
 

 

 
Abstract—The main goal of the present paper is to get new 

equalities with respect to a special connection titled ‘’Semi-
symmetric non-metric connection’’. Whoever wants to study manifol 
or submanifold theory with this type of special connection, our new 
equalities can be used in the future studies. In this study, we calculate 
Koszul formulas on doubly warped product manifolds endowed with 
the semi-symmetric non-metric connection and we give relations 
between Levi-Civita connection and semi-symmetric non-metric 
connection of a doubly warped product manifold M=f B×b F. We also 
get some results of Einstein doubly warped product manifolds with a 
semi-symmetric non-metric connection. 
 

Keywords—Doubly warped product manifold, semi-symmetric 
non-metric connection, Einstein manifold, quasi-Einstein manifold. 

I. INTRODUCTION 
N [6], H. A. Hayden gave the definition of a semi-symmetric 
metric. In 1970, K. Yano studied semi-symmetric metric 

connection and he proved that a Riemannian manifold 
admitting the semi-symmetric metric connection has vanishing 
curvature tensor if and only if it is conformally flat [15].  

    On the other hand, the idea of a semi-symmetric non-
metric connection was introduced by N. S. Agashe and M. R. 
Chafle in [1]. They also studied some of its properties and 
submanifolds of a Riemannian manifold with semi-symmetric 
non-metric connections in [2]. 

    The above author and C. Özgür studied semi-symmetric 
non-metric connection on a warped product manifold and gave 
relations between the Levi-Civita connection and the semi-
symmetric non-metric connection of a warped product 
manifold in [11]. They also considered Einstein warped 
product manifolds endowed with a semi-symmetric non-metric 
connection. 

    Furthermore, the present author considered semi-
symmetric metric connection on a doubly warped product 
manifolds in [13]. The curvature tensor, Ricci tensor and the 
scalar curvature were obtained respectively. 
        By the above studies, we study doubly warped product 
manifolds with semi-symmetric non-metric connection and 
find relations between the Levi-Civita connection and the 
semi-symmetric non-metric connection. 

    Moreover, in [5], A. Gebarowski studied Einstein warped 
product manifolds. As an application, in this study we  
 

consider Einstein doubly warped product manifolds endowed 
with a semi-symmetric non-metric connection. 

    There are also various studies on doubly warped product 
manifolds as [4], [10], [12]. We have examined these studies 
and have comparisons of the features of doubly warped 
product manifolds with Levi-Civita connection and semi-
symmetric non-metric connection.  

II. SEMI-SYMMETRIC NON-METRIC CONNECTION 
 

Let ∇ be a Levi-Civita connection of an n-dimensional 
Riemannian manifold M. A linear connection ∘ ∇ is defined 

by  
 

                      ∘ ∇XY = ∇XY+ π(Y)X                               (1) 
 
where π is a 1-form associated with the vector field P on M 
defined by 
                    π(X) = g(X,P)         and        P = PB+PF ,           (2) 

  
where PB (resp. PF) is the component of  P on B (resp. on F). 
       ∘ ∇is said to be a semi-symmetric connection, if its 
torsion tensor T 

 

         T(X,Y) = ∘ ∇XY -∘ ∇YX - [X,Y]                           (3)            
satisfies 

 
                             T(X,Y) = π(Y)X - π(X)Y,                               (4)       

A semi-symmetric connection ∘ ∇ is said to be a semi-
symmetric non-metric connection if  

 
∘ ∇g ≠ 0. 

     From (1) it is easy to see that 
∘ ∇Xg(Y, Z) = (∘ ∇Xg)(Y, Z)+g(∘ ∇XY, Z)+g(Y,∘ ∇X Z) 

                                    = (∘ ∇Xg)(Y, Z)+ ∇Xg(Y, Z) 
                            + π(Y)g(X, Z)+ π(Z)g(X, Y), 

which means that 
                (∘ ∇Xg)(Y, Z) = - π(Y)g(X, Z)+ π(Z)g(X, Y),   (5) 

for any vector fields X, Y, Z on M. 
          Furthermore, by the use of (1), we can write the relation 
between R and ∘ R as follows 
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          ∘ R(X,Y)Z  = R(X,Y)Z+g(Z,∇XP)Y- g(Z,∇YP)       (6) 
                 +π(Z)[π(Y)X - π(X)Y], 
 

for any vector fields X,Y,Z on M [16].  

