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Remark on small analytic solutions to the
Schiodinger equation with cubic convolution

Hironobu Sasaki

Abstract—We consider the Cauchy problem for the which is stronger than (2), holds arﬂd>||(s(0)) is sufficiently

Schrodinger equation with cubic convolution in space dimension small, then there exists a time-global solutwio the integral
d > 3. We assume that the interaction potentiall’ belongs to the equation of the form

weak L%/ 7 space with2 < ¢ < d. We prove that if the initial data

¢ is sufficiently small in the sense of the Sobolev spadg?/?~! ot , s

and either ¢ or its Fourier transform F¢ satisfies a real-analytic u(t)=U(t)g—i | Ut—t)F(ul)d', teR, (3)

condition, then the solutionw(¢) is also real-analytic for anyt # 0. 0

We also prove that if ¢ and V satisfy some strong condition, then which is equivalent to (1), such that(t) behaves like a

u(t) can be extended to an entire function onC® for any t # 0. free solution Ut)p, ast — oo in H*), In particular,

We remark that no H°/?"" smaliness condition is imposed on ne inverse wave operatdv, : ¢ — ¢, is well-defined

first and higher order partial derivatives of ¢ and F¢. on a neighborhood of 0 if*(). Remark that in the above

_ Index Terms—Nonlinear Schrodinger equation, Analytic solu- exjstence theorem, né&s(e) smallness condition is imposed

tion, Hartree term, on first and higher order partial derivativesg@nd its Fourier
transformF¢.

I. INTRODUCTION

I N this paper, we establish an extended result of maii Main results
theorems in [23]. We consider the Cauchy problem for the In this paper, assuming that either or F¢ satisfies a

nonlinear Schisdinger equation of the form real-analytic condition, we study the analyticity of the small
, solution u(t) to (3), the final dataV_(¢) and FV_(¢).
{ iup + Au = F(u), (1) Remark that we do not impose ai*(”) smallness condition
w0, x) = (). on any partial derivative op and F¢. We now briefly state a

Here, u is a complex-valued unknown function ¢f,z) e Part of our main result. We show that
R x RY, d > 3,i=+/—1, A is the Laplacian inR?, F(u) () There exists some > 0 such that if0 < [[¢]| 5y, <7

denoteg V' x |u|?)u, which is called the Hartree term or cubic and

convolution, andk is the convolution inR¢. Throughout this 1224 1/]al

paper, we assume that< ¢ < d and the interaction potential lim sup ( (5("))> 0, (4)
V is a given function oriR? and belongs to the weak®/* |00 al

space. In other words, we assume that then u(t) is real-analytic for anyt # 0. More pre-

J o/d cisely, the mapx — M(—t)u(t,z) can be extended
ili%)‘ﬂ({l’ € R% V()] > )‘}> < 0, @) to a function holomorphic on{z € C%|Imz| <
|2¢|/C(¢,d, V) }. Here, we have defined fore R\ {0}

where 1 is the Lebesgue measure ®f. There is a large

; 2
literature on the Cauchy problem for nonlinear Sxtinger M(t) : S’(Rﬁ) S f—exp (ml ) fe 5’([@;1)
equations (see, e.g., [2], [13], [25] and references therein). at

and
To state a global existence theorem for (1), we set some (1 + [a)) 1 22| 1/]al

notation. Forq € [1,00], we denote the Lebesgue space C(¢,d,V) = sup (s(2))
L1(R?) and theL?-norm by L7 and ||-|| , respectively, and la|>0 Bl (50
we set||-{| = ||, Furthermore, fors € R, H; denotes g g corollary, the following property is proved:

the inhomogeneous Sobolev spatk (R?), we abbreviate
Hj to H®, the H*-norm denotes|-|| ). Fort € R, U(t)
denotes the propagatet‘® for the free Schidinger equation
iug + Au = 0. Defines(o) = o/2 —1for 2 < o < d.
Mochizuki [14] has proved that if the condition

(I If ¢ and V satisfy some strong condition, then the
mappingx — M (—t)u(t,z) can be extended an entire
function onC¢? for any ¢ # 0.

