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Homogeneous Hopf hypersurfaces
in a complex hyperbolic space

and extrinsic shapes of their trajectories
Tuya BAO Toshiaki ADACHI

Abstract—We study homogeneous real hypersurfaces in a complex
hyperbolic space whose characteristic vectors are principle. We
characterize some of them by investigating properties of extrinsic
shapes of some curves on these hypersurfaces which are associated
with their characteristic tensor fields

Keywords—complex hyperbolic space, extrinsic circular trajecto-
ries, real hypersurfaces, Sasakian magnetic fields tangentially of
order 2.

I. INTRODUCTION

The aim of this paper is to study real hypersurfaces in a
complex hyperbolic space by observing a family of curves
on these hypersurfaces from the ambient complex hyperbolic
space. We explain our standing point by giving an elementary
example. If we take a standard sphere in a Euclidean space,
all geodesics on this sphere can be seen as circles of same
geodesic curvature (or, equivalently, of same radius) in the
ambient Euclidean space. Moreover, standard spheres in a
Euclidean space are characterized by this property among
hypersurfaces in this Euclidean space. Since this result is
quite simple, many geometers gave some generalizations. For
example, Kimura, Maeda and the second author characterized
all homogeneous real hypersurfaces in a complex projective
space in [4]. They studied geodesics which can be seen as
circles in the ambient space, and characterized them by the
property that initial vectors of such geodesics span the tangent
subspace orthogonal to the characteristic vector at each point.
They also studied ruled real hypersurfaces and totally η-
umbilic real hypersurfaces in a nonfla complex space form
in [5]. Here, a totally η-umbilic real hypersurface is one of a
geodesic sphere, a horosphere, and a tube around a totally
geodesic totally complex submanifold. They characterized
them by the property that every geodesic whose initial vector
is orthogonal to the characteristic vector lies on some totally
geodesic real surface in the ambient space.
Since we have three subclasses in the class of totally η-

umbilic real hypersurfaces in a complex hyperbolic space,
we are interested in giving some characterizations on real
hypersurfaces in each class. To do this we investigate tra-
jectories for Sasakian magnetic fields which are generalized
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objects of geodesics that are closely related with characteristic
vector fields We pay attention to second jets of their extrinsic
shapes and study principal curvatures of the underlying real
hypersurfaces.

II. EXTRINSIC SHAPES OF TRAJECTORIES

LetM be a real hypersurface in a complex hyperbolic space
CHn(c) of constant holomorphic sectional curvature c. The
complex structure J on CHn(c) induces an almost contact
metric structure (ϕ, ξ, η, ⟨ , ⟩) on M . If we denote by N a
(local) normal vector fiel on M in CHn, a vector fiel ξ on
M is define by ξ = −JN , a 1-form η by η(v) = ⟨v, ξ⟩, and
a (1, 1)-tensor fiel ϕ is define by ϕ(v) = Jv−η(v)N . Here,
⟨ , ⟩ denotes the induced metric on M given by the metric
on CHn(c), which is also denoted by ⟨ , ⟩. These vector and
tensor field ξ and ϕ are called the characteristic vector fiel
and the characteristic tensor, respectively.
In order to study real hypersurfaces from curve theoretic

point of view, we defin a family of curves which are
deeply concerned with their contact metric structure. Given
a constant κ, we say a smooth curve γ parameterized by its
arclength a trajectory if it satisfie the differential equation
∇γ̇ γ̇ = κϕγ̇, where ∇γ̇ denotes the covariant differentiation
along γ. Dynamical theoretically, if we set a closed 2-form
Fκ on M by Fκ(u, v) = ⟨u, ϕv⟩ for arbitrary u, v ∈ TpM at
an arbitrary point p ∈ M , we can interpret such a curve as a
trajectory for a magnetic fiel Fκ which gets a Lorentz force
κϕ

(
γ̇(t)

)
at each point γ(t). This 2-form is called a Sasakian

magnetic field When κ = 0, this curve does not get influenc
of magnetic fields and is a geodesic. Thus, trajectories for
Sasakian magnetic field are extended objects of geodesics.
Since trajectories are related with the characteristic tensors
on the underlying real hypersurfaces, it is natural to consider
that properties of a real hypersurface reflec to properties of
trajectories.
In this paper we pay attention to properties of extrinsic

shapes of trajectories. We denote by ι : M → CHn(c) an
isometric embedding. For a smooth curve γ on M , we call
the curve ι ◦ γ on CHn(c) its extrinsic shape. For the sake
of simplicity we denote ι ◦ γ also by γ. The Riemannian
connections ∇ and ∇̃ on M and CHn(c) are related by Gauss
and Weingarten formulae which are given as

