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Abstract—A pre-contrast function is a direction dependent dis-
tance like function. Such a function naturally arises in the theory
of non-conservative statistical inference or in quantum information
geometry. On the other hand, a deformed exponential family is a
set of probability distributions which contains long tailed probability
distributions. Such probability distributions play important roles in
the study of complex systems or in anomalous statistical physics.
For a long tailed probability distribution, the standard expectation
does not exist in general. Hence the notion of escort expectation has
been introduced.

In this paper, we apply an escort expectations to pre-contrast
functions. That is, we construct a pre-contrast function on a deformed
exponential family by means of an escort expectation.

After giving preliminaries of geometry of contrast functions and
pre-contrast functions, we review foundations of anomalous statistics.
In particular, we study the notion of escort expectations. Then we
construct a pre-contrast function on a set of non-exponential type
probability density functions.

Keywords—information geometry; statistical manifold; contrast
function; pre-contrast function; deformed exponential family; escort
expectation

I. INTRODUCTION

Information geometry is a differential geometrical method
for statistical inferences. A set of parametric probability
density functions is called a statistical model, and it is re-
garded as a Riemannian manifold. However, the Levi-Civita
connection with respect to the above Riemannian structure
may not be useful for information gometry. A pair of dual
affine connections are introduced and estimating procedures
are clearly described using these dual affine connections [1],
[2]. A contrast function is an asymmetric squared distance
like function, and this asymmetry induces such a dualistic
geometric structure of affine connections [4].

In the quantum version of information geometry or in
advanced studies of statistical inferences, contrast functions
may not exist in general. Therefore the notion of pre-contrast
function was introduced to describe those geometric structures
[5].

On the other hand, studies of non-standard phenomenon are
important in recent statistical sciences. Anomalous statistics