III. DOUBLY WARPED PRODUCT MANIFOLDS 
 
    Let (B, gB) and (F, gF) be two Riemannian manifolds and 

b:B→(0,∞) and f:F→(0,∞) smooth functions. Consider the 
product manifold B×F with its projections π:B×F→B and 
σ:B×F→F. The doubly warped product f B×b F is the manifold 
B×F with the Riemannian structure such that 

 
g = (f∘ σ)²π∗ (gB)⊕(b∘ π)²σ∗ (gF), 

 
which implies that 

 
                               g = f²gB +b² gF                                    (7) 
 

The functions b:B→(0,∞) and f:F→(0,∞) are called warping 
functions of the doubly warped product [9]. 

    If either b ≡ 1 or f ≡ 1, but not both then we obtain a 
singly warped product. If both b ≡ 1 and f ≡ 1, then we have a 
product manifold. If neither b nor f is constant, then we have a 
non-trivial doubly warped product. 

    We need the following three lemmas from [9], for the 
later use : 

 
Lemma 3.1: Let us consider M=f B×b F and denote by ∇, 

B∇ and F∇ the Riemannian connections on M, B and F, 
respectively. If  X,Y are vector fields on B and V,W on F, 
then: 

 
 (i)∇XY = B∇XY - (1/(fb²))g(X,Y)gradF f, 
 
 
 (ii)∇XV = ∇VX = ((V(f))/f)X+((X(b))/b)V, 
 
 
 (iii)∇VW = F∇XY - (1/(bf²))g(V,W)gradBb. 
 

Lemma 3.2: Let M=f B×b F be a doubly warped product, with 
Riemannian curvature MR. Given fields X,Y,Z on B and 
U,V,W on F, then: 

 
 (i) MR(X,Y)Z  = BR(X,Y)Z 
             +(1/(fb³))[g(Y,Z)X(b) - g(X,Z)Y(b)] gradF f 
              - (1/(b²))[gB(Y,Z)X - gB(X,Z)Y]( gradF f)(f), 
 
 
 (ii) MR(X,V)Y = ((HB

b(X,Y))/b)V- ((Hf∘ σ(Y,V))/f)X 
           +((gB(X,Y))/b)[((fF)/b)∇V gradFf-((V(f))/f)gradBb], 
 
 

 (iii) MR (X,Y)V = ((Hf∘ σ(Y,V))/f)X+((Hf∘ σ(X,V))/f)Y, 
 (iv) MR(V,W)X =-((Hb∘ π(X,W))/b)V+((Hb∘ π(X,V))/b)W, 
 
 
 (v) MR(X,V)W  = -((HF

f(V,W))/f)X+((Hb∘ π(X,W))/b)V 
         - ((gF(V,W))/f)[((bB)/f)∇X gradBb-((X(b))/b)grad f] 
 
 
 (vi) MR(V,W)U  = FR(V,W)U 
          +(1/(bf³))[g(V,W)U(f)-g(U,W)V(f)]gradBb 
          -(1/(f²))[gF(V,W)U-gF(U,W)V](grad Bb)(b). 
 

Lemma 3.3: Let M=f B×b F be a doubly warped product with 
Ricci tensor MS. Given fields X,Y on B and V,W on F, then: 

 
 (i) MS(X,Y)  = BS(X,Y) 
              -(1/(b²))[(r-1)(grad Ff)(f)+fΔF(f)]gB(X,Y) 
           -(s/b)HB

b(X,Y), 
 
where r = dimB and s = dimF, 
 
 (ii) MS(X,V) = (n-2)((V(f)X(b))/(fb)), 
 
 
 (iii) MS(V,W)  = FS(V,W) 
              -(1/(f²))[(s-1)(gradBb)(b)+bΔB(b)]gF(V,W) 
           -(r/f)HF

f(V,W). 
 
