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Abstract—In this work we deal with the problem of finding
suitable admissibility conditions for the parameter sets of strongly
regular graphs. To address this problem we analyze the regularity
of these graphs through the introduction of a parameter and deduce
some parametric admissibility conditions. Applying an asymptotic
analysis, the conditions obtained enabled us to extract some spectral
conclusions over the class of strongly regular graphs.
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I. INTRODUCTION

In this paper we obtain admissibility conditions on the
parameters and spectra of strongly regular graphs. The con-
ditions are deduced by the analysis of a parameter such
that the regularity of the graph is given as a function of
its order. Also, the relationship between this class of graphs
and Euclidean Jordan algebras is explored. We consider a
generalized binomial series regarding an element of the Jordan
frame of an Euclidean Jordan algebra associated to the strongly
regular graph, in an analogous manner as it was done in [16].

The paper is organized as follows. A survey on the main
concepts regarding Euclidean Jordan algebras and Strongly
regular graphs is presented in Section II and in Section III,
respectively. Next, in Section IV, we present the algebraic
environment of our work, that is, an Euclidean Jordan algebra
spanned by the adjacency matrix of a strongly regular graph.
Our main results are presented in Section V, were the asymp-
totic parameters of the generalized binomial Hadamard series
of a strongly regular graph are introduced, in a similar manner
than in [16]. Analyzing these parameters, we establish some
asymptotic admissibility conditions over the parameters and
the spectra of strongly regular graphs. Finally, in Section VI,
some conclusions and experimental results are presented.

II. REAL EUCLIDEAN JORDAN ALGEBRAS

In the following paragraphs we introduce the fundamen-
tal concepts on Euclidean Jordan algebras as well as some
notation. Such algebras were introduced in 1934 by Pascual
Jordan, John von Neumann and Eugene Wigner, [10]. These
algebras have applications in several branches of Mathematics
such as statistics, [13], interior point methods, [6], [7] and
combinatorics [3], [15], [16].
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Euclidean Jordan algebras are vector spaces, ), over the
field R, where it is defined an inner product, < -,- >, and a
bilinear form (u,v) — u @ v, from ¥V x V into V, such that:

(i) uev=veu;

(ii) ue (u?ev)=1u?e(uev), with u? =ueu;
)
)

(41
(v

The element e is usually called the unit element of V. Along
this paper we only deal with real finite dimensional Euclidean
Jordan algebras with unit element.

An element u in V is an idempotent if u? u. Two
idempotents v and v of V are orthogonal if v e v 0.
A complete system of orthogonal idempotents of V is a set
{u1,us,...,ur} of orthogonal idempotents such that u; +
U + - +up =e.

For every u in V, there are unique distinct real numbers
A1, A2, ..., Ak, and an unique complete system of orthogonal
idempotents {u1,usa, ..., ux} such that

JeeV:VueV, eeu=uelive=u;
<uev,w>=<v,uew >.

U= Atui + Agug + - -+ ApUg, (D

(see [5], Theorem III.1.1). These A;’s are usually called the
eigenvalues of w and (1) is called the first spectral decompo-
sition of w.

The rank of an element v in V is the least natural number
I, such that the set {e,u,...,u'} is linearly dependent (where
u¥ = v e u*~1) and we write rank(u) = I. This concept is
expanded by defining the rank of the algebra ) as the natural
number rank()) = max{rank(u) : © € V}. The elements of
V with rank equal to the rank of V are called regular elements
of V. From now on, it is assumed that ) has rank r.

An idempotent is called primitive if it is non-zero and
it cannot be written as the sum of two other distinct non-
zero orthogonal idempotents. A Jordan frame is a complete
system of orthogonal idempotents such that each idempotent
is primitive.

