,) = u(A) and u(B;) = {0} for everyi = 1,n, i # io.

lll. Supposey is monotone, null-additive anol-null- null-
additive. Then for every countable partitidB,, },,en Of A,
there is an uniquei;, € N so thatu(B,,) = u(A) and
w(By) = {0} for everyn € N, n # ny.

Proof. I. Since A is an atom and:(B) # {0}, it results
uw(A\B) = {0}. LetbeC € A, C C B. SinceC C A
and A is an atom, it followsu(C) = {0} or u(A\C) =
{0}. If u(A\C) = {0}, by the monotonicity ofy, it results
w(B\C) = {0}. So, B is an atom ofu. If moreovery is null-
additive, sinceu(A4) = u((A\B) U B) and u(A\B) = {0},
we obtainu(B) = u(A).

Il If u(B;)= {0} for everyi = 1, n, by the null-additivity
of u, it resultsu(A) = {0}, false! Then there i3y = 1,n
such thatu(B;,) # {0}. From I, it follows u(B;,) = u(A)
and u(A\B;,) = {0}. But B; C A\B,, for everyi = 1,n,

i # ip and sinceu is monotone, it results(B;) = {0}, for
everyi = 1,n, i # .
Ill. The proof is analogous to that of II. O
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which implies u(T\{a1,...,a,}) = {0}. Now, sincey is
null-additive, it follows u(T) = p({a1,...,an}).

Il1l. BIRKHOFF WEAK INTEGRABILITY OF REAL
FUNCTIONS RELATIVE TO A SET MULTIFUNCTION

In this section we define a Birkhoff type integral (hamed
Birkhoff weak) of real functions with respect to a set multi-
function and present some of its classical properties.

In the sequel, supposgX, || - ||) is a Banach spacd; is
infinite, A is ac-algebra of subsets & andu : A — Py(X)
is a set multifunction of finite variation such that?) = {0}.

Definition 14:1. [9] Let m : A — [0, c0) be a non-negative
set function. A functionf € R” is said to beBirkhoff weak
m-integrable(on T') if there existsa € R having the property
that for everye > 0, there exist a countable partitioR. of
T andn. € N such that for every other countable partition
P ={A,}nen Of T, with P > P. and everyt,, € A,,,n € N,

it holds| > f(tx)m

The real(ﬁéJ calledthe Birkhoff weakn-integral of f (onT)
and is denoted byBw) [,. fdm or simply [, fdm.

Il. A function f € R is said to beBirkhoff weaky-integrable
on T (shortly u-integrable) if there exist& € Py(X) having
the property that for every > 0, there exist a countable
partition P. of T and n. € N such that for every other

(Ar) —a| < g, for everyn > n..

In the sequel lef” be a locally compact Hausdorff topolog-countable partitionP = {A,}nen of T, with P > P. and

ical spaceC be the lattice of all compact subsets™©f 5 be
the Borelo-algebra (that is the smallestalgebra containing
K) and T be the class of all open sets belonging3o

everyt, € A,,n € N, it holds h(z fte)(Ag),

for everyn > ne.
The setFE is calledthe Birkhoff weaku-integral of f on T

E) < ¢,

In order to state our next theorems, some results of Gavrifffd is denoted byBw) J7 fdp or simply [ fdp.

[14] will be presented.

Definition 10:A set multifunctionu : B — Py (X) is called
regular if for each setA € B and eache > 0, there exist
K eKandD e rsuchthat C AC D and|u(D\K)| <e.

Theorem 111et i : B — P;(X) be regular multisubmea-

sure. If A € B is an atom ofu, then there exists an unique

pointa € A such thatu(A) = pu({a}).

Corollary 12: Let p1 : B — P¢(X) be a regular multisub-

measure. IfA € B is an atom ofu, then there exists an unique—;

f is called Birkhoff weaku-integrable on a sef € A if the
restriction f|E is Birkhoff weak p-integrable on(E, Ag, i)
and its integral is denoted byB) [}, fdu or simply [, fdp.

Remark 151f they exist, the integrals in Definition 14 are
unique.