 
    Moreover, the scalar curvature Mτ of M satisfies the 

condition 
 
                  Mτ = (Bτ)/(b²)+(Bτ)/(f²) 
                          - 2s((ΔB(b))/(bf²))-2r((ΔF(f))/(fb²))  
                       - s(s-1)(((gradBb)(b))/(f²b²)) 
                          - r(r-1)(((gradFf)(f))/(f²b²)),                      (7) 
 

where Bτ and Fτ are scalar curvatures of B and F, respectively. 
 

IV. DOUBLY WARPED PRODUCT MANIFOLDS WITH A 
SEMI-SYMMETRIC NON-METRIC CONNECTION 

 
    In this section, we consider doubly warped product 
manifolds with respect to the semi-symmetric non-metric 
connection and find the expressions of curvature tensors, Ricci 
tensors and scalar curvatures with this connection where 
P∈χ(M). 

    Let’s begin with the following lemma: 
 

Lemma 4.1: Let us consider M=f B×b F and denote by ∇ the 
semi-symmetric non-metric connection on M, M∇ and F∇ be 
connections on B and F, respectively. If X,Y∈χ(B), 
V,W∈χ(F), then: 
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 (i) ∘ ∇XY = B∘ ∇XY- (1/(fb²))g(X,Y)(gradFf)(f), 
 
 
 (ii) ∘ ∇XV = ((V(f))/f)X+((X(b))/b)V+π(V)X, 
 
 
 (iii) ∘ ∇VX = ((V(f))/f)X+((X(b))/b)V+π(X)V, 
 
 
 (iv) ∘ ∇VW = F∘ ∇XY-(1/(bf²))g(V,W)(grad Bb)(b). 
  

Proof : In view of  Koszul formula from [9] we have 
 
 2g(∇XY,Z)  = Xg(Y,Z)+Yg(X,Z) - Zg(X,Y)                (9) 
                      - g(X,[Y,Z]) - g(Y,[X,Z])+g(Z,[X,Y]), 
 

for all vector fields X,Y,Z on M, where ∇ is the Levi-Civita 
connection of M. By virtue of (1), the equation (9) turns into 
   
     2g(∘ ∇XY,V)  = Xg(Y,V)+Yg(X,V) -Vg(X,Y)              (10) 

                      - g(X,[Y,V]) - g(Y,[X,V])+g(V,[X,Y])  
                     +2π(Y)g(X,V) , 
 

for any vector fields X,Y∈χ(B) and V∈χ(F). 
Since X,Y and [X,Y] are lifts from B and V is vertical, we 

know from [9] we can write 
 
                              g(Y,V)=g(X,V)=0                           (11) 
 

and 
 
                               [X,V]=[Y,V]=0.                             (12) 
 

Thus, (10) reduces to 
 
                          2g(∘ ∇X Y,V) = -Vg(X,Y)                  (13) 
 

By the use of(7), we have 
 

g(X,Y) = (f∘ σ)²gB(X,Y). 
 

Taking f = f∘ σ, we can write 
 

g(X,Y) = f²(gB(X,Y)∘ π). 
 

Thus, we get 
 
 Vg(X,Y)  = V[f²(gB(X,Y)∘ π)] 
                 = 2fV(f)(gB(X,Y)∘ π)+f²V(gB(X,Y)∘ π). 
 

Since (gB(X,Y)∘ π) is constant on fibers, by the use of (7), the 
last equation turns into 

 

           Vg(X,Y) = 2((V(f))/f)g(X,Y).                            (14) 
 

By virtue use of (14) in (13), we obtain 
 
     g(∘ ∇XY,V) = -[((V(f))/f)+π(V)]g(X,Y).                (15) 
 