For every u in V, where V is an Euclidean Jordan algebra

with rank r, there exists a Jordan frame {uy,us,...,u,} and
real numbers A1, Ao, ..., A, such that
U= ANUp + AoUg + -+ - + AUy 2)

The decomposition (2) is called the second spectral decompo-
sition of w.
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Further information on real Euclidean Jordan algebras can
be found in Koecher’s lecture notes [11] and in the monograph
by Faraut and Koranyi [5].

III. STRONGLY REGULAR GRAPHS

In this section we present the family of strongly regular
graphs. The basic concepts of Graph Theory are assumed to
be known by the reader and can be found in [8].

Strongly regular graphs is a family of regular graphs in
which each pair of vertices have a fixed number of neigh-
bors. This family was introduced in [2] in the context of
partial geometries and partially balanced designs. One problem
suggested when studying these graphs is to obtain feasibility
conditions on their parameter set.

A simple, non-null, not complete and undirected graph X
is strongly regular with parameter set (n,k,a,c) if it is a k-
regular graph with n vertices such that each pair of vertices
has a common neighbors if they are adjacent and ¢ common
neighbors, otherwise.

The parameters of a strongly regular graph are related by
the following equality:

k(k—a—1)=(n-k—1)c 3)

If X is a strongly regular graph with parameters (n, k, a, ¢),
then its complement graph, X, that is, the graph with the same
vertex set and such that two distinct vertices are adjacent in
X if and only if they are not adjacent in X, is also strongly
regular with parameters (n, k, @, ¢), where

k n—k—1, 4)
a = n—2-—2k+c, 5
¢ = n—2k+a. (6)

It is also well known (see, for instance, [8]) that the
eigenvalues of a strongly regular graph X with parameter set
(n,k,a,c) are k and

a—c++/(a—c)2+4(k—c)

2
a—c—/(a—c)2+4(k—c)

5 : ®)
The eigenvalues 6 and 7 are usually called the restricted
eigenvalues of X. The multiplicities my of § and m, of 7
are (see the equalities for the multiplicities presented in [12]
and simplify):

0

and

)

T

— —tn+717—k
0 — 0—r )
_ on+k—1
my, —o_.

Taking into account the information presented above, the
following conditions are deduced:

1) The nontrivial Krein conditions obtained in [14]:
(0+1)(k+ 0+ 207) (k+0)(r+1)* (9
(1 +1)(k+ 7+ 207) (k+7)(0+1)% (10)

<
<
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2) The Seidel’s absolute bounds (see [4]):

n < 77”9(7”2”3) (11)
n < W (12)

The conditions presented are used as feasibility conditions for
parameter sets (n, k, a, ¢), that is, if (n, k,a, ) is a parameter
set of a strongly regular graph, then inequalities (9)-(12) must
hold. With these conditions many parameter sets are discarded
as possible parameter sets of strongly regular graphs. However,
there are still many parameter sets for which it is unknown if
there exists a corresponding strongly regular graph.

The Krein conditions (9)-(10) and the Seidel’s absolute
bounds (11)-(12) are special cases of general inequalities
obtained for association schemes, which constitute more gen-
eral combinatorial structures, since strongly regular graphs
correspond to the particular case of symmetric association
schemes with two classes (see, for instance, [1]).

IV. AN EUCLIDEAN JORDAN ALGEBRA SPANNED BY THE
ADJACENCY MATRIX OF A STRONGLY REGULAR GRAPH

From now on, we consider the Euclidean Jordan algebra of
real symmetric matrices of order n, V, with the Jordan product
defined by

AB + BA

2 )
where ADB is the usual product of matrices. Furthermore, the
inner product of V is defined as < A, B >= tr(AB), where
tr(-) is the classical trace of matrices, that is, the sum of its
eigenvalues.

From now on, we will, we only consider (n, k, a, ¢) strongly
regular graphs such that 0 < ¢ < k < n —1. Let X be a
(n, k, a, c)-strongly regular graph and let A be the adjacency
matrix of X. Then A has three distinct eigenvalues, namely
the degree of regularity k£ of X, and the restricted eigenvalues
6 and 7, given in (7) and (8). Recall that £ and 6 are the
nonnegative eigenvalues and 7 is the negative eigenvalue of A.
Now we consider the Euclidean Jordan subalgebra of V, V',
spanned by the identity matrix of order n, I,,, and the powers
of A. Since A has three distinct eigenvalues, then V' is a three
dimensional Euclidean Jordan algebra with rank()’) = 3.