∇̃XY = ∇XY + ⟨AMX,Y ⟩N and ∇̃XN = −AMX

with the shape operator AM of M for arbitrary vector field
X,Y . Since J is parallel, by use of these formulae we have
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∇Xξ = ϕAMX . We compute firs and second covariant
differentiations of a trajectory γ for Fκ by using this equality
and obtain

∇̃γ̇ γ̇ = κϕγ̇ + ⟨AM γ̇, γ̇⟩Nγ , (II.1)
∇̃γ̇∇̃γ̇ γ̇ = −κ2γ̇ −

(
⟨AM γ̇, γ̇⟩−κργ

)(
AM γ̇ + κξγ

)
+

d

dt

(
⟨AM γ̇, γ̇⟩−κργ

)
Nγ , (II.2)

where we set ργ = ⟨γ̇, ξγ⟩. We here note that the tangent space
TpM at a point p ∈ M is decomposed as TpM = T 0

pM⊕Rξp
with a complex subspace T 0

pM of TpCHn. Thus, the function
ργ along γ measures the size of the “non-complex” component
of γ̇. We call this the structure torsion of γ.
A smooth curve σ on a Riemannian manifold N which

is parameterized by its arclength is said to be a circle if it
satisfie the system ∇σ̇σ̇ = kY, ∇σ̇Y = −kσ̇ of differential
equations, or equivalently, if it satisfie ∇σ̇σ̇ = −k2σ̇, with a
nonpositive constant k and a fiel Y of unit vectors along γ.
From the viewpoint of Frenet-Serrer formula on curves, circles
are simplest curve next to geodesics.
In order to study properties of extrinsic shapes of curves

which are related with the underlying real hypersurface, we
here pay attention to their tangential components. We say the
extrinsic shape of a curve γ parameterized by its arclength
to be tangentially of order 2 at γ(t0) if ∇̃γ̇∇̃γ̇ γ̇(t0) +

∥∇̃γ̇ γ̇(t0)∥2γ̇(t0) does not have a component tangent to M .
Clearly, if the extrinsic shape is a circle, then it is tangentially
of order 2 at its arbitrary point. When the extrinsic shape of a
curve is a circle, it is said to be extrinsic circular. We studied
extrinsic circular trajectories in [2], [7] and showed that almost
all circles on CHn are given as extrinsic circular trajectories
on geodesic spheres and tubes around complex hypersurfaces.
Our condition that a trajectory on a real hypersurface is tan-
gentially of order 2 at each point is weaker than the condition
that it is extrinsic circular. If we use such a terminology,
we may say γ is tangentially of order 1 at γ(t0) if it is a
geodesic point as a curve on M . But we note that even if it is
tangentially of order 1 on an open interval containing γ(t0) it
is not necessarily tangentially of order 2 at this point.
For a smooth curve γ on M parameterized by its arclength,

we set kγ = ∥∇̃γ̇∇̃γ̇ γ̇∥ and call it the firs geodesic curvature
of its extrinsic shape. We say a tangent vector v ∈ TM to be
principal if it is an eigenvector of the shape operator AM . In
this case its eigenvalue is said to be its principal curvature. A
real hypersurface is said to be Hopf if its characteristic vector
fiel ξ is principal at each point. For a Hopf hypersurface M
we denote by δM (p) the principal curvature of ξp at p ∈ M .
For a trajectory γ for Fκ we fin

k2γ = κ2(1− ρ2γ) + ⟨AM γ̇, γ̇⟩2 (II.3)

by (II.1). Thus, by use of (II.2) we see that the extrinsic shape
of is tangentially of order 2 at γ(t0) if and only if it satisfie(
kγ(t0)

2 − κ2
)
γ̇(0)

=
(⟨
AM γ̇(0), γ̇(0)

⟩
− κργ(t0)

)(
AM γ̇(0) + κξγ(t0)

)
.
(II.4)

When M is a Hopf hypersurface, by decomposing the above
equality into the components parallel to ξγ(t0) and parallel to
γ̇(0)− ρ(t0)ξγ(0), we have{

kγ(t0)
2 − κ2

}
ρ(t0)

=
(⟨
AM γ̇(0), γ̇(0)

⟩
− κργ(t0)

)(
ργ(t0)δM + κ

)
,

(II.5){
kγ(t0)

2−κ2
}(

γ̇(t0)−ργ(t0)ξγ(t0)
)

=
(⟨
AM γ̇(0), γ̇(0)

⟩
−κργ(t0)

)
AM

(
γ̇(t0)−ργ(t0)ξγ(t0)

)
.