Example 16:1. SupposeT = {t¢,|n € N} is count-
able, {t,} € A and let be f T — R such that

the seriesz f(tn)p({t,}) is unconditionally convergent.
Then f is Blrkhoff weak pi-integrable andBw) [ fdu =

pointa € A such thatu(A\{a}) = {0}.

Remark 13:Supposeu : B — Py(X) is a finitely purely

atomic regular multisubmeasure. So there exists a finite famﬂy

{A-}? 1 C A of pairwise disjoint atoms of: so thatT =

U A;. By Corollary 12, there are unique, as,...,a, €T

such thatu(A4;\{a;}) = {0}, for everyi = 1,n. Then we
have

w(T\{ax, ... an}) C p(T\{ar}) + w(T\{an}) = {0},

ISSN: 2313-0571 14

Z ftn)u({tn})-

II Supposem : A — [0,00) is a non-negative set function
dp: A — Pr.(Ry) is the set multifunction induced by,
atisu(A) =[0,m(A)], foreveryA e A. Let f: T — R
be a function. Thery is Birkhoff weak u-integrable onr" if
and only if f is Birkhoff weakm-integrable oril". Moreover,
(Bw) [, fdpu = [0,(Bw) [, fdm].

This follows by Definition 14 and Proposition 1-(xii).

In the sequel we present some classical integral properties.
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Theorem 17: Lelf € RT be bounded. If f = 0 p-ae, then
[ is p-integrable and /. fdu = {0}.

Proof. Since f is bounded, there exist3/ > 0 so that
|f(t)] < M, for everyt € T.
Denoting A = {t € T; f(t) # 0} and sincef = 0 pu-ae, we
havei(A) = 0. Then, for everye > 0, there existsB. € A
so thatA C B. andf(B:) < ¢/M. Let P. = {C;}ien be a

partition of T', such thatCy = 7'\ B. and U C; = Be.

Consider now an arbitrary partitiaR = {D }ZeN of T so that
P> P..
any loss of generallty, we may conS|dBr— P'u P, P’

{D bien, P = {D }1€N, where | D =Cpand | D
B 1€eN €N

Now, for everyn € N it holds:

| Z fE)p(Di)] < | Z f(t)u(D

<M- Zlu

Hence,f is u-lntegrable andf,. fdu = {0}. O
Theorem 18: [10] Letf : T'— R be a real function. Then
f is p-integrable onA € A if and only if fx 4 is py-integrable
on T, wherey 4 is the characteristic function ofd.
Theorem 19: Let bgi : A — P.(X) and f,g : T — R
u-integrable functions so thaf(t) - g(t) > 0, for everyt € T'.
Then f + g is u-integrable and

/T(f+g)du=/deu:L/ngu~ 1)

Proof. Sincef is u-integrable, then for every > 0, there exist
P, € P andn! € N so that for everyP € P, P = {A,, }nen,
with P > P, and everyt,, € A,,,n € N, we have

(Zf (tr) 1 / fd,u) < %,Vn > nl. (2)

Analogously, because is p-integrable, there exisP, € P
andn? € N so that for everyP € P, P = {B,,}nen, With
P > P, and everyt,, € B,,,n € N, we have

~ 3
h (kz_jogak)u(Bn), / gdu) <g¥nzni @)
Let beP():Pl/\PQ andno Inax{ns, z
Then for every partition? = {C,,} n,en € P, with P > Py
andt, € Cp,,n € N, by (2) and (3) we get

N <M 1B <e.

n

WS (f + ) (t)u(Cr), /T fu+ /T gdp) =

k=0

=h()_ f(t)u(Cx) + (t)w(Ck), | fdu+ [ gdu) <

kZ;Oka ;gkuk/ipu/irgﬂ

O S (0(C) | s
thk /gdu) .

9
— +

525.

[\
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Hencef + g is u-integrable and (1) is satisfied. O
Theorem 20: Iff,g : T — R are p-integrable bounded
functions, then

h ( [ o | gdu) < sup /(1) — g(0) ().

