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Horocycle trajectoriegand their limit-strings
on a complex hyperbolic space

Toshiaki ADACHI

Abstract—We take trajectory-harps for agkler magnetic field of  In this paper we study trajectory half-lines foaKler mag-
strength/|c| on a complg hyperbolic spaceCH" (c) of constant netic fieldsB = on a comple hyperbolic spaceCH"(c)

holomorphic sectional curvature We show that distance functions : ;
between their limit-strings and their arch-trajectories are not bound EconStam holomorphic sectional curvatureWe show that

though their limit points in the ideal boundary are the same. the distance from a point(¢) on such a trajectory half-line to
its associated geodesic half-linegrows logarithmically with
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Il. TRAJECTORY¥HARPS

I. INTRODUCTION . . .
Let M be a Kahler manifold with complex structuré. A

On a Kahler manifold with complex structuré we have a smooth curvey : R — M parameterized by its arclength
natural family of close@-forms which are constant multiplesis said to be arajectory for a Kahler magnetic fields,, =
of its Kahler formB ;. We say these@-forms to be Kahler By if it satisfies the differential equatiow ;¥ = xJ+. Since
magnetic fields. A smooth curve parameterized by its J/ is parallel, we see that this trajectory satisfies the Frenet
arclength is said to be @ajectory for a Kahler magnetic field formulaVsy = xJ5, V5(J¥) = —#¥ with the Frenet frame
B. = kB (k € R) if it satisfies the differential equation {7,/¥} and the geodesic curvatute|. Thus, we may say
V.7 = rJ4. Since its velocity vector and acceleration vectdhat trajectories for Bhler magnetic fields are simplest curves
span a complex line at each point, this curve is deepdjiowing complex structure of the underlyingier manifold
concerned with complex structure of the underlyinghier from the viewpoint of classical curve theory. This suggests us
manifold. It is hence natural to consider that properties #hportance of investigating trajectories forakler magnetic
trajectories and those of the underlying manifold are closefigld to study Kahler manifolds.
related with each other. In order to study properties of trajectories, we introduced
In the preceding paper [9], Shi and the author studidtpjectory-harps in [2]. We call a restriction of a trajectory
asymptotic behaviors of trajectories foiKler magnetic fields on a finite interval a trajectory-segment, and call a restriction
on a Hadamard Khler manifold, a simply connectedakler ©f a trajectory on a infinite interval a trajectory-half line. Let
manifold of nonpositive sectional curvature. Two geodesic: [0,7] — M be a trajectory-segment or a trajectory half-
half-lines of unit speed are said to be asymptotic if the distantee for a Kahler magnetic field3, satisfying~(t) # ~(0)
function between them is a bounded function. With the idef@r all 0 < ¢ < T'. A smooth variation of geodesias, :
boundary which is obtained as the set of asymptotic classed®fl] x R — M is said to be drajectory-harp associated
all geodesic half-lines of unit speed, every Hadamard manifoidth 7 if it satisfies the following conditions:
is compactified ([7]). Since the geometry of the ideal boundary i) . (t,0) = v(0) for eacht,
of a Hadamard manifold is closely related with the geometry i) the curves — a,(0, s) is the geodesic of initial vector
of itself (see [6] and also [5], [8]), the author is interested in 4(0),
asymptotic behaviors of trajectories foaKler magnetic fields. iii) for eacht, the curves — a,(t, s) is a geodesic of unit
When sectional curvatures of tangent planes of a Hadamard speed joiningy(0) and~(t).
Kéahler manifold M are bounded from above by a negativgz,vherw
constante, every trajectory half-liney : [0,00) — M for a
Kahler magnetic field,, with || < y/|c| is unbounded and
hasa limit point y(co) = lim;—,+ ¥(¢) in the ideal boundary
oM of M. Moreover, if we take a geodesic half-line
satisfyingo (0) = v(0) ando (o0) = (0), thenv is contained
in a tube of finite radius around if |k| < \/|c|. Thus, we
areinterested more in asymptotic behaviors of trajectories f
k] = V/lel.

