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rcd: An R Package for Estimating Robust Copula
Dependence

Yi Li and Adam Ding

Abstract—The robust copula dependence (RCD) [1, 2] is recently
introduced as an equitable dependence measure: it measures the
dependence according to the strength of association regardless of the
functional shape, treating linear and nonlinear relationships among
the data equitably. It is useful to detect nonlinear relationships in data
exploration. We introduce a new R package rcd for implementing the
estimation of RCD using two methods: the kernel density estima-
tion (KDE) and the k-nearest-neighbour (KNN) density estimation,
with the latter one has smaller computational complexity in high-
dimensional settings. The parallel programming with the Rcpp and
RcppParallel packages is used to further speed up the estimators.
The numerical performance of different estimators are evaluated with
numerical experiments. The usage of functions in the rcd package is
illustrated with numerical examples.

Keywords—Nonlinear Dependence Measures, Copula, Robust-
equitability.

I. INTRODUCTION

W ITH the explosion of the scale and complexity of the
data, how to measure the dependence between random

variables remains a fundamental problem in statistics and
machine learning. The traditional measure, Pearson’s correla-
tion coefficient (ρ), is designed to detect linear relationship
in the dataset. However, it fails to provide information on
nonlinear relationships between the random variables. To this
end, many dependence measures are proposed, such as mutual
information [3], distance correlation [4] among others [5, 6, 7].

Furthermore, it is important to compare the performance
of the dependence measures through theoretical properties
as how they quantify the dependence for various types of
relationships. Recently, the concept of equitability is first
proposed by Reshef et al. [8], which states that a dependence
measure should give equal importance to all relations: linear
and nonlinear. This concept is further formalized by Kinney
and Atwal [3] with the definition of self-equitability – a
dependence measure should be invariant to any deterministic
transformation of the marginal variables, under a nonlinear
regression model with additive noise.

Chang et al. [1] proposed the Robust Copula Dependence
(RCD), another dependence measure satisfying the self-
equitability. Additionally, RCD is also robust-equitable, which
means it treats equitably all types (linear and nonlinear)
of deterministic signals hidden in background noises. The
equitability properties help finding interesting complex re-
lationships in large dataset. It would be useful to use this
dependence measure in feature selection procedures [9, 10]
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to enable selecting first those features with strong but com-
plex relationship with the response, rather than selecting first
features with weak but simple relationship.

In this paper, we introduce a newly developed R [11]
package rcd, to implement the RCD estimators. We implement
the estimation of RCD with two common methods of prob-
ability density estimation, i.e. the kernel density estimation
(KDE) [12, 13], and the k-nearest-neighbour (KNN) density
estimation [14, 15, 16, 17]. Specifically, the bivariate version
of the RCD is based on the KDE density estimation with
the Rcpp package [18, 19]. To improve the performance of
the multivariate version of the RCD, we also provide the
KNN based estimator of RCD, and the calculation of the
distance matrix is speeded up with the parallel programming
package RcppParallel [20]. The comparison among different
estimation methods is provided (see section IV).

The structure of this paper is as follow: In section II,
we introduce definitions and theoretical properties of RCD,
together with the necessary background for equitability. The
estimation methods of the empirical version of RCD are also
provided in this section. Section III contains the information of
the rcd package. We discuss the structure of this package here.
Several numerical examples with the real data application are
presented in section IV.

II. THEORETICAL BACKGROUND

A. Equitability of RCD

In this section, we provide necessary background informa-
tion for understanding the definition and the advantages of
RCD. Further detailed discussion on RCD and its theoretical
properties can be found in [1]. We first focus on the nonlinear
regression model:

Y = f(X) + ε, (1)

where X and Y are two random variables, and ε is the inde-
pendent random noise added to the regression function f(X).
The distribution of ε can only depend on X through the values
of f(X). Generally speaking, we use a dependence measure
D[X;Y ] to understand the strength of the relationship between
X and Y . A desirable property of D[X;Y ], equitability was
first proposed by Reshef et al. [8]: D[X;Y ] should give similar
scores to equally noisy relationships of different types in the
model (1). This idea is further formalized in Kinney and
Atwal [3] as:

Definition 1: A dependence measure D[X;Y ] is self-
equitable if and only if D[X;Y ] = D[f(X);Y ] whenever
f is the function in model (1).
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As a first step to construct such measure, we consider
the functional space where all f ’s are strictly monotone
continuous deterministic functions. This motivates us to make
use of the probability integral transformation (PIT) and the
copula theory [21] to separate the dependence information
from the marginal distributions, by taking advantage of the
Sklar’s theorem [21]. Specifically, for any joint distribution
function FX,Y (x, y) = Pr(X ≤ x, Y ≤ y), there exists
a copula C – a probability distribution on the unit square
I2 = [0, 1]× [0, 1] – such that

FX,Y (x, y) = C[FX(x), FY (y)] for all x, y. (2)

Here FX(x) = Pr(X ≤ x) and FY (y) = Pr(Y ≤ y)
are the marginal cumulative distribution functions (CDFs) of
X and Y respectively. Similar results could be generalized to
multivariate joint distributions. In other words, the copula C
is the CDF of probability integral transformed, uniformly dis-
tributed, variables U = FX(X) and V = FY (Y ). We further
denote the derivatives of the copula function ∂2

∂u∂vC(u, v) as
c(u, v), the copula density. In this way, the copula decom-
position separates the dependence from any marginal effects,
and the copula C and its density c capture all the dependence
between X and Y .

In many applications, the noise scheme is not limited by the
regression form in (1). In applications with sensor data, the
deterministic signal is often hidden in continuous background
noise. The copula function, i.e. the dependence structure in
such case, could be modeled as the combination between
the singular copula Cs, which representing the deterministic
signal, and the independence copula Π = uv, which is the
uniform distribution on the unit square. An equitable depen-
dence measure would reflect the signal strength p, regardless of
the relationship shapes reflected by Cs in such circumstance.
Therefore, the following definition of robust equitability is
proposed in [1]:

Definition 2: A dependence measure D[X;Y ] is robust-
equitable if and only if D[X;Y ] = p whenever (X,Y ) follows
a distribution whose copula is C = pCs + (1 − p)Π, for a
singular copula Cs.

Our robust copula dependence, RCD, is based on the
distance between the copula density c(u, v) and independence
case c ≡ 1.

Definition 3: [1] Let X and Y be two random variables, and
U = FX(X), V = FY (Y ), where FX and FY are the CDFs
of X and Y . The copula density for the joint random variable
(U, V ) is denoted by c(u, v). The robust copula dependence
between X and Y is

RCD =
1

2

∫ ∫
I2

|c(u, v)− 1|dudv. (3)

RCD has a value between 0 and 1, bigger value indicates
stronger dependence. RCD = 0 when the variables are
independent of each other, RCD = 1 when there is an
deterministic relationship.

Proposition 4: [1] RCD is both self-equitable and robust-
equitable.

B. Estimation of RCD

In this part, we present the two estimators for RCD. Since
the RCD is essentially a functional of the copula density
function, the estimators are inherently from the two well-
known density estimation methods, i.e. the KDE estimator
[12, 13] and the KNN estimator [14, 15, 16, 17].

1) The KDE-based Estimator: We first consider the bi-
variate dependence estimation. In other words, we study the
dependence between two univariate random variables X and
Y . Such bivariate pairwise dependence are required in many
common applications. Let {Zi = (Ui, Vi)}ni=1 be the n
realization of random variables Z = (U, V ) on the copula
scale with the density c(u, v). The KDE estimator of the
copula density is given by

ĉkde(Z) =
1

nh2

n∑
i=1

K(
Zi − Z
h

), (4)

where h is the bandwidth, and K(·) is a kernel function.
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Fig. 1. The KDE density estimator. The small square illustrate the kernel
function that is used to smooth the estimated density. The grid is divided in
m by m for numerical integration purpose. The default value for m is set to
be 200.