Since V(f) = (1/(b²))g(gradFf,V) on F, we get (i). 
By the definition of the covariant derivative with respect to 

the semi-symmetric non-metric connection, we can write 
 
g(∘ ∇XV,Y) = Xg(Y,V)  - (∘ ∇Xg)(V, Y) - g(V, ∘ ∇XY), 
 

for all vector fields X,Y on B and V on F. By making use of 
(5), (11) and (15), the above equation turns into 

 
                  g(∘ ∇XV,Y) = [((V(f))/f)+π(V)]g(X,Y).     (16) 
 

On the other hand, from Koszul formula with respect to the 
semi-symmetric non-metric connection it follows that 

 
2g(∘ ∇XV,W)  = Xg(V,W)+Vg(X,W) - Wg(X,V) 
                       - g(X,[V,W]) - g(V,[X,W])+g(W,[X,V]) 
                       +2π(V)g(X,W), 
 

for any vector fields X on B and V,W on F. In view of (11) 
and (12), the last equation reduces to 

 
                    2g(∘ ∇XV,W) = Xg(V,W) - g(X,[V,W]). 
 

Since X is horizontal and [V,W] is vertical, g(X,[V,W])=0. 
Then we find 

 
                           2g(∘ ∇XV,W) = Xg(V,W).                (17) 
 

In view of (7), we have 
 
                            g(V,W) = (b∘ π)²gF(V,W). 
 

Taking b = b∘ π, we get 
 
                       g(V,W) = b²(gF(V,W)∘ σ). 
 

So, we obtain 
 
       Xg(V,W)  = X[b²(gF(V,W)∘ σ)] 
                        = 2bX(b)(gF(V,W)∘ σ)+b²X(gF(V,W)∘ σ). 
 

Since (gF(V,W)∘ σ) is constant on leaves, by the use of (7), 
the last equation reduces to 

 
       Xg(V,W) = 2((X(b))/b)g(V,W).                            (18) 
 

By making use of (18) in (17), we obtain 
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          g(∘ ∇XV,W) = ((X(b))/b)g(V,W).                         (19) 
 
Then in view of the equations (16) and (19), we get (ii). 

Now, by the use of (3) we can write 
 
                    ∘ ∇VX =∘ ∇XV - [X,V] - T(X,V). 
 

Then, from (4) and (12), the above equation turns into 
 
                ∘ ∇VX =∘ ∇VV- π(V)X+π(X)V.                  (20) 
 

By virtue of the equation (ii), we get 
 
        ∘ ∇VX = ((X(b))/b)V+((V(f))/f)X+π(X)V.          (21)   
 

Hence we obtain (iii). 
On the other hand, by the definition of the covariant 

derivative endowed with the semi-symmetric non-metric 
connection, it follows that 

 
  Vg(X,W) = (∘ ∇Vg)(X, W)+g(∘ ∇VX,W)+g(∘ ∇VW,X), 
 

for any vector fields X on B and V,W on F. From (5) and (11), 
the above equation turns into 

 
                g(∘ ∇VW,X) = π(X)g(V,W) -g(∘ ∇VX,W).         (22) 

 
In view of (21), we get 

 
                  g(∘ ∇VW,X) = -((X(b))/b)g(V,W), 
 

which means that 
 

∘ ∇VW = F∘ ∇VW- (1/(bf²))g(V,W)gradBb , 
 

where X(b) = (1/(f²))g(gradBb,X) for any vector field X on B. 
Therefore, we complete the proof of the lemma. 

 
Lemma 4.2 : Let M=f  B×b  F be a doubly warped product and 
R and ∘ R denote the Riemannian curvature tensors of M with 
respect to the Levi-Civita connection and the semi-symmetric 
non-metric connection, respectively . If  X,Y,Z ∈χ(B)  and 
U,V,W∈χ(F), then: 

 
 (i) B∘ R(X,Y)Z  = BR(X,Y)Z 
                           - (1/(b²))[gB(Y,Z)X-gB(X,Z)Y](gradFf)(f) 
                           +g(Z,B∇XPB)Y-g(Z,B∇YPB)X 
                           +((PF(f))/f)[g(X,Z)Y-g(Y,Z)X] 
                           +π(Z)[π(Y)X-π(X)Y], 