([0,77]) is contained in the geodesic ball centered at
~(0) and of radius of the first conjugate value 9f0), we
can define trajectory-harp uniquely. We call the geodesie
a~(t, s) astring of a, att, and cally its arch-trajectory We
setl,(t) as the length of the geodesic segment o, (t, s)
from ~(0) to ~(t), and putd,(t) = (% (t,4,(1)), (1))
We call them thestring-lengthand thestring-cosineof a.
% t, respectively. The differential of the string-length coin-
cides with the string-cosine ({t) = 4,(t)). String-lengths
show lengths of trajectory-harps. In [2] and in [10], Shi and
the author estimated string-lengths and string-cosines under
The author ispartially supported by Grant-in-Aid for Scientific Researcran assumption on sectional curvatures of underlyir&hl&r
(C) (No. 16K05126), Japan Society for the Promotion of Science manifolds. For a negative and for x with x? < |c|, we set
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L (t; ¢) by the following relations 1) When|k| < +/|c|, we hae

— k2 sinh l(t;c)/2 b — K2
Ve = 2 sin (\/H (t;¢)/2) when || < \/Id], 0., (a,b) S/ @ dt
= V/|e| sinh(y/]e] — K2/2), o sinhy/[c] — K2t

bk _ 1)(eak
2sinh(y/|c[ e (t;¢)/2) = /]e[t,  whenk = £4/]c]. :10g<Eebk_~_BE€ak—_FB>

Also, we definea functiond, (¢; ¢) by

and
dr(t; ) st (a,b) < ﬁg
— 2
Ve —&2 cosh(v/|c[—K2t/2) 2/l¢l(le] = £2)
= \/|C‘COSh2(\/|C|—I€2 t/2) — K2 2) Whenk = +4/|c|, we hare

2/+/Iclt? + 4, whenk = £+/]c]. 9 b</b 2 21
1(@b) < o el 2 m(a b)'

, when|k| < /]|,

These functions shw string-lengths and string-cosines of

trajectory-harps associated with trajectories fBr on a

complex hyperbolic spac€ H"(c) of constant holomorphic ~ Since we hae 4(053 (a,0), %(b, 0)) < 9,(a,b), by the
sectional curvature. The string-length¥,.(¢; ¢) is monotone estimates on zenith angles we find that for each trajectory-
increasing with respect toand satisfiedim; . /. (t;c) = co. harp o, associated with a trajectory half-ling for B, with
Trajectories on a Hadamardakler manifold satisfy a similar || < +/|c] on a Hadamard<ahler manifold M/ satisfying

property. We call the set Riem™ < ¢ < 0 the limit lim,_, %(t,o) € UyoyM of
initial vectors of strings exists. We call the geodesic half-
Hy={a,(t,s) | 0<t<T,0< s <L)} line o, : [0,00) — M having this vector as initial vector
the limit-string of this trajectory-harpw.,. Propositions 1, 2
the harp-bodyof a trajectory-harpy, . guarantee that the poinf(co) := lim,_, (t) at infinity

" ) . exists in the ideal boundary M and it coincides with the
haﬁrlt?r?g?glroanIérgl[(za]r)}n;etnzt:c [foéﬁa?) ; %ggaam;rr?;hdg rry point o, (co0) = lim;_,+ 04 () at infinity of its limit-string.
man'lfoIdM SUDDOSE sgct'o:"nallc rnat res of planes tangen Iﬂooreover, whenxs| < 1/|¢|, the estimat®n sector-arcs shows

' - Supp : urvatu P 9 tt at the trajectoryy is contained in the tube around the limit-
the harp-bodyH., are not greater than a negative constarit

: ) ; string o, of radius |x|r/(2y/]c|(Jc] — x?)), and that o, is
i|§|cr§avsi‘ncg|;' ;P:]%nstgiLflirglg?é;f(jt:;g-lengths IS MONOIONe ) tained in the tube around of the same radius. We are

hence interested in the relationship between trajectories for

This proposition guarantees that on a Hadamaghl&r Bim and their limit-stringsof their trajectory-harps.
manifold M every trajectoryy for B, with |x| < /|¢| is L , ,
unbounded in bothlirections when sectional curvaturesigf roposition 3:Lety : [0,00) — M be a trajectory half-line
satisfyRiem™ < ¢ < 0. Here, we say, is unbounded in both for @ Kahler magnetic field,; with & = +/lc] on CH"(c).
directions if both+([0,c)) and v(—oc,0]) are unbounded Forb grbﬂrqrya,b with 0 < a < b, the length of sector-arc of
sets. as” is estimated as

In order to show widths of trajectory-harps we have zenith
angles and lengths of sector-arcs for harp-sectors. For a sly(a,b) <mv/|cla(b —a)/ (2v/]clb* +4).
trajectory-harpeo.,, givena, b with 0 < e < b < T, we call
its restrictionc, |(q,4)x[0,¢, ()] ONtO [a,b] x [0, £, (a)] & harp-

sector. We call the curvéa,b] > ¢ — o, (t,4,(a)) € M Proof: We note that each trajectory lies on a totally
its sector-ar¢ and call the lengthi,(a,b) of the curve geodesicCH!(c). Thus, the trajectory-harp., is a variation

day . . - .
[a,b] 5t — F(t,0) € Tyo)M its zenithangle In [3],  of geodesics ofCH!(c). We therefore find that
[9] and [10] we gave estimates of lengths of sector-arcs and

zenith angles. We here recall some of the results which are
closely related to our present paper.