In [23], Properties (1) and (II) withc = 2 were shown.
Therefore, in this paper we establish an extended result of
either |V(z)| <Clz|™® or Ve L, Theorems in [23]. For the detailed statement of (I)—(Il), see
Theorem 1.3(3) and Corollary 1.5.

H. Sasaki is with Department of Mathematics and InformatiCj% K11 Th h Ivtic C h
Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan e-m pemark 1.1 ere are many papers on the analytic Cauchy

sasaki@math.s.chiba-u.ac.jp problem for nonlinear Sclidinger equations and related

ISSN: 2313-0571 34



INTERNATIONAL JOURNAL OF PURE MATHEMATICS

equations(see, e.g., [1], [3]-[12], [15], [18]-[22], [24],
[27]). In particular, we can use methods in [9], [10], [19]
to show the analyticity of the solutiom(t) of (3) and more

detailed properties. However, it does not seem that we can

prove (I)-(Il) by using the methods directly.

To state our main results precisely, we list some notation.

Let2 < o < d. For A > 0, ByH*(®) denotes the closed ball
of H*(®) with radius\ centered at 0. PUf, = NU{0}. For a
multi-index o € N¢, we denotel + |a| by (a). Furthermore,
for t € R, we defineJ* = U(t)z*U(—t). Remark that the
following identity holds:

J% = M(t)(2itd)*M(—t), a€N¢ t#0. (5
We putr = 6d/(3d — 4). For an intervall in R, we denote
L3I H)) and (C N L®)(1; H3 @) n L3(I; H)) by
Y (o,I)andZ(c, I), respectively. We defin¥ (o) = Y (0, R),
Z(o) = Z(o,R),

Z(0)® ={ve Z(0);0" € Z(0), a € Ng},

Z(0)o ={vE€ Z(0); J®vE Z(0), a € Ng}

and
H(O')OO — {1/1 c Hs(a);aaw c HS(U)7 = Ng},

H(0)o = {1/1 € H*@ .29 ¢ H5) o ¢ Ngl} :
We set for a Banach spacé c S’(R%),

(a%zwu)”'“|

£(0,1,X) = limsup '
(61
if 02|y < oo for any a € Nd. Similarly, we set

|a] =0

) _ 7 oYl |
oo HO) = timoup (S ) e Ho),

| — 00 *
| 9011500 ) .

£(0,v,Z(0)) = llm‘lsup —a , v E Z(0)>,
o|— 00 *
(g )

L(J,v, Z(0)) = llln‘lsup —a , VE Z(0)oo-
al—o0 .
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thenu € Z(0)> and V4 (¢) € H(o)*. Furthermore, if
¢ # 0, then we have

2(6,U,Z(O')), £(87V+(¢)»Hs(o))
a+1 | 50 1/lal
W <<Oé> | ¢||(s(a))> _ @

|| >0 ol H¢||(s(g))
¢ € BH") NH(0)s and L(z,¢, H?) < oo,
8)

thenu € Z(0)o and V4. (¢) € H(0)s. Furthermore, if
¢ # 0, then we have

£(J,u, Z2(0)), £z, V4 (9), H*?)
o 1/]al
(@) Dl (s(0y)
We give a remark on the above theorem.
Remark 1.4. (1) If (6) holds, then it follows that

) (|0 1/l
|Sup<<>| nww> e 00
al|>0

A |8l (50
and hence that2(d, V. (¢), H*@)), £(0, u(t), H*?)) <
oo for anyt € R. We see from Remark 1.2 thatt) and
V. (¢) are real-analytic.
Assume (8) and that # 0. Since

2(8,}—V+(¢),L2) = £($,.FV+(¢),L2)
< 2(‘%'7V+(¢)’HS(U))

d+1 || o
« 2| s(0
sp (@) 129l 50y
|a|>0

o [@]l (50
it follows from Remark 1.2 thaF V. (¢) is real-analytic.
For any t # 0, we see from the identity (5) that
126 £(0, M (~tyu(t), L?) < £(J,u, Z(0)) < C(6,d, V),
and hence that the mapping — M (—t)u(t,z) can
be extended to a function holomorphic on the domain

<'s

3) If

< sup

|| >0

)

<

1/]al
) = C(¢,d, V) < o0,

Remark 1.2. The Sobolev embedding theorem implies that {, ¢ C¢; |Im z| < [2t|/C(¢,d,V)}.