Proof. Sincef is u-integrable, then for every > 0, there exist
P, € P andn! € N so that for everyP = {4, },en € P,
with P > P; andt € A,,n € N, we have
3
[ g3 s eoua0) < Szt @
k=0
Analogously, becausg is u-integrable, there exisP, € P
andn? € N such that for every? = {B,},en € P, with
P > P21
- £
([ i Y atu(Bo) < Tvn a2 (6)
k=0
LetbeP, AP, € P, P = {Cn}ngN e P,with P> P, AP,
andt,, € Cn, n € N arbitrarily. Consider a fixeth € N;n >
max{n},n2}. Then from (4) and (5) it results

€ E

B /T fdu, /T gdp) < I /T fdu,§f<tk>u<ck>>+

n

+ RO F(t)u(Cr), Y g(te)u(Cr))+
k=0 k=0

+ h( (te)p(Ch), dp) << =
kzzjog 1(Ch /Tg u

+ RO ft)(Cr), Y g(tk)u(Cr))
k=0 k=0

< S+ DIt = gt In(C)l < 2

k=0
+fgIT>|f t) =g - (1),

<

for every ¢ > 0. This implies h(f, fdu, [, gdp)
sup |£(£) = g(0)] - 7i(T).
(S

As a consequence of the previous theorem we obtain:

Corollary 21: If f : T' — R is a pu-integrable bounded
function, then

[ st <suplsol(r).
T teT
The next proposition easily follows from Definition 14-Il.

Theorem 22: Let bg : T — R a u-integrable function and
a € R. Then:
I) af is u-integrable and

/Tafdu=a/deu;
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Il) f is au-integrable and

| ratew =a [ ra

Theorem 23: Suppose : A — P.(X) is so that O is in
w(A) for everyA in A If f,g: T — R, are p-integrable
functions onT so thatf < g onT, then [. fdu C [, gdp.

Proof. Since f is p-integrable, for every > 0, there exist
P, € P andn! € N so that for everyP = {A,},en €
P,P > P, and everyt,, € A,,n € N

n 13
[ sa >~ Fbn(Ax) < 5 vn 2

Analogously, becausg is p-integrable, there exisP, € P
andn? € N such that for everyP? = {B,,},en € P, P > P,
and everyt, € B,,n € N

B /T o3 o)) <

€
g,Vnan.

Consider Py = P, A P,. Let P € P be arbitrarily
chosen, withP = {Cplnen > Py. Then P > P
and P > P,. Let bet, € C,, n e N andn >

max{n!,n2}. We get thath([, fdu, Z fte)u(Cr)) < 5

d ([ gdp, 2 9(tr)n(Cr)) <
/fdu/gdu <h/fdu,2ftk (C))
1(Ck) thk
kTLO
(3 gltiu(Ch), /T gdu)) <

k=0
25 n n
< S e SW)u(Cr), Y- g(tn(Ch
k=0 k=0
According to (xi) and (i) of Proposition 1, it holds
e([; fdu, [ gdp) < 22, for everye > 0, which implies

Jp fdp € [} gdp. O

Theorem 24: Let beuy, o : A — Po(X), with 11 (0) =
p2(0) = {0} and supposef : T — [0,+oc0) is both y;-
integrable andus-integrable. Ifu : A — Py(X) is the set
multifunction defined byi(A) = 1 (A) + ua(A), for every
A € A, then f is u-integrable and

/de(ﬂl-i-m):/deul-T-/deuz.

Proof. Since f is ui-integrable, then for every > 0, there
exist P, € P andn! € N so that for everyP = {4, },en €
P,P > P, andt, € A,,n € N we have

h(/deuhkz_;)f(tk)m(Ak)) < ;V"Zni- (6)

S, Which imply
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Sincef is ug-integrable, there exig, € P andn? € N so that
for everyP = {B,}neny € P, P > P, andt, € B,,n € N
we have

( /T Fapa, S Flt)pa(Br) < 5% > n?.

k=0

()

Let ben > max{nl,n?}, P ={Cprlhen € P, P> P AP,
andt, € Cp,,n € N,
Then, by (6) and (7), we get

Ry~ f(t)

2 /fdul+/fdﬂz):