 
 (ii) F∘ R(X,Y)Z  = (1/(fb²))[g(Y,Z)((X(b))/b) 
                               - g(X,Z)((Y(b))/b)] gradFf , 
 
 

 (iii) B∘ R(V,X)Y = ((Hf∘ σ(Y,V))/f)X 
                                +((V(f))/(fb))gB(X,Y)gradBb 
                             +((V(f))/f)π(Y)X- ((Y(b))/b)π(V)X  
                                 -π(Y)π(V)X, 
 
 
 (iv) F∘ R(V,X)Y  = ((HB

b(X,Y))/b)V 
                               - (f/(b²))gB(X,Y)F∇VgradFf  
                               - g(Y,B∇XPB)V- ((PF(f))/f) g(X, Y)V 
                               +π(X)π(Y)V, 
 
 
 (v) B∘ R(X,Y)V  = -((Hf∘ σ(Y,V))/f)X+((Hf∘ σ(X,V))/f)Y 
                            - ((V(f))/f)[π(X)Y-π(Y)X] 
                            +[((X(b))/b)Y-((Y(b))/b)X]π(V) 
                            - [π(X)Y-π(Y)X]π(V), 
 
 
 (vi) F∘ R(X,Y)V=0, 
 
 
 (vii) B∘ R(V,W)X=0, 
 
 
 (viii) F∘ R(V,W)X=((Hb∘ π(X,W))/b)V+((Hb∘ π(X,V))/b)W 
                              - ((X(b))/b)[π(V)W-π(W)V] 
                             +π(X)[((V(f))/f)W-((W(f))/f)V] 
                              - π(X)[π(V)W-π(W)V], 
 
 
 (ix) B∘ R(X,V)W  = - ((HF

f(V,W))/f)X 
                                 - (b/(f²))gF(V,W)B∇XgradBb 
                              - ((PB (b))/b)g(V,W)X - g(W,F∇VPF)X  
                                                  +π(V)π(W)X, 
 
 
 (x) F∘ R(X,V)W  = ((Hb∘ π(X,W))/b)V 
                               +((X(b))/(bf))gF(V,W)gradFf 
                            - ((W(f))/f)π(X)V+((X(b))/b)π(W)V 
                            - π(X)π(W)V, 
 
 
 (xi) B∘ R(U,V)W  = (1/(bf²))[g(V,W)((U(f))/f) 
                                 - g(U,W)((V(f))/f)]gradBb, 
 
 
 (xii) F∘ R(U,V)W  = FR(U,V)W 

- (1/(f²))[gF(V,W)U    
- gF(U,W)V](gradBb)(b) 

                                +g(W,F∇UPF)V-g(W,F∇VPF)U 
                                +((PB(b))/b)[g(U,W)V-g(V,W)U] 
                                +[π(V)U-π(U)V]π(W). 
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Proof : Let M=f B×b F be a doubly warped product and R and 
∘ R denote the curvature tensors of the Levi-Civita connection 
and the semi-symmetric non-metric connection, respectively. 
In view of  (6), we can write 

 
 ∘ R(X,Y)Z  = R(X,Y)Z+g(Z,∇XP)Y-g(Z,∇YP)X 
                   +π(Z)[π(Y)X-π(X)Y],                                 
 

for any vector fields X,Y,Z on B. 
In view of the equation (2), Lemma 3.1 and Lemma 3.2, we 
get 

 
 ∘ R(X,Y)Z  = BR(X,Y)Z 

                 +(1/(fb²))[g(Y,Z)((X(b))/b) 
                    -g(X,Z)((Y(b))/b)]gradFf 
                 - (1/(b²))[gB(Y,Z)X-gB(X,Z)Y](gradFf)(f) 
                +g(Z,B∇XPB)Y-g(Z,B∇YP)X 
                +((PF(f))/f)[g(X,Z)Y-g(Y,Z)X] 
                +π(Z)[π(Y)X-π(X)Y]. 
 