£(0,9, L>) < £(9,9, L?) for any q € [1, c0]. Therefore, if
£(0,, L?) < oo for someg € [1, o], theny can be extended
to a holomorphic function on the domain € C%;|Im z| <

1/£(8,4, L)}

We are ready to state our main results.

It is a natural question to ask whether the solutidn) can
be extended to an entire function @f if ¢ satisfies some
strong condition. The following result is a partial answer:

Corollary 1.5. Let 2 < o < d. Assume (2) and that
NS BnHS("), wheren is the positive number mentioned in

Theorem 1.3. Let2 < o < d. Assume (2). Then a positiveTheorem 1.3. Lew: be the solution to (3).

numbern satisfies the following properties:

1) For any ¢ € B, H*\“), there exist a unique time-global
solutionu € Z(o) to (3) and a functionp, such that
U(—t)u(t) — ¢4 ast — +oo in H*(?), Hence the in-
verse wave operatov ; : B, H*?) 5 ¢ s ¢, € H5()
is well-defined.

2) If

¢ € ByH*O N H(0)® and £(d,, H*?) < oo,
(6)
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@I
e H()®, £(0,¢,H)=0 (10)

and
oV e LY? (a e Nd), £(0,V,L¥?) =0, (11)

then
2(0,u, Z(0)), £(0,V(¢),H*"))=0 (12
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and
i 5353 |0 (U (—t)U(;)!;al\M(@)II(S(U» 0
for anye > 0.
) If
¢ € H(0)oo, Lla,0,H ) =0 (13)
and
Ve L™ (aeN}), £0,V,L*)=0, (14
then
£(0, M (—t)u(t), L*) =0 for anyt # 0. (15)

Remark 1.6. Assume (12). We see from Remark 1.2 th@b
and V. (¢) are extended to entire functions

u(t,z) = Z 78“11085,0)

aeNg

ZO(

and

VDl 0 e
a! b )

ozENg
respectively. Similarly, it # 0, then M (—t)u(t) satisfying
(15) is extended to

3 O*M(=t)u(t)lz=0

Z )
ol
aENg

z e Ce

Since the functionxp(i|x|?/(4t)) can be extended to an entire

function, the solutionu(t) (= M (t)M (—t)u(t)) is extended to
the entire functiori(t, z).

The rest of this paper is organized as follows. In Section
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We use the following lemma in the proof of Proposition 11.3
below:

Lemma 1.2, Letl < ¢1,¢2 < co. Assume (2) and that

1 o 1
14+ —=—4—.
@1 d o g
Then
V= fll, <Clfll,, feL®.

Proof. SinceV belongs to the Lorentz spad&d/o, o), the
desired inequality follows from Theorem 2.6 in O'Neil [17].
O

In order to estimate the nonlinearify, we use the following
two propositions:

Proposition 11.3. (1) Assume (2). Then

3
IV 5 fif2) Fsllsgoyy < C TT IMfall oo
k=1

(2) If h e L™, then

3
1+ F1f2) fsll ooy < CllRllog TT 15l -

k=1

(3) If h € L7, then

3
(R F1£2) £3ll oy < C IBllg TT 151

k=1

o) -

Proof. We use the generalizeddttier inequality

||f9||Hg <C ||f||H;1

94y + C 11 Nl -

2, we list some useful inequalities. In order to show The-

orem 1.3(2) (resp. (3)), in Section 3 we define the functiowheres > 0, 1 < ¢,q1,42,93,94 < oo and1/q = 1/q1 +
space Z(0)? (resp. Z(o)s), which is included in the set 1/¢2 =1/¢3+1/q4. For the detalil, see, e.g., Nakanishi-Ozawa
of all functions v satisfying that£(d, v, Z(0)) < oo (resp. [16]. Put

L(J,v,Z(0)) < o0). In Section 4, we establish Theorem [.3. 1

X ) 1 2  s(o)
In Sections 5, we establish Corollary I.5. rio)==—-—— =2 )