= 1> F(tr) [ (Cr) + p2(C)] /fdu1+/fduz
k=0

/ fdpn + /T fdpa)

n

= n()_ f(tr)p (Cr) +Zf (tk)p2(Ch),

k=0 k=0

<R F(te)pa (C), /fd/h
k=0

which implies thatf is p-integrable andf,, fd(u1 + p2) =
J}*fdﬂl‘+'j}’fdu2- ]

Theorem 25: Let b@, o : A — Po(X) set multifunctions
and f : T — R a simultaneouslyu-integrable and -
integrable function. Ifu;(A) C ua(A), for every A € A,

then [, fduy C [} fdpo.

Proof. Let e > 0 be arbitrarily. Sincef is u;-integrable, there
exist P, € P andn! € N so that for everyP = {4, },en €
P,P > P, andt,, eAn,neN

h(/T fd/“v];)f(tk)ﬂl(/lk)) < %,Vn > nl.

Analogously, sinceg is us-integrable, there exigP, € P and
n2 € N such that for every? = {B,,},en € P, P > P and
t, € B,,neN

h(/T fdM27];)f(tk)H2(Bk)) < %,Vn > n?.

Let Py = P A P, and let P € P be arbitrarily chosen,
with P = {Cp}neny > Fo. Let bet, € C,, n € N and

n > max{nl,n?}.
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M@gﬁtmth5MmH§f@@mKM) < £ and
=0
h(f fdps, kz f(tr)p2(Cr)) < £, which imply

=0

o[ fd [ i) < (| fars 3 ) (€O +
Z (tr)p1(Ch) thk p2(Cr))

0

el
Il

NIE

+e(> Flt)pa(Cr), / fduz) <

0

|m -
Il

Zf (Or)p1(Ch) thk 12(Ch))-

k=0
According to Proposmon 1-(ii), we have

e(z J(te)p(C), Z ftr)pu2(Cr)) =0

k=0 k=0
Consequentlye( [, fdu1, [, fdue) < e, for everye > 0,

which implies the equality( [, fdu1, [, fdu2) = 0. Apply-
ing again Proposition 1-(ii), it resultf. fdu, C [, fdpz. O

Theorem 26: Suppose is finitely additive. Letd, B € A,
with ANB = 0. If f: T— R is p-integrable onA and
u-integrable on B, then f is p-integrable on AUB, and,

maoreover,
/ fdu = / faut / fdp.
AUB A B

Proof. Let bee > 0. Sincef is u-integrable onA4, there exist
a partitionP§ = {C,, }nen € P4 andn! € N so that for every
P ={FE,}nen € Pa, P > P§ andt,, € E,,,n € N, we have

h( /A a3 F(E) <

Analogously, sincef is p-integrable onB, we find a
partition Pg = {D,, }nen € Pp and n? € N so that for every
P ={E,}nen € Pp, with P > P%, andt,, € E,,n € N, we

have
ah Fa, S Fltan

k=0

Consider P55 = {Cn,Dn}tnen € Paup and n
max{nl,n?}. Let P = {E,},en € Paup such thatP
P, then we have

h%f(tk)u(m, /A faut /B fdp) =
- h(kzzo F(t0) (B N A) + (B, 0 BY), /A fut /B fdu)
WS F (B0 A), [ )+
g k) i(Ex A 1

Mg%ﬂmmu%meéf¢g<g+g

€
E,VnZn;.

By) < %,Vn > 2,

IV IV
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The proof is thus finished. O

Theorem 27: Suppogeis monotone. Let bd, B € A, with
ACB.If f: T — R is p-integrable onA and p-integrable

on B, then
/ fdu € / fd.
A B

Proof. Since f is u-integrable onA, for everye > 0, there
exist P2 = {Cp}nen € Pa andn! € N so that for every
P ={E,}nen € Pa, with P > P! andt, € E,,n € N we
have
~ 3
| i 3 Hp(ED) < Szl @)
Analogously, there eX|sP2 {Dp}nen € Pp andn? € N

such that for every? = {E,, },,en € Pp, with P > P2 and
t, € Ep,n €N

([ san > sitn(e

{C,, B\ A},en. Then ﬁ; € Pp and

k) < g,Vn >n?.