Let S = {Ey, F1, E>} be the unique complete system of
orthogonal idempotents of V' associated to A, with

A2 — 0+ T1)A+ 011,  J,

VA,BEV, AeB = (13)

Poo= —Gok—n
P A2 — (k+1)A+ kT,

! OG-0 —k
B A% — (k+0)A+ k61,

2 (r—0)(r—k

where J,, is the matrix whose entries are all equal to 1.
Since V'’ is an Euclidean Jordan algebra that is closed for
the Hadamard product of matrices, denoted by o (see the
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definition of Hadamard product, for instance, 1n 9D, and S
is a basis of 1/, then there exist real numbers ¢, and ¢, 811>
0<i,a,8 <2, a f, such that

2

E,oE. = Y ¢\E;, (14)
=0
2 .

EaoBEs = > dipnbs (15)
1=0

These numbers g, and ¢l5,,, 0 < a,8 < 2, a # f, are
called the Krein parameters of the graph X (see [12]), since
qi; >0 and ¢3, > 0 yield the Krein admissibility conditions,
(9) and (10), presented in [8, Theorem 21.3].

In what follows, we introduce some important notation.
Firstly, considering S {Ey, E1,E>} and rewriting the
idempotents under the new basis {I,, A, J, — A — I,} of V'
we obtain

Eo = n(eﬂ_—TT) In + n(eﬂ_—TT)A +
+ nfa_i) (Jo—A—1,),
B - B A
+ n(Ta_—kT) (Jp— A— 1)
B = QZ(Zk ;)91" + _S(ZlC T)GA +
+ nfa__eT)(Jn—A—fn). (16)

Now, we introduce another matrix product, the Kronecker
product (see [9]), denoted by C'® D, for matrices C' = [C};] €
My n(R) and D = [D;;] € My ((R), with m,n,p,q € N,
defined by

CuD CinD

Ce®D= : :
CpuD ConD

Note that M,, ,,(R) is the usual notation for the space of real

m X m matrices.

Finally, we introduce the following compact notation for the
Hadamard and the Kronecker powers of the elements of S. Let
x, Y, z, a and 8 be natural numbers such that 0 < o, 8 < 2,
r > 2 and « < . Then, we define

E°" = (E,)°" and E®* = (E,)%",

B = (Ea)™ o (Ep)™ and EZY = (B.)® @ (Ep)®
525 = (Ba+ E5)°" and E@’éﬁ = (Ba+ Bp)™".

V. ASYMPTOTIC PARAMETRIC CONDITIONS FOR
STRONGLY REGULAR GRAPHS

Let X be a strongly regular graph with parameter set
(n,k,a,c) and adjacency matrix A. Let S = {Ey, F1, E>}
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be the unique complete system of orthogonal idempotents of
the Euclidean Jordan algebra V' associated to A. We will make
use of the same notation introduced in the paper [16].

Let « and € be real positive numbers such that e €]0, 1].
Since |(On+k —0)/(n(0 — 7)) < L,|(—n+k —0)/(n(0 —

7))] < 1 and |[(k — 0)/(n(6 — 7))] < 1, then the series
Yo (=1 )e (EOQ) converges to a real number, S, and
we can write

S(EE

\_/\_/

—A-

7 (Jn I). a7
k—0

n(0—7)

<1—6< >2>

Note that the eigenvalues of S, are real positive numbers.

Consider the first spectral decomposition of Sye, Sype =
. Eo + ¢l F1 + ¢2 F2. We call the parameters ¢’ , for i =
0,...,2, the asymptotic parameters of the strongly regular
graph X.