For computational simplicity, we use the kernel function K
as the square centered at origin, with unit half-length: K(z) =
I{z : ‖z‖∞ ≤ 1}. Here ‖z‖∞ is the l∞ norm, that it, it equals
the maximum absolute value among all the coordinates of the
vector z.

The density estimator ĉkde(Z), is further plugged in e-
quation (3). The numerical integration is approximated by
summation over the m×m grid, by dividing each coordinate
equally into m (with a default value of 200) intervals.

2) The KNN Estimator: For higher dimensional Z, the size
of the grid grows exponentially with the dimension. Inspired
by [14] and [15], we incorporate the KNN density estimation
ĉ and estimate RCD by RCD(ĉ) =

∑
ĉ(Zi)>1[1−1/ĉ(Zi)]/n.

Here, {Zi}ni=1 denotes the sample of high dimensional Z =
(U, V ) where U and V can be multivariate vectors. The KNN
estimator is

ĉknn(Z) =
k/n

Ar(k,n)
, (5)
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Fig. 2. The KNN density estimator.

where r(k, n) is the distance from Z to its k-th closes-
t of Z1, Z2, · · · , Zn and Ar(k,n) is the volume of the d-
dimensional hyper-ball with radius r as illustrated in Figure 5.

This methods, however, requires the calculation of the dis-
tance matrix between each data point. To speed up the process,
we apply the RcppParallel package to calculate the distance
matrix. The overall consistency of the above two estimators is
guaranteed in [1]. Due to the difference between the quadrature
methods, for d-dimensional Z, the computational cost for the
KDE based estimator is O(nmd) while the computational cost
for the KNN based estimator is O(n2d).

III. STRUCTURE OF THE PACKAGE

The structure of the package is presented in Figure 3. Most
of the central algorithms are coded in C++. The source code is
connected to R with the help of the Rcpp package by creating
the corresponding R wrapper functions.

As we mentioned, the distance matrix is calculated with
the RcppParallel package, which provides a complete toolkit
for creating portable, high-performance parallel algorithms
without requiring direct manipulation of operating system
threads. Particularly, we utilize the high level parallel func-
tion (parallelFor), which uses Intel TBB1 as a back-end on
systems that support it and TinyThread2 on other platforms.

Note that the parallel algorithm will use all the available
cores on the machine. You can change the setting based on
the following code.

R> require(RcppParallel)
R> setThreadOptions(numThreads =
R> defaultNumThreads() - 1)

IV. NUMERICAL EXAMPLES

In this section, we first compare several functions that are
used in the rcd package and the pure R implementation of
these functions. Then, we compare the estimation performance
by the two estimators on a set of bivariate cases. Finally, we
provide some examples on how to use the rcd function in the
package.

1A C++ template library that provides portable (visa-vi instuction-sets and
compilers) access to SIMD extensions.

2A C++ library for portable use of operating system threads.

A. Example I: Performance Comparison
Five functions are compared in two groups, the KDE and

the KNN. We randomly generate data sets with sample sizes
n = 500, 1000, 2000, 3000, 4000 and 5000 respectively. The
elapsed time is calculated with the rbenchmark package [22].
The result is displayed in the first two panels of Figure 4.

The left panel of Figure 4 is the comparison between the
KDE versions of the estimator for RCD with pure R and the
Rcpp package. Result shows that the later version significantly
accelerates the run time. Meanwhile, the middle panel of
Figure 4 compares three functions, the pure R, Rcpp with
serial calculation of distance matrix, and paralleling with the
RcppParallel package. Result shows that the Rcpp and the
parallel versions improve the performance.

The above comparison is based on the bivariate(d=2) case. A
multivariate case with d = 1000, for the KNN based estimator
only, is considered in the right panel of Figure 4. As we
can see from this plot, as the computation cost becoming
more expensive in each loop, the advantage of the parallelism
becomes more obvious.