Thus, we obtain (i) and (ii). 
By the use of (6) again, we have 

 
     ∘ R(V,X)Y  = R(V,X)Y+g(Y,∇VP)X-g(Y,∇XP)V  

                   +π(Y)[π(X)V-π(V)X],                                
 

for all vector fields X,Y∈χ(B) and V∈χ(F), respectively. 
Then, using (2), Lemma 3.1 and Lemma 3.2 again we obtain 
(iii) and (iv). 

Putting Z = V in equation (6), we get 
 
 ∘ R(X,Y)V  = R(X,Y)V+g(V,∇XP)Y-g(V,∇YP)X 
                    +π(V)[π(Y)X-π(X)Y], 
 

where X,Y∈χ(B) and V∈χ(F). In view of (8), Lemma 3.1 and 
Lemma 3.2, the last equation can be written as follows 

 
 ∘ R(X,Y)V  = - ((Hf∘ σ(Y,V))/f)X+((Hf∘ σ(X,V))/f)Y 
                       - ((V(f))/f)[π(X)Y-π(Y)X] 
                      +[((X(b))/b)Y-((Y(b))/b)X]π(V) 
                      - [π(X)Y-π(Y)X]π(V), 
 

which shows us (v) and (vi). 
By virtue of (6), we can write 
 
 ∘ R(V,W)X  = R(V,W)X+g(X,∇VP)W-g(X,∇WP)V 
                     +π(X)[π(W)V-π(V)W], 
 

for any vector fields X on B and V,W on F, respectively. 
Similarly from (2), Lemma 3.1 and Lemma 3.2, we get 

 ∘ R(V,W)X  = - ((Hb∘ π(X,W))/b)V+((Hb∘ π(X,V))/b)W 
                     - ((X(b))/b)[π(V)W-π(W)V] 
                     +π(X)[((V(f))/f)W-((W(f))/f)V] 
                     - π(X)[π(V)W-π(W)V]. 
 

Thus, we obtain (vii) and (viii). 
In view of (6), we get 

 
 ∘ R(X,V)W  = R(X,V)W+g(W,∇XP)V-g(W,∇VP)X 
                     +π(W)[π(V)X-π(X)V], 
 

for any vector fields X∈χ(B) and V,W∈χ(F). By the use of 
Lemma 3.1 and Lemma 3.2 and from (2), we obtain (ix) and 
(x), respectively. 
From (6) again, we can write 

 
 ∘ R(U,V)W  = R(U,V)W+g(W,∇UP)V-g(W,∇VP)U 

                  +π(W)[π(V)U-π(U)V], 
 

for any vector fields U,V,W on F. Similarly from (2), Lemma 
3.1 and Lemma 3.2 we get (xi) and (xii). Therefore, we finish 
the proof of the lemma. 

 
    From Lemma 4.2, by a contraction of the curvature 

tensors we have the following corollary: 
 

Corollary 4.3: Let M=f B×b F be a doubly warped product and 
S and ∘ S denote the Ricci tensors of M with respect to the 
Levi-Civita connection and the semi-symmetric non-metric 
connection, respectively, where dimB=r and dimF=s. If 
X,Y∈χ(B), V,W∈χ(F), then: 

 
(i) ∘ S(X,Y)  = B∘ S(X,Y) -((r-1))/(b²f²))g(X,Y)(gradFf)(f) 
           - ∑[g(Y,B∇eiPB)g(X,ei) - ng(X,Y)g(B∇eiPB,ei)] 
           - (n-1)((PF(f))/f)+(n-1)π(X)π(Y), 
              - s((HB

b(X,Y))/b) - ((ΔF(f))/(fb²))g(X, Y) 
 
(ii) ∘ S(X,V) = -(r-1)((Hf∘ σ(X,V))/f -(s-1)((Hb∘ π(X,V))/b) 
                  +(n-1)((V(f))/f)π(X)- (n-1)((X(b))/b)π(V) 
                     +(n-1)π(V)π(X), 
 
 
(iii) ∘ S(V,X) = -(r-1)((Hf∘ σ(X,V))/f)-(s-1)((Hb∘ π(X,V))/b) 
                   - (n-1)((V(f))/f)π(X)+(n-1)((X(b))/b)π(V) 
                      +(n-1)π(V)π(X), 
 
 
 (iv) ∘ S(V,W) =F∘ S(V,W)- ((s-1))/(b²f²))g(V,W)(gradBb)(b) 
                - ∑[g(W,F∇eiPF)g(V,ei) - ng(V,W)g(F∇eiPF,ei)] 
                - (n-1)((PB(b))/b)g(V,W)+(n-1)π(V)π(W) 
                   - r((HF

f(V,W))/f) - ((ΔB(b))/(bf²))g(V, W). 
 