9)

We con3|derP1
P1 A P2 € Pp.

LetNaIso be an arbitrary partitioR = {E,, } ,en € Pp, with
P> P!\ P2,

We observe thatP!’ = {E, N A},en IS also a partition
of A and P/ > P!. Considern. = max{nl,n?}. Lett, €
E,NnAneN.

Then by (8) and (9), for a fixed > n., we have

b f 3 1 nED) < 5
and
/fd,uvthk (ExNA)) < %

According to Proposition 1-(ii), we obtain

o[ s [ iy <n( [ Faln 32 H w50 )+

Zf i)
(Z f(te)
k=0

for everye > 0. Then [, fdu C [, fdp, as claimed.

MHAEJHk Ey))+

NAEkvade
O

Theorem 28:Supposen : A — Py(X) is finitely additive.
Let f,g:T — R be bounded functions so that:

(i) f is p-integrable and

(i) f =g p-ae.

Theng is p-integrable andf,. fdu = [ gdp.
Proof. Let M = max{sup|f( ), sup lg(t)|}. If M =0, then

f =g =0andthe concIuS|on is eV|dent Suppade> 0. Let
e > 0 be arbitrarily. Sincef is u-integrable, there exisb. =
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{A.},.. € P andn. € N so that for everyP = {B,,}ncn, Since for evenk =0,n, B, C T\AC T\ E andf =g on

with P > P. and everyt,, € B,,n € N T\E, then f(tx) = g(tx), for everyk = 0,n. Consequently,
" h | fdu, te)u(By)) <
WY Fen(B). [ fa < S > . yRL 2 9(tu(B)
k=0 T n
e ’
< -+ £:) — g(t;)] - |w(B)| <
Let E C T be such thatf = g on T\E and (E) = 0. 2 Z"f( $) =9l - lu(By)| <

By the definition ofy, there isA € A so thatF C A and

_ g n ’ _ ’
fi(A) < = < H2M Y (B < 5 +2M ) T(B)) =
Consider Py = {A N A,,A,\A}nen € P. Let also be k=0 k=0
the arbitrary partitonP? = {B,}n,eny € P, With P > P, € "o _
andt, € B,,n € N. Then, without any loss of generality =5 t2M “(U By) < 5 +2M-[(4) <
we suppose thaf3, = B, U B, with |J B, = A and c E’“ZO
neN < =—+42M. .- — =¢,
U B, =T\ A. Considering a fixech > n., we prove that 2 4aM
neN so the proof is finished. O
h(Jr fdu, Z 9(te)n(Br)) < € (theng is p-integrable onl’ IV. BIRKHOFF WEAK INTEGRABILITY ON ATOMS
and [, fdu fT gdp). In this section we obtain some properties regarding Birkhoff
Indeed, weak integrability on atoms and on finitely purely atomic set-
valued measure spaces.
In the sequel, supposgX, || - ||) is a Banach spacd; is
/ fd“’ZQ tk)u(Br)) < h( / fduvzf tk)u(Bk)) infinite, A is ac-algebra of subsets @ andy : A — Py(X)

is a set multifunction of finite variation such that?) = {0}.
Zf t)p Z (t)u(By)) < _ F|rstly_, we present a characterization result of Birkhoff weak
integrability on atoms.

k=0
<= +h(z Ftr)n(Br), Y g(tn)u(Br). Theorem 29:Supposeu : A — Py(X) is a o-null-null-
2 k=0 additive multisubmeasure and € A is an atom ofu. Let
_ o - f T — R be a real function. Therf is Birkhoff weak
Now, sincey is finitely additive, we get u-integrable onA if and only if there existsE € Py(X)
having the property that for eveey> 0 there exist a countable
- 2 partition P. = {4, },en of T andn. € N such that for every
th’“ B’“Zg t, € A, we have
=0 k=0
= h(Q_ f(tn(Be) + D ftn)u(By), Z Fte)u(Ar), B) <&, ¥n 2 ne.
k=0 k=0
" i " Proof. Let P’ = {B,}nen be a countable partition ofl.
kz_o 9(te)u(By) + kz_o (te)n(By.)) Since A is an atom ofy, according to Lemma 9-1Il, we may