B. Example II: Comparison of the Two Estimators
Here we compare the estimation results of the KDE-based

and KNN-based estimators, in the linear mixture model:

Y = pX + (1− p)Π, (6)

where Π is the uniform noise on the unit support, and the
p is the portion of the signal X (which follows a univariate
uniform distribution). The theoretical RCD value equals to
the portion p. As p varies between zero and one, the two sets
of the estimated RCD values are displayed in left panel of
Figure 5. The blue square is the estimation results for the
KDE estimator, while the red circle is for the KNN estimator.
Both of them fits the theoretical value, which is the diagonal
line.

C. Example III: Code Usage
The development version of the rcd package could be

installed with the devtools package [23] from GitHub. Note
that for Windows machine users, in order to install the rcd
package, the Rtools 3 needs to be installed properly.

3https://cran.r-project.org/bin/windows/Rtools/
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Fig. 3. The structure of the rcd package.
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Fig. 4. Comparison of run time (in seconds) among the functions in the rcd package and the functions coded with pure R. The first two plots is based the
bivariate case with sample size n = 5000, while the last plot is for multivariate case with dimension d = 1000.
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Fig. 5. Left panel: Comparison of the two estimators used in the rcd package
with the linear relationship Y = pX + (1 − p)Π. The blue square is for the
KDE estimator, and the red circle is for the KNN estimator. Right Panel: The
example stock price dataset pharm in the rcd package. This is a pair-wise plot
for the price-price or the price-index combination of the columns in pharm.

R> require(devtools)
R> install_github("liyi-1989/rcd")

The basic usage of the rcd function is as follow:

R> require(rcd)
R> n <- 1000
R> x <- runif(n)
R> y <- xˆ2 + 2*runif(n)
R> rcd(x, y, method = "knn")

Note that the method argument specifies the estimation
method we discussed above. For the KDE estimation, the
bandwidth can be set with the bandwidth argument, while
for the KNN method, the parameter k (number of nearest
neighbors) can be set with the k augment. Without explicit
setting by the users, both parameters use the default values
from [1].

D. Example IV: Data Set Example

The rcd package comes with a dataset pharm, which
include the stock prices of three pharmaceutical companies
(ARIAD Pharmaceuticals, Vertex Pharmaceuticals, and Shire
Plc) and one market index (Nasdaq Composite) from Jan. 3,
2000 to Feb. 12, 20064.

R> require(rcd)
R> data(pharm)
R> pairs(pharm[,2:5])

The empirical RCD values for each pair of the price (or
index) are displayed in Table 1. According to the RCD values,
the Shire Plc (SHPG) is most closely related to the market
(IXIC) movement.

R> pharm.rcd<-diag(4)
R> colnames(pharm.rcd)<-names(pharm[2:5])
R> rownames(pharm.rcd)<-names(pharm[2:5])
R> for (i in 1:3) {

4The data is publicly available from Yahoo Finance.
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ARIA VRTX SHPG IXIC
ARIA 1.00 0.48 0.54 0.55
VRTX 1.00 0.66 0.60
SHPG 1.00 0.70
IXIC 1.00

TABLE I
THE PAIR-WISE RCD FOR THE PHARM DATASET IN THE RCD PACKAGE.

R> for (j in (i+1):4) {
R> pharm.rcd[j,i]<-rcd(pharm[i+1],
R> pharm[j+1])
R> pharm.rcd[i,j]<-pharm.rcd[j,i]
R> }
R> }
R> pharm.rcd

V. CONCLUSIONS

We introduced a newly developed R package rcd that im-
plement the estimation of robust copula dependence measure.
We review the definition and theoretical properties of RCD:
it is equitable and measures the dependence strength equi-
tably for different functional relationships. We implemented
two estimation methods, KDE and KNN, where the KNN
estimator has good computational speed in high-dimensional
settings. We discussed and compared the usage of parallel
programming tools for improving the performance speed. We
demonstrate that the rcd package can efficiently calculate
RCD. This enables the application of RCD as an effective
way for calculating the nonlinear dependence strength in data
exploration.
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