Proceeding in an asymptotical analysis of the parameter
q2., we establish Theorem V.l which presents a feasibility
condition for strongly regular graphs whose regularity is less
than a half of its order.

Theorem V.1. Let X be a strongly regular graph with
parameter set (n,k,a,c) and distinct restricted eigenvalues

0 and 1. If k = (1/2 — B)n, with 8 € ]0,1/2], then

(6 + 1 — 28)
28

Proof: Since ¢2, > 0, for all z in R and for all € in ]0, 1],

7| < (18)

"then, for any real numbers 2 and € €]0, 1[, we have

1 1
! 0 0 2\* " 0 2 =T
n+k— _ n—k+
<1 —¢€ ( n(0—7) ) ) <1 € (n(@—'r)) >
1

+

(=7 —1).

(1-<(t))
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After some algebraic manipulation of (19) we obtain
k—6 0xnt+k—0
(e 1))
ko \2\" nkt0)’ ’
(1 - ¢ (n(()f‘r)) ) - (1 - ¢ (n(677)> >

(20)

21

Applying the Mean value Theorem to the function f

such that f(u) = In(l1 — u),Yu €]0,1[ on the in-
2 2

— k—0 On+k—0 —

tervals Il = |:€ (m) , € ( n(_gi_r) ) :| and 12 =

2 2
[e (%) ,€ (Z(f_t‘?) }, by (21) we deduce

(0 Ont2(k=0)
1—uy 0— n(0—r)

p
: k+6 2
i n—
w2 e (77,(077'))

2 )
(k=6
(n(Of'r) ) )
with u; € I; and us € Is.
After some straightforward simplifications of (22), we obain

|| < (22)

9 On+2(k—0)
n(0—7)

O0—1
1—wup L _ _ 2(k—0) -~
n(0—r)2

(23)

Since k = (1 — 2()n, inequality (23) can be written as

0 On+(1-28)n—20
1—us =7 n(0—r)
_ 1 1—23—26
L= e — e

7| (24)

Finally, from (24) we have
1—u6(0+1-2
< 200122
1-— (751 25

Therefore,

1—u0+1—25)0
7] < lim L= U204 1= 25)
e—01 — Uy 26
and (18) from Theorem V.1 is attained [ |

Remark V.1. Let X be a strongly regular graph with param-
eter set (n, k,a,c) and eigenvalues k, 0 and 7. The inequality
(18) presented in Theorem V.I provides us the following
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information. The absolute value of T is conditioned by the
value of 0 and we can say that this restriction is much more
perceptible when the regularity k is much smaller than n/2.

Due to Remark V.1, we establish a restriction of inequality
(18) when k < «, with @ < n/2. Accordingly, Corollary V.1
presents an inequality for parameter sets with & < o = n/3,
that can be easily deduced from Theorem V.1.

Corollary V.1. Let X be a strongly regular graph with
parameter set (n,k,a,c) and distinct eigenvalues k, 0 and
7. If k <n/3, then
IT] < 6(36 +2). (25)
Applying Theorem V.1 to the complement graph X, we
establish inequality (26) in Corollary V.2 for strongly regular
graphs with parameter set (n,k,a,c) such that k = n( +
B) — 1, with 3 €]0, %[

Corollary V.2. Let X be a strongly regular graph with
parameter set (n,k,a,c) and distinct eigenvalues k, 0 and
. Ifk=n(1/2+ B) — 1, with 8 €]0,1/2|, then

(Il = D[ = 26)
28

Remark V.2. As we did for Theorem V.1 with Remark V.1, we
can conclude that the value of 3 in inequality (26) of Corollary
V.2 must not be near zero, in order for the inequality to be
useful. Therefore, k must be a natural number bigger, but not
close, than n/2 — 1.

0 < —1.

(26)

In the following Corollary, we present a restriction of the
inequality (26) for 8 > 1/6, which is the same of considering
k>2n/3 —1.