suppose without any loss of generality that is an atom of

<h te)u(By,), ) (B + w, p(B1) = p(A) and u(B,,) = {0}, for everyn > 2. If we
(Z J(te)u(By) Zg( eu(By)) considerP = {C, },en another countable partition of, with

k=0 k=0
n Lo B P > P, then, reasoning as before, we may suppose ¢hat
+h() Ft)u(By), Y g(te)p(By) is an atom ofy, 1(C1) = p(A) and u(Cr) = {0}, for every
k=0 k=0 n > 2.
n , n . SinceP > P', we discuss two cases:
SZ|f(tk)_g(tk)||N(Bk|+Z|f(tk)_9(tk)||ﬂ(3k)|- I. Cy CBl In this caseu(Cy) = u(By) = (A)
= =0 II. C; C U B,,. We observe that(C7) C u( U B,) = {0}.
Therefore, (False') =2 O

- € N Al / In the sequel is a locally compact Hausdorff topological
h(/ fdu,Zg(tk)u(Bk)) < 2 + Z 1£t5) = 9(t)l - (B space and3 is the Borelo-algebra ofT'.

+Z|f |- |u(By)]. Theorem 30:Supposeu : B — P(X) is a regularo-
null-null-additive multisubmeasure. If : T — R is Birkhoff

ISSN: 2313-0571 18
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p-integrable on an atorl € B, then [, fdu = f(a)u(A),
wherea € A is the single point resulting by Theorem 11.
Proof. Let be e > 0. Since f is Birkhoff u-integrable,
by Definition 14-Il there exist®. = {B,}.en @ countable
partition of A so that for everyt,, € B,,, n € N, we have

WS Fen(B. [ i) <

k=0

Suppose (by Lemma 9-1l1) that(By) = u(A) andu(B,,) =
{0}, for everyn € N*. According to Theorem 11, there is an
uniquea in A so thatu(A) = u({a}). Suppose: ¢ By. Then
there exists an uniquk, € N* such thata € By,. Sincep
is monotone and:(By,) = {0}, it follows u({a}) = {0} =
w(A), false!

Soa € By. Takingty = a, from (10) we obtain

A, [ raw <

for everye > 0, which shows that/, fdu = f(a)u(A). O
Corollary 31: Supposey : B — Ps(X) is a finitely
purely atomic regular-null-null-additive multisubmeasure,[15]

(5]

(6]

(7]

(8]
El

(10)

[10]
[11]

[12]
[13]

[14]

with T' = U A;, where{A4;}7 , C A are pairwise disjoint [16]

atoms ofm. If the real functionf : T' — R is m-integrable,
then [ fdu = Z f(ai)u(4;), wherea; € A; is the single [17]
point resulting by Theorem 11, for eveiy=1,n. [18]
Corollary 32: Supposeu : B — Pyr(X) is a regularo-
null-null-additive multisubmeasure and 1t f,, : T'— R be
m-integrable on an atord € B of u, such thatlim f,(a)
n—oo

f(a), wherea € A is the single point resulting from Theoremy2y)
11. Then lim [, fudp = [, fdp.
n—oo

V. CONCLUSIONS

[19]

[20]

[22]

In this paper we have defined a new Birkhoff type integréﬁ?’]
(Bw) fA fdu (called Birkhoff weak) for a real functiofi with
respect to a set multifunctiom taking values in the family of [24]
all nonempty subsets of a real Banach space. Some classigal
properties of this integral are presented, such as heredity,
monotonicity (relative tof, n and A), homogeneity (with [26]
respect tof and ) and additivity (by f, 4 and A). Birkhoff 27]
weak integrability properties on atoms are also established.

Our future research on this integral concerns comparati¢él
results with other set-valued integrals, such as the integrals
of Aumann type, Gould type or Choquet type and a Radops]
Nikodym type theorem for Birkhoff weak integrability.

[30]
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