2 3d d
11\
| | Il. -PRELIMII\-IARIES” | o= <_1+ ol > 7
In this section, we list some inequalities to prove our main d r (o)

results. Using Strichartz type estimates for linear 8dmger o 2 \! 1 1\ !
equations (see, e.g., [2], [13], [25], [26], [28]), we obtain the 2= | 1+ 5+ (o) s =0T (o) :

following time-space estimates:
By Lemma 1.2, we have

IV frf2) fsll 5o

Proposition I.1. Let I be an interval inR, and fixt, € I.
Thenfor any f € H°(?) and G € L*(I; H*(?)), we have

U@ /t Ut — )GVt € Z(o,T) SV o fifel H;, | fsllo(oy + IV frfallg, 11 /3]l s
to S fifellms 1 fsll oy + W1 felliio) 2 15l
Furthermore, there exists a positive numlgéindependent of < “leHﬁ Follyoy 13l + Hf3||H; Filloon 12l

I andt, such that

+ 1 f2ll g 1131l oy 11l o -

10O 2.1y < ClFll sy »

/t Ut —t)G{Ht"dt

to

We see from the embedding? — L"(?) that (1) holds true.
< ClGl i rmreteory - Similarly, we can obtain (2) and (3). O

Z(o,I)
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Proposition 11.4 (Proposition 2.4 in [23]).If p > d, then that n; is sufficiently small. Moreover, we see that the fixed
@\ point v becomes a time-global solution to (3) and unique in
sup Y ( > < o0, the sense ofZ (o). Define
werd 5 oo \B) (1) ~
sup Z < () )” <> by = ¢—i/0 Ut —t")F(u(t))dt'. (17)
aent 5 ot \(B) () (8)

Then it follows from the proof of (16) that, € H*(®) and
[1l. FUNCTION SPACES

. . . . U(—t)u(t) — oy < Clul?
In this section, we introduce some function spaces to prove IT=8)ut) = dtlleer < Cllully 00

our main results. FiX < ¢ < d. By 0, we denote the zero —0 ast — oo.
multi-index in d-dimensions. Fop € H(o)*\ {0}, we define
g?(0) = 1, ()= \{0} Hence we have), = V. (¢).
By 0] 1/181\ 1 We next show (2). Let) be the positive number appearing
g%(a) = | max (s()) in the proof of (1). Put € H(0)®, v € Z(0)? anda € N
Ba BUIBN (s(0y) with |a| > 0. We see from the Leibniz rule and Proposition
11> 11.3(1) that
if « € N¢\ {0}, and "
o€ No\ 10} 10 F )l 1 o
Z(o)? al
leY 8 Y 85
- ()0 vl 20y < <V " 81}81}) gv
= {U c Z(O') 5 ||U||Z(O')¢ = 5;1158 a'g¢(a) <00 p. - ﬁ+;a ﬁ' ’y' ! LY(R;Hs(0))
B 5
For ¢ € H(0)s \ {0}, we defineg,(0) = 1, <c Y |10 “Hz(o) 107l 70 1o UHZ(U)
= ! [ ! '
d+1 || 3 1181\ 1 privima ’ 2
(B [ ¢||(s(a)) e :
gs(a) = | max By Proposition 1.4, we obtain
= BN (50 "
(c) " HaaF(v)HLl(]R;HS(U))
if a € Ng\ {0}, and alg?(a)
d+1
20 co x ()" (U8 e
(@Il 50 T T NBY () () Blg®(6)
=1V € Z(0)oo; ||1}||Z(U)¢ = sup alga(a) <00 p. A/d+1 1§ s
e (N 1070 5(6) $0) rwwu@}
1g® 1g®
IV. PROOF OFTHEOREMI.3 9% () 019°(0)
3
Using the method in [23], we give a proof of Theorem 1.3. =< ¢ ”UHZ(GW :
It suffices to consider the case whefec H*(?) \ {0} and .
V # 0. Seta Vb = max{a,b} (a,b € R). Let C be some Here,we have used the estimate
constant independent of. g¢(a) > g¢(ﬂ)9¢(v)g¢(5), Btr+d=a

We first prove (1). We see from Proposition [1.3(1) that in the first inequality. Using Proposition I1.1, we haves Z¢