In particular we havelimy_, . s¢,(t,b) < wt/2.

1
sly(a,b) = ——= sinh(/|c[lx(a; )
! Vel
Proposition 2 ([9], [3]): Let~ : [0,00) — M be a trajec- X 4(%(@0), %(b, 0)),
tory half-line for a Kahler magnetic fiel,. on a Hadamard 5 5

Kahler manifold M. Suppose sectional curvatures of planggnere (U\M) sinh( |c|t) shows thenorm of the Jacobi
tangent to the harp-bod¥, are not greater than a negativq¢ie|d Doy (t,5). Since we have

constant. If |x| < /||, for arbitrarya, b with 0 < a < b, the 9s
zenith angled, (a, b) and the lengtts{, (a, b) of the sector-arc dav dav B
are estimated as follows: 4(87;@70)7 6757(0’00 = cos™ 1 d,(t;¢)
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and 0 < (w/2)sinf for 0 < 6 < =w/2, by trigonometric curven~, : [0,a] — CH"(c) defined byy,(t) = v(a — t) is a
addition formula, we obtain trajectory segment foB_ .. Hence we see

Oay Oay ) O
4(g<a,0>, E(M)) <7(0), 8—;(t,0)> =0 _n(t:c)=2/\/]c|t? + 4.
— cos—1 o) — cos—L .
= cos™ 0s(bje) — cos™ O (a; ) This shavs that the angle betweey(0) and the initial vector
< E sin(cos ™1 8,,(b; ¢) — cos ™1 8,.(a; ¢)) 6+(0) of the Iimit-string o, Is /2. Since~ lies on a totally
2 geodesicCH!(c), we find 5.,(0) = £J5(0).

m/|c| (b—a
= N 4|r|4()(|0|a2) s Proposition 4.: Lety be a trajectqry haIf—Iirl1e fOBi\/H on

CH™(c). The distancérom an arbitrary poinio,(s) on the
becausesin(cos ™ 6. (t;¢)) = +/|c[t/y/]c[t2 +4. On the limit-string o, of its trajectory-harpy, to v is d(o,(s),v) =

other hand, we have S.
Smh(m%(a;c)) Proof: Since we haveim,_, 0,(s) = lims_,oc y(t) €
) OCH™(c), we seey lies on a horospherdlS which is a
= 2sinh(v/[c]f (a; ¢)/2) cosh(v/[ellx (a3 ) /2) level set of the Busemann function defined by and that
_ la e+ D passes through., (0). For s > 0, the geodesic balB; (o (s))
2 ’ centered av,(s) passing throughy(0) = ¢ (0) is contained

in the horoball HB whose boundary isHS. They satisfy
B (o(s))NHB = {~(0)}. Therefore, we see that the distance
from o.,(s) to v is s which is attained ag(c(s),v(0)). =

By using thecomparison theorem on lengths of sector-arc,
we obtain the following.

hencewe get the estimate. Sinc€.,(a,b) is monotone in-
creasing with respect th, we get the conclusion. ]

Next we study the distance fromy(¢) to o,. For each
positive s we take the geodesig; satisfying u5(0) = o.(s)
Corollary 1: Let v : [0,00) — M be a trajectory half- and j5(0) = FJo,(s). It also lies on that totally geodesic
line for a Kahler magnetic fieldB,, on a Hadamard Ehler CH'!(c) containing~. Thus we have positive:, and ¢
manifold )/. Suppose sectional curvatures of planes tangesatisfying 1 (us) = ~(ts). For eacht > 0, if there is s
to the harp-body# ., are not greater than a negative constasatisfyingt, = t, then we find the distanceé, (¢) from ~(¢)
c. For arbitrarya, b with 0 < a < b, we take positivei,?) so to o, is given byu,.
that they satisfyt, (a) = £, (a; c) and £, (b) = £, (b; c). When

r = +/]c], the lengthof sector-arc ol®? is estimated as Theorem 1:Let y be a trajectory half-line fo, - on

CH™(c). The distancel,(t) from a pointy(t) to the limit-
sty(a,b) < lela(b — d)/<2 /|C|32 + 4) string o, of the trajectory-harpy, is give by
andlimsup,_, ., st~ (a,b) < ma/2. dy(t) = (1/V/lel) log(V/le[t + /|e]t? +1).
Proof: We take a trajectory half-lingy for [Bgm on Hence thdunctiond, is unbounded, monotone increasing and

CH"(c). We then haves(. (a,b) < sls(a,b) (see [9], [4]). “O"°AVE:

We hence get our estimates. u Proof: First we study the case that= —4 and~ is a

H . 2n+1
We notethat a > a by Proposition 1. Thus the above doe%rajectory forB;. Let w : H; — CH(~4) denote a Hopf