Corollary V.3. Let X be a strongly regular graph with

parameter set (n,k,a,c) and distinct eigenvalues k, 0 and

7. If k> 2n/3 — 1, then
0<(r|-D)B|r|—1)—1. (27)

From now on we will compose the idempotent Fo with
the matrix S, and analyze its eigenvalues. Observe that all
the eigenvalues of Fy o S, are positive since Fs o S, is a
principal submatrix of F>® S, and the eigenvalues of £y and
Sze are all positive (here we apply the Eigenvalues Interlacing
Theorem, see [9]).

Considering the following spectral decomposition Ej5 o
See = @ weEo+43 2 F1+G3 . F> and analyzing the parameter
qum we deduce, in Theorem V.2, another admissibility condi-
tion for strongly regular graphs with parameter set (n, k, a, ¢).

Theorem V.2. Let X be a strongly regular graph with
parameter set (n,k,a,c) and distinct eigenvalues k, 0 and
7. If k= (1/2 — B)n, with B €]0,1/2|, then

(20+1—2B3)0(0 + 1 — 23)

K 2(1+28)B

(28)
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Proof: Firstly, we note that the following inequality (29)
is verified for any real numbers x and € €]0, 1.

On+k—0 1

0 < -+
n(0—7)
-n+k—20 1 .
O ()
€ n(0—r)

0
— ~(n—k — 1). (29)
n(o ) <1 —€ (nf@e‘l’)>2>

Since the elements of S are orthogonal, then EsFy = 0 and
we can conclude that

k—0 _0n+k—0_—n+k—0
(n(@ —71) n(@ — 1) n(@ — 1)

and by some algebraic manipulation of (29) we obtain the

inequality (30).
2 x
o n—k+60
On+k—0 <1 ‘ (n(@—ﬂ) )

n—k+40 (1—6(%‘51":)9)2)36.

n—k—1)= k

2\ T 2 FAN
_ k—0 _ _ n—k+6
(1 € (n(Gfr)) ) (1 € (n(Gfr)) )
Making x — 0 on the right hand side of (30) we obtain the
following:

On+k—06
n—=k+60

(0= (r) ) - (1< (525)')
(e (ai) ) (e () )

€29
Applying the Mean-Value Theorem to the real function

k

f(u) = In(l — w), for all w in ]0,1], on the in-
2 2
tervals I, = [e (%) L€ (9&}'5;{)) and I, =

2 2
[e (%) ,€ (Z@ki?) }, we obtain the inequality (32).

0 On+2(k—0
3 On+k—0 oo e
n—k+0 = <((nk+0))2 B ( (k—0) )2) ’
n(6—1) n(0—1)

(32)
with uy € I1 and uy € I>. After some algebraic manipulation
of the inequality (32) we obtain

(1 —u)(On + k — 0)0(6n + 2(k — 0))
(1 —wu)(n—k+0)(n— 2k +20)

k< (33)
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Recalling that k = ((1 — 283)n) /2, with 8 €]0, 1[, and after
neglecting some terms in the multiplicative factors of both the
numerator and denominator of the right hand side of (33) we
obtain (34)

(1 —u2)(20+1—-28)0(0 +1—2P)
2(1 —u1)(1+20)8 '
Finally, making € — 0, then w1, u2 — 0 and inequality (28)
follows. [ ]

Considering 8 > &, which implies that k& < %, we deduce
the following consequence of Theorem V.2.

k

(34)

Corollary V4. Let X be a strongly regular graph with
parameter set (n,k,a,c) and distinct eigenvalues k, 0 and
T. If k <n/3, then

(30 +1)0(30 +2)

k .
< 2

(35)

Applying Corollary V.4 to the complement graph X, we
establish Corollary V.5.

Corollary V.5. Let X be a strongly regular graph with
parameter set (n,k,a,c) and distinct eigenvalues k, 0 and
7. If k> 2n/3 — 1, then

n—k—1< @] —1)(7r] - )37 - 1). (36)

VI. CONCLUSIONS AND EXPERIMENTAL RESULTS

We conclude our paper with some experimental results
which test the inequalities presented in Section V and deduce
some spectral conclusions.