1) 1 gy < C ol oy < ClolS ey s v € Z(o). 29
It follows from Proposition 11.1 that the mapping 190l 2(0ys < <04>d+1'||2a¢||(s(cr)) Ol
t alg?(a)
Z(@)dv—=0:=U(t)p — i/o Uit —tYFt))dt € Z(o) < C¢ll (5 + € ||U||32(a)¢ . (18)
is well-defined and that Similarly, we obtain

19l 0y < Clldl oo + ClolS0ys v E Z(0).  (16)

Similarly, we obtain

||171 _7}5||Z(0')¢
2
2 < C (Il zoye ¥ zllzye ) lon = v2ll oo
U1 — Vg USC(UI o V2 J) v1 — V2|l 4, o
H I Foillzo Vel zo)) I for any vi,v, € Z(o)?. Therefore, we see that if’ is

for any vy,vs € Z(o). Therefore, we see that for any € sufficiently small andy’ < 7, then for any$ € B, H*),
B, H*(“), the mapping — v becomes a contraction providedthe mappingv — o becomes a contraction an@| ;s <
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C'|9ll(s(r))- Moreover, we see that the fixed point coincidesi(c)>. We see from (10), (11) and the embeddiﬁg/2 —

with the unique solution: to (3). We also obtain L that
1/|e 1/|ex d+1 || qa 1/l
(0l N (e 7)) i ({710l @n ) T
alos al = laloos ()t jal=voo \  alelel 8]0,
1/]af and
, ClI8ll (s(oy) 1/lal
< llm\ljup T ; (@) ooV, . .
jal oo\ alelT [V =0 {g=dfo,o0).
d+1 || o8 /181 _ .
((5) o ¢H(S(U))) In particular, there exists somke € N such that
X max
« ! d
g\ Pl (0™ 0°6] 0
sup [a S ||¢H(s(o’))
d+1 || 9 1/l la|>L ale
(a) 10 ¢||(s(g))
< sup T : and
|a|>0 o H¢||(é(0')) < >d+1 ||a ||
@ *V
By (17), the proofs of (18) and the above estimate, we have  sup Wq <|[Vl, (¢=d/o,00).
Vi(9) € H>, elbr 0
(@)™ 0V (9)] e defne
a Vi @Dlse)) d+1 | ga
<C 0
alg%(a) < Clgllsion K= sup '¢”<s<o>>
and ocENg a:
1/lof and
9°V , “ d
lim sup ” +(¢)||(3(o‘)) . B <Oé> +1 ||8aV||q iy
|| — 00 al Vg — Sngd T ((] - /Uv OO)
4t | ae 1/]al a
.. <<a> o ¢||(s(g))> Then we have
T e a! (o ' d+1 | a0
o] >0 ¢l (s (@) 0%l 50y < o—LKo
Hence(2) holds. aeNg alelel -
. . .and
We next show (3). Lety be the positive number appearing in dit
d \wi @ oV
the proof of (1). Put € H(0), v € Z(0)4 anda € Nj with sup ()" [0V, <LKy, (q=djo,o).
la| > 0. We see from (5), the Leibniz rule and Proposition . alelel :
11.3(1) that °
) Sinceu solves (3), we see from the Leibniz rule, Proposi-
[F )| 1 ;oo tions 11.3(2) and 11.4 that for anyr € N¢ andt > 0
al d+1
o o Q 0“u(t)| (s
241 M (00" M () F©)ll 10 L
= alel™
al d+1 || aa d+1 | aa
< LI S L @10y / ()™ 10" F () s
< , Zs * FT S alelel 0 alelel
+y+o=« LY(R;H=s(2)) <Oé> d+1 t < d+1 % /
_ 7)) 0u(t)
1790 50 17700y %0 < S ()
() Z(0) Z(0) BY (v lel
<c Y T - L) AR CINC VAN I
BHy+o=a d+1 561
| (LY np dr
Therefore,as in the proof of (2), we see that (3) holds. Blelpl (o)
d+1
%
V. PROOF OFCOROLLARY |.5 < e PR 4 fJul e o C (ﬂ W”)
Using the method in [23], we give a proof of Corollary I1.5.
i i C )|
It suffices to consider the case wherc B, H*(?) \ {0} and < | max v (5(9) gy
V # 0, wheren is the positive number mentioned in Theorem 0 1<a el
1.3. We fixe € (0,1). <e Lke
We first prove (1). Suppose (10) and (11). Then it follows

i i C ()
from Theorem 1.3 that the time-global solutiento (3) and +eLOKy o | max

the final dataV (¢) satisfy thatu € Z(c)> and V. (¢) € 0 Y=o el
ISSN: 2313-0571 38
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Using the Gronwall inequality, we obtain