    From Corollary 4.3, by a contraction of the Ricci tensors 

we have: 
Corollary 4.4 : Let M=f B×b F be a doubly warped product 
and τ and ∘ τ denote the scalar curvatures of M with respect to 
the Levi-Civita connection and the semi-symmetric non-metric 
connection, respectively. Then, we have 
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 ∘ τ = (B∘ τ)/(f²))+((F∘ τ)/(b²)) - ((r(r-1))/(b²f²))(gradFf)(f) 
         - ((s(s-1))/(b²f²))(gradBb)(b) 
      - (n-1)∑g(B∇eiPB,ei) - (n-1)∑g(F∇eiPF,ei) 
      - s(n-1)((PB(b))/b) - r(n-1)((PF(f))/f) - (n-1)π(P) 
      - (r/f)[1+(1/(b²))]ΔF(f) - (s/b)[1+(1/(f²))]ΔB(b). 
 

V. EINSTEIN DOUBLY WARPED PRODUCT 
MANIFOLDS WITH THE  SEMI-SYMMETRIC NON-

METRIC CONNECTION 
 

    An n-dimensional Riemannian manifold (M,g), (n≥2), is 
said to be an Einstein manifold if its Ricci tensor S satisfies the 
condition S=(τ/n)g, where τ denotes the scalar curvature of M. 

    An n-dimensional Riemannian manifold (M,g), (n≥2), is 
defined to be an quasi-Einstein manifold [3] if the condition 

 
S(X,Y) = λg(X,Y)+βA(X)A(Y), 

 
is fulfilled on M, where λ and β are scalar functions on M with 
β≠0 and A is non-zero 1-form such that 

 
g(X,U) = A(X), 

 
for any vector field X,U∈χ(M) where U is a unic vector field. 
If β=0, then the manifold reduces to an Einstein manifold. 

    In this section we consider Einstein doubly warped 
products endowed with the semi-symmetric non-metric 
connection. 

    Let’s begin with the following theorem: 
 

Theorem 5.1: Let (M,g) be a doubly warped product f I×b F, 
where dimI=1 and dimF=n-1 (n≥3). Then (M,g) is an Einstein 
manifold endowed with a semi-symmetric non-metric 
connection, PF∈χ(F) is parallel on F with respect to the Levi-
Civita connection and f is constant on F, then b is constant on I 
and F is a quasi-Einstein manifold with respect to the Levi-
Civita connection. 

 
Proof : Let denote by gI the metric on I. By making use of 
Corollary 4.3, we can write 

 
 ∘ S((∂/(∂t)),(∂/(∂t))) = (n-1)f⁴- (n-1)((b′′)/b),                

(23) 
 
 
 ∘ S((∂/(∂t)),V) = -(n-2)((Hb∘ π((∂/(∂t)),V))/b) 
                            - (n-1)[((b′)/b)-f²]π(V),                        (24) 
 
 
 ∘ S(V,(∂/(∂t))) = -(n-2)((Hb∘ π((∂/(∂t)),V))/b) 
                         +(n-1)[((b′)/b)+f²]π(V)                            (25) 

and 
 
             ∘ S(V,W) = FS(V,W)+(n-1)π(V)π(W),             (26) 

 
for any vector fields ∂/∂t on I and V,W on F. 