Firstly we analyze inequality (25) from Corollary V.1. In
Table I we consider the parameter sets X; = (184,48, 2,16),
X2 = (256,66,2,22) and X3 = (1275,378,57,135) and we
test them for the parameter Q' = 0(30+2)—|7|, obtained from
the inequality (25). Note that each parameter set considered
satisfies the condition of Corollary V.1, that is, k < n/3.

X1 X2 X3
0 2.0 2.0 3.0
T | —16.0 | —22.0 | —81.0
Q! 0 —6.0 | —48.0
TABLE I

EXPERIMENTAL RESULTS FOR THE INEQUALITY (25).

The results presented in Table I confirm the conclusion that
one can deduce from the analysis of inequality (25), that is,
when k < n/3, the value of |7| cannot be too big relatively
to the value of 4.

Next we analyze inequality (27) from Corollary V.3. In
Table II we consider the parameter sets from the complement
graphs considered before, that is, X; = (184,135,102, 90),
Xy = (256,189,144,126) and X3 = (1275,896,652,576),
and we test them for the parameter Q% = (|7| — 1)(3|7] —
1) — 1 — 6, obtained from the inequality (27). Note that each
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X, Xo X3
6 | 15.0 | 21.0 | 80.0
T | =3.0 | =3.0 | —4.0
Q? 0 —6.0 | —48.0
TABLE II

EXPERIMENTAL RESULTS FOR THE INEQUALITY (27).

parameter set considered satisfies the condition of Corollary
V.3, that is, k > 2n/3 — 1.

In this case we can draw a similar conclusion than be-
fore. The results presented in Table II confirm that, when
k > 2n/3 — 1, the value of # cannot be too big relatively
to the value of |7].

We proceed our analyzes with inequality (35) from Corol-
lary V4. In Table III we consider the parameter sets
X4 = (300,92,10,36), X5 (400,114, 8,42) and X¢ =
(441,128, 10, 48), which comply with the conditions of Corol-
lary V.4, and we also consider the parameter Q3 (30 +
1)0(360 4 2)/2 — k, obtained from inequality (35).

X4 X5 Xs
0 2.0 2.0 2.0
T | =280 | —36.0 | —40.0
Q3 | —36.0 | —58.0 | —72.0
TABLE III

EXPERIMENTAL RESULTS FOR THE INEQUALITY (35).

The results presented in Table III confirm the conclusions
one can draw from the inequality (35) of Corollary V.4, that
is, if kK < n/3, then k cannot be much bigger than the value
of 6, since inequality (35) establishes that & is smaller than a
polynomial in 6 of degree 3 with positive coefficients.

Finally, in Table IV, we analyze the complement pa-
rameter sets of the graphs previously considered, that is,
X, = (300,207,150,126), X5 = (400,285,212,180) and
X6 (441, 312,231,195), which comply with the condi-
tions of Corollary V.5, and we also consider the parameter
Q* = (2|7 - 1)(|7| = 1)(3|]7| = 1) = n+ k + 1, obtained from
inequality (36).

X4 X5 X6
0 27.0 35.0 39.0
T -3.0 | =3.0 | =30
Q* | —12.0 | —34.0 | —48.0
TABLE IV

EXPERIMENTAL RESULTS FOR THE INEQUALITY (36).

Our last experiments presented in Table IV are analogous to
the ones from our previous experiments. Here, one can say that
the regularity of the complement graph, n — k — 1, cannot be
much bigger than the absolute value of the negative restricted
eigenvalue, since it is restricted by a polynomial in |7| of
degree 3 which is always positive.
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In this paper we have established parametric admissibility
conditions which enlightened some relations between the
elements of the spectrum of a strongly regular graph. These
relations were highlighted in the previous paragraphs.
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