(@)™ o7 u(t)
sup

aeNg alelel

for any ¢t > 0. Furthermore, by Propositions II.1 and 11.3(3),

we have for anyr € N¢ and7" > 0

d d
(o)™ 10%ull (. 0,77 - C<04> i 10%Bll (s(0y)

||(s(0)) <eg Lk exp (EfLCKVyoot)

alelel - alelel
T () 0 F (u(t)) |
(s(0)) 3,1
e /0 — dt
<eLtok®

lison)

T ) g%t
+57LCKV’OO/ sup (@) | (*)
0

aeNg alelal
<e "CK?exp (e "CKv,T)
and

d+1 d+1
o~ 0%u(T
(@ 10U gy _ )" 0 (T)

alelel alelel
d+1 /
< (o O%F (u(t
+C/ (@) OV F (u(@) |l 50
T a!5|a|
<e 'CK?exp (e "CKy,oT)

d+1
+0u||2y<g,<T,oo>>{ ) (<ﬁ<><>v>)

Bt+y=a

dt'

B0V g V™ 1070l 7000

Blelsl ~lell
<e 'CK?exp (e "CKy,T)
e M ull¥ (o 7.00))
() 107Ul 2o, (7, 00))
~lehl '

x CKy, 4/, max
’ v<a

ChooseT'(¢) > 0 so that

_ 2 1
e " (H’U’HY(U,(foo,T(s))) v ||u||Y(a,(T(5),oo))) CKv,a/s < 5

and put
C.=cFCK?exp (e_LT(e)C’KV)OO) .
Then we obtain

d+1 o
() " |0 u”Z(a,(T(s)

[ A%
aENg a‘El |

) < 90,

It follows from (21) that

d I
(@) i 12 UHz(U,[o,oo)

«
a€eNg alelel

) < 30..

Similarly, we see that

d+1
(@) * ||8auHZ(a',(foo,O]

ol
aeNg a'El |

) <3c.

ISSN: 2313-0571
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and hence that€(0,u, Z(c)) < €. Using (17) and the proof
of (22), we have

()™ 10V ()l (50

alelel

d+1 | 9o ’
§5*LK¢+/ (@)™ [|0*F (u(t'))
R O[!c":“al

leston g

d
(7)™t 107ull 7oy
7!5\7\
<elK? 467 ||u||§,(g) CC.Ky,4)5, ac N¢,

<e 'K+ e ul} ) CKya/e max
7<a

which implies that€(a, V(¢), H5(?)) < ¢, and we obtain
(@) o (U (=tult) = V()| (5o

alelel
o /nd+] | A
[P
t

alelal

<

<67t ||u||§/(o'7(t7oo)) CCEKV7d/O'7 S Ng-
Since we can choose arbitrarily, (1) holds.
We next prove (2). Suppose (13) and (14). Then it follows
from Theorem [.3 that the time-global solutiento (3) and

the final dataV (¢) satisfy thatu € Z(0)s and Vo (¢) €
H (o). We see from (13) and (14) that

d « 1/led
_ (@ 2Bl (40
lim =0
lal—oo \  alelel 1 (s(o))

and

|| =00 04!5‘04 ||V||oo

d+1 | na 1/]al
- <<>n6vnoo> L

In particular, there exists som¥ € N such that for anyx €
Ng with |a| > N

A+l o
(@ 2dll (o)

ls&pN AL < 12l (50
and
wp DOVl
la|> N alelel o0
We define
K= sup <0¢>d+1 H»Taéi’“(s(o))'

aeNgd a!
Thenwe have

d+1 ||
« xr
(@)™ 290l (5(0y) <K,

aENg a!g|a\
and
d+1
« oV
sup (O N0Vlloe  npge,
aeNd aleled

where Ky o is the positive constant defined in the proof of

.
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Set(r) = V1+ 72 (7 € R) and fixt > 0. Sinceu solves
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