Since M is an Einstein manifold with respect to the semi-
symmetric non-metric connection, we have 

 
 ∘ S((∂/(∂t)),(∂/(∂t))) = αg((∂/(∂t)),(∂/(∂t))),                  (27) 
 
 
 ∘ S((∂/(∂t)),V) = ∘ S(V,(∂/(∂t))) = αg(V,(∂/(∂t)))         (28) 
 
and 
 
 ∘ S(V,W) = αg(V,W).                                                  (29) 
 
Comparing the right hand sides of the equations (24) and 

(25) and by the use of (28), we get 
 
                         2(n-2)((b′)/b)π(V)=0, 
 

which gives us b′=0 (n≥3). So, b is constant on I. 
On the other hand  from (7), the equations (27) and (29) 

reduce to 
 
 ∘ S((∂/(∂t)),(∂/(∂t))) = αf²                                             (30) 
 

and 
 
 ∘ S(V,W) = αb²gF(V,W).                                              (31) 

 
Comparing the right hand sides of (23) and (30), we get 

 
                              α = (n-2)f².                                      (32) 
 

Similarly, comparing the right hand sides of (26) and (29) and 
by making use of (32), we obtain 

 
 FS(V,W) = (n-1)b²f²gF(V,W)-(n-1)π(V)π(W), 
 

which implies that F is a quasi-Einstein manifold with respect 
to the Levi-Civita connection. Hence, we complete the proof 
of the theorem. 

 
Theorem 5.2 : Let (M,g) be a doubly warped product f B×b I, 
where dimI=1 and dimB=n-1 (n≥3), PB∈χ(B) is parallel on B 
with respect to the Levi-Civita connection on B and b and f are 
both constant on B and I, respectively. Then 

(i) If (M,g) is an Einstein manifold with respect to the semi-
symmetric non-metric connection, then: 

 
Bτ = f²(n-1)[(n-1)π(P) - ng(PB,PB)]. 

 
(ii) If B is an Einstein manifold with respect to the the Levi-

Civita connection, then M is a quasi-Einstein manifold 
endowed with a semi-symmetric non-metric connection. 
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Proof : (i) Let (M,g) be an Einstein manifold with respect to 
the semi-symmetric non-metric connection. Then we can write 

 
                      ∘ S(X,Y) = (∘ τ/n)g(X,Y),                        (33) 
 

for any vector fields X,Y∈χ(B). By the use of the equation (7) 
and Corollary 4.4, the equation (33) reduces to 

 
∘ S(X,Y)=(1/n)[((Bτ)/(f²)) - (n-1)π(P)]g(X,Y). 

 
Contracting the above equation over X and Y, we get 

 
                ∘ τ = ( (n-1)/n)[((Bτ)/(f²))-(n-1)π(P)].               (34) 
 

On the other hand, by making use of Corollary 4.3, we can 
write 

 
             ∘ S(X,Y)  = B∘ S(X,Y)+(n-1)π(X)π(Y). 
 

Similarly, by a contraction from the last equation over X and 
Y, it can be easily seen that 

 
                      ∘ τ=((Bτ)/(f²))+(n-1)g(PB,PB).                  (35) 
 

Comparing the right hand sides of the equations (34) and (35), 
we get 

 
                   ( (n-1)/n)[((Bτ)/(f²))-(n-1)π(P)] 
                   = ((Bτ)/(f²))(n-1) g(PB,PB), 
 

which gives us 
 

Bτ = f²(n-1)[(n-1)π(P) - ng(PB,PB)]. 
 
(ii) Let B be an Einstein manifold with respect to the Levi-

Civita connection. Then, we can write 
 
            BS(X,Y)=αgB(X,Y),                                          (36) 
 

for any vector fields X,Y on B. In view of (7), the last equation 
turns into 

 
             BS(X,Y)=(α/(f²))g(X,Y).                                  (37) 
 

On the other hand, in view of Corollary 4.3, we can write 
 

∘ S(X,Y) = BS(X,Y)+(n-1)π(X)π(Y). 
 

By the use of (37) in the last equation, we obtain 
 

∘ S(X,Y) = (α/(f²))g(X,Y)+(n-1) π(X)π(Y), 
which means that f B×b I is a quasi-Einstein manifold with 
respect to the semi-symmetric non-metric connection. 
Therefore, we complete the proof of the theorem. 
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