(II.6)

By taking into account of (II.3) we obtain the following.

Lemma 1 ([6]): Let γ be a trajectory for a Sasakian mag-
netic fiel Fκ on a Hopf hypersurface M in CHn(c).
1) If ργ(t0) = ±1, then the extrinsic shape of γ is tangen-

tially of order 2 at γ(t0) and has kγ(t0) =
∣∣δM(

γ(t0)
)∣∣.

2) If ργ(t0) ̸= ±1 and the vector γ̇(t0) − ργ(t0)ξγ(t0) is
principal, then the extrinsic shape of γ is tangentially
of order 2 at γ(t0) if and only if one of the following
conditions folds with the principal curvature of λ of
γ̇(t0)− ργ(t0)ξγ(t0) :

i) λ− κργ(t0) +
{
δM

(
γ(t0)

)
− λ

}
ργ(t0)

2 = 0,
ii) κ+

{
δM

(
γ(t0)

)
− λ

}
ργ(t0) = 0.

In the former case we have kγ(t0) = |κ| and in the latte
case kγ(t0)

2 = κ2 − 2κλργ(t0) + λ2.
3) Under the condition that kγ(t0) ̸= |κ|, if γ̇(t0) −

ργ(t0)ξγ(t0) is principal, then the extrinsic shape of γ is
not tangentially of order 2.

III. CHARACTERIZATIONS OF SOME REAL
HYPERSURFACES

We give some characterizations on homogeneous Hopf
hypersurfaces in CHn(c). To study characteristic vector fiel
of a real hypersurface M , we consider the following condition
at p ∈ M :
(TC) The extrinsic shape of a trajectory γ0 for some Sasakian

magnetic fiel Fκ0 of initial vector ξp is tangentially of
order 2 at p and satisfie kγ0(0) ̸= |κ0|.

When the condition (TC) holds, the equalities (II.3), (II.4) turn
to

kγ0(0)
2 = κ2

0 + ⟨AMξp, ξp⟩2,(
kγ0(0)− κ0

)
ξp =

(
⟨AMξp, ξp⟩ − κ0

)(
AMξp + κ0ξp

)
,

we can characterize Hopf hypersurfaces by the condition (TC).

Proposition 1: A real hypersurface M in CHn(c) is Hopf
if and only if the condition (TC) holds at each point p ∈ M .

For every Hopf hypersurface, it is known that the principal
curvature δM associated with its characteristic vector fiel
is locally constant. It is also well-known that homogeneous
Hopf hypersurfaces are classifie into f ve classes (see [10],
for example). They are
1) a horosphere HS,
2) a geodesic sphere G(r) of radius r,
3) a tube T (r) of radius r around totally geodesic

CHn−1(c),
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4) a tube Tℓ(r) of radius r around totally geodesic CHℓ(c)
with 1 ≤ ℓ ≤ n− 2,

5) a tube R(r) of radius r around totally real and totally
geodesic RHn(c/4),

where 0 < r < ∞. Homogeneous real hypersurfaces except
those which are congruent to some R(r) are called real
hypersurface of type (A), and tubes around RHn(c/4) are
called real hypersurfaces of type (B). The principal curvature
corresponding to ξ is given as

δM =


√
|c|, when M = HS,√
|c| coth

√
|c|r, when M = G(r), T (r), Tℓ(r),√

|c| tanh
√
|c|r, when M = R(r).

When M is one of HS,G(r) and T (r), all tangent vector
orthogonal to ξ are principal. Their principal curvatures are
given as

λM =


√
|c|/2, when M = HS,(√
|c|/2

)
coth

(√
|c|r/2

)
, when M = G(r),(√

|c|/2
)
tanh

(√
|c|r/2

)
, when M = T (r).

When M is either Tℓ(r) or R(r), the bundle T 0M splits
into two subbundles V

(1)
M ⊕ V

(2)
M which consist of principal

curvature vectors associated to

λ
(1)
M =

(√
|c|/2

)
coth

(√
|c|r/2

)
,

λ
(2)
M =

(√
|c|/2

)
tanh

(√
|c|r/2

)
.

First we characterize homogeneous Hopf hypersurfaces
HS,G(r), T (r) which have two principal curvatures by ex-
trinsic shapes of trajectories. These real hypersurfaces are said
to be totally η-umbilic. Given constants κ, ρ with |ρ| < 1, we
consider the following conditions at p ∈ M :

(Tκ,ρ) There exist linearly independent unit tangent vectors
v1, . . . , v2n−2 ∈ UpM with ⟨vi, ξp⟩ = ρ which sat-
isfy that the extrinsic shapes of trajectories γi (i =
1, . . . , 2n− 2) for Fκ with initial vector vi are tangen-
tially of order 2 and satisfy kγi(0) ̸= |κ|.

Theorem 1 ([6]): A connected real hypersurface M in
CHn(c) is locally congruent to a totally η-umbilic real hyper-
surface if and only if it satisfie the following two conditions
at each point p ∈ M :

i) The condition (TC) holds at p;
ii) There exist constants κp, ρp with κp ̸= 0 and |ρp| < 1

such that the condition (Tκp,ρp) holds at p.

We note that the constants κp, ρp may depend on p. As
we can easily check that real hypersurfaces HS,G(r), T (r)
satisfy these conditions, we need to show the converse. The
firs condition shows that M is a Hopf hypersurface. Thus
the second condition guarantees that vi − ρpξp is principal.
Denoting its principal curvature by αi we obtain

kγi(0)
2 − κ2

p = αi

{
αi(1− ρ2p) + δMρ2p − κpρp}

by (II.6). As kγi(0) ̸= |κp|, we fin κ = (αi − δM )ρp by
Lemma 1. Since κ ̸= 0 we obtain αi = δM + (κp/ρp). This
shows M is totally η-umbilic.

In the argument of the above characterization on totally
η-umbilic real hypersurfaces, the assumption κp ̸= 0 is
important. When κ = 0, we have

kγi(0)
2ργi(0) =

{
αi

(
1− ργi(0)

2
)
+ δMργi(0)

2
}
ργi(0)δM ,

kγi(0)
2 =

{
αi

(
1− ργi(0)

2
)
+ δMργi(0)

2
}
αi

by (II.5) and (II.6). These show that either αi = δM or
ργi(0) = 0. We therefore have the following.

Theorem 2 ([6]): A connected real hypersurface M in
CHn(c) is locally congruent to either a totally η-umbilic real
hypersurface or a tube R(r0) with r0 =

(
1/
√

|c|
)
log

(
(
√
3+

1)/(
√
3 − 1)

)
if and only if it satisfie the following two

conditions at each point p ∈ M :

i) The condition (TC) holds at p;
ii) There exist linearly independent unit tangent vectors

v1, . . . , v2n−2 ∈ UpM with vi ̸= ±ξp such that
the extrinsic shape of geodesic γi with initial vec-
tor vi is tangentially of order 2 at p, and satisfie
kγi(0) > 0, and moreover these geodesic curvatures
kγ1(0), . . . , kγ2n−2(0) are same for j with vj ⊥ ξp.

If we pose a condition that extrinsic shapes of trajectories
have common geodesic curvatures we can eliminate the tube
R(r0) around RH2n−2(c/4). Given constants κ, k with k ≥ 0,
we consider the following condition:

(Cκ,k) There exist linearly independent unit tangent vectors
v1, . . . , v2n−2 ∈ UpM with vi ̸= ±ξp which satisfy that
the extrinsic shapes of trajectories γi (i = 1, . . . , 2n−2)
for Fκ with initial vector vi are tangentially of order 2
and satisfy kγi(0) = k for all i.

Theorem 3 ([6]): A connected real hypersurface M in
CHn(c) is locally congruent to a totally η-umbilic real hyper-
surface if and only if it satisfie the following two conditions
at each point p ∈ M :

i) The condition (TC) holds at p;
ii) There exist constants κp and kp with k ̸= |κp| such that

the condition (Cκp,kp) holds at p.

Coming back to extrinsic shapes of non-geodesic trajec-
tories, we can characterize tubes around totally geodesic
complex hypersurfaces by posing a condition on geodesic
curvatures of extrinsic shapes. We here extend some results in
[7] where we give characterizations by using extrinsic circular
trajectories.

Proposition 2 (cf. [7]): A connected real hypersurface M
in CHn(c) is locally congruent to a tube around CHn−1 if
and only if it satisfie the following two conditions at each
point p ∈ M :

i) The condition (TC) holds at p;
ii) There exist constants κp, ρp with κp ̸= 0 and |ρp| < 1

such that the condition (Tκp,ρp) holds at p and geodesic
curvatures of extrinsic shapes of trajectories in this
condition satisfy kγi(0) <

√
|c|/2 for all i.