. . i . 2n+1 __ n+1
not tell on the growth order of lengths of sector-arcs. lbration of a anti-de Sitter spach; B {Z. < ¢ |
{(z,2) = —1}, where({ , ) denotes a Hermitian form on

Cn+! given by
Ill. HOROCYCLE TRAJECTORIES AND THEIR
LIMIT-STRINGS {(z,w)) = —20Wo + 21W1 + - - - + 2p Wy,

According to Propositions 2, 3, it seems trajectories fqp, . = (

_ : 20,y 2n), W= (wWo,...,w,) € CPL,
Bi\/@ on a complg hyperbolic spac€ H™(c) has different

We takez € H?"*' < C"*' and a horizontal vector
properties compared with those fd, with || < +/|¢|, v € T.H"*' c T.,C**' = C"*! satisfying w(z) =
though all ofthem are unbounded in both directions. We study(0), dw(v) = 4(0). Regardingv as an element of"*! we
more on these trajectories in this section. It is known that eafthd that the horizontal lifty of v with 4(0) = z is expressed
trajectory forB e CH™(c) lies on ahorosphere (see as
[1]). We hence call it a horocycle trajectory. A(t) = eﬁt{(l —V=1t)z+ m}

We take a trajectory half-lineg/ : [0,00) — CH"(c) for
B, with k = £++/|c| and consider itdrajectory-harpe.,. We (see [1]). Sincethe horizontal lifts, of the limit-string o,
here study the distance betweerand the limit-stringe., of with 6,(0) = z is expressed a8, (s) = cosh sz + sinh sJv,
a. First, we giveo, explecitely. For each positive, the we see that the horizontal lifi; of 1, with (i5(0) = 64(s) is
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given as of initial vector 4(0). By definition, we haveu(s,0) =
o,(s) and p(s,us) = 7(ts). To study more on the rela-

fis(u) = coshug(s) — sinhu.J(s) tionship between trajectories and their limit-strings, we set

= (coshucosh s — v/—1sinhusinh s)z ny () = (¥(), %(s(t),us(t)», where s(t) denotes the in-
. . verse function of the function — ¢,. We shall call the angle
sinh sh v/ —1 cosh usinh s
+ (sinhucosh s + coshusinh s)v cos~ 11, () betweeny(t) and 2& (s(t), u()) the arch-angle
sinh u cosh s + v/—1 cosh u sinh s of a trajectory-harpy,, att. Settingi by (s, u) = p(s, usu),
= 10a 2 '
V/sinh? u cosh? s + cosh? usinh? s we haveu? = [; H 7 (5, U)H du. Hence we find
coshusinh u dug /1 o oji
X z Ug—— = —(s,u), (Voa s,u) ) du
{ \/sinh2 wcosh? s + cosh? usinh? s ds 0 <3U( ) ( o 3U) ( )>
cosh? u + sinh? u) cosh s sinh s Yd jon on
- 2 2 ) 2 2 V-le :/ d7<87(8’u)’37(3’u)> du
/sinh? u cosh? s + cosh? usinh? s 0o duiou §
ofi ofi ofi ofi
+ \/Sinh2 wcosh? s 4 cosh? usinh? sv}. = <%(57 1), %(s, 1)> - <%(S; 0), %(57 0)>
dt ou .
As s (us) = 7(t,) there is a reab with eV =11 (us) = = Us (S)<a*u(syus)ﬁ(ts)>
4(ts). By comparingthese expressions éfandji; we obtain dt

= us—(5) Ny (ts)-
te = \/simh2 us cosh? s + cosh? ug sinh? s (1n.2) _ ds _
1= cosh u sinh u 2 Sinced, (t) = u,(), we obtain
\/simh2 Usg cosh? s + cosh? Ug sinh? s’ . (1) = dly (t) = 1//]clt? + 1.
{cosh2 s + sinh? us} cosh ssinh s Thereforewe have the following:
= . 1.3
" V/sinh® u, cosh? s + cosh? u, sinh s (11-3) Theorem 2:For a trajectory hal-liney for B, s on
By (I1.2) we getcosh? u, = (cosh 2s+sinh 2s+1)/2, which CH"(c), we hae n,(t) = 1/4/|c[t?+1. Hence the
is equivalent tacosh 2u, = cosh 2s + sinh 2s = €2°. Thus we arch-anglecos™! 7, (t) is monotone increasing and satisfies
obtain limy o0 cos ™1, (t) = 7/2.
1 , : 1 ,
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and its limit-string have the same limit points at infinity their
distance function grows logarithmically.

We define a variation of geodesigs : R x [0,00) —
CH"(c) by p(s,u) = ps(u). Here, o denotes the geodesic
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