Proposition3 (cf. [7]): A connected real hypersurface M
in CHn(c) is locally congruent to a tube around CHn−1 if
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and only if it satisfie the following two conditions at each
point p ∈ M :

i) The condition (TC) holds at p;
ii) There exist constants κp and kp with kp ̸= |κp| and

0 < kp <
√
|c|/2 such that the condition (Cκp,kp) holds

at p.

We can show these propositions by checking geodesic
curvatures of extrinsic shapes of extrinsic circular trajectories.
Similarly, if we study extrinsic shapes of geodesics we can
characterize horospheres.

Proposition 4 (cf. [7]): A connected real hypersurface M
in CHn(c) is locally congruent to a horosphere HS if and
only if it satisfie the following two conditions at each point
p ∈ M :

i) The condition (TC) holds at p;
ii) There exists a constant kp with kp > 0 such that the

condition (C0,kp) holds at p. Moreover, there is a point
p0 with kp0 =

√
|c|/2.

Unfortunately, we can not characterize all geodesic spheres
by a property that extrinsic shapes of some trajectories are
tangentially of order 2, though we have some characterizations
of some class of geodesic spheres by a property on extrinsic
shapes of geodesics (see [8] and [7]). This is because every
bounded circle on CHn can be obtained as the extrinsic shapes
of a trajectory on some geodesic sphere and of a trajectory on
some tube around totally geodesic complex hypersurface (see
[2]).
For a smooth curve γ̃ parameterized by its arclength on

CHn(c) we have another index functions when it has pos-
itive firs geodesic curvature function ∥∇γ̇ γ̇∥. We set τ =
⟨γ̇, J∇γ̇ γ̇⟩/∥∇γ̇ γ̇∥ and call it the firs complex torsion. For
a trajectory γ for Fκ on a real hypersurface M in CHn(c),
we fin by (II.1) that the firs complex torsion of its extrinsic
shape is given as

τγ = −
{
κ(1− ρ2γ) + ⟨AM γ̇, γ̇⟩ργ

}/
kγ .

We here pose a condition on geodesic curvatures and firs
complex torsions of extrinsic shapes of trajectories. Given k, τ
satisfying k > 0 and |τ | ≤ 1, we consider the following
condition on a unit tangent vector v ∈ TpM :

(Kk,τ ) There exists a Sasakian magnetic fiel Fκ with κ ̸= ±k
such that the extrinsic shape of the trajectories γ for Fκ

with initial vector v is tangentially of order 2 at p and
satisfy kγ(0) = k, τγ(0) = τ .

Theorem 4 ([3]): A connected real hypersurface M in
CHn(c) is locally congruent to a totally η-umbilic real hy-
persurface if and only if it satisfie the following conditions:

i) The condition (TC) holds at each point p;
ii) There exist positive constants k, τ with τ < 1 such that

at each point p ∈ M we can choose linearly independent
unit tangent vectors v1, . . . , v2n−2 ∈ UpM satisfying
a) the condition (Kk,τ ) holds;.
b) their components vi−⟨vi, ξp⟩ξp (i = 1, . . . , 2n−2)

span the subspace T 0
p M orthogonal to ξp.

Theorem 5 ([3]): A connected real hypersurface M in
CHn(c) is locally congruent to a tube around totally geodesic
CHℓ(c) with some ℓ (1 ≤ ℓ ≤ n−2) if and only if it satisfie
the following conditions:

i) The condition (TC) holds at each point p;
ii) There exist positive constants k, τ1, τ2 with k >

√
|c|

and τ1 < τ2 < 1 such that at each point p ∈ M
we can choose linearly independent unit tangent vectors
v1, . . . , v2n−2 ∈ UpM satisfying
a) either the condition (Kk,τ1) or the condition

(Kk,τ2) holds;.
b) their components vi−⟨vi, ξp⟩ξp (i = 1, . . . , 2n−2)

span the subspace T 0
p M orthogonal to ξp.

Moreover, there is a point p0 such that not all of such
v1, . . . , v2n−2 satisfy one of the conditions (Kk,τ1) and
(Kk,τ2).

We should note that in these theorems we need to choose
k, τ or k, τ1, τ2 so that they do not depend on p ∈ M . Also,
we note that those trajectories satisfying the conditions in each
theorems and propositions are extrinsic circular. The authors
are interested in giving some characterizations of tubes around
totally geodesic RHn by properties of extrinsic shapes of
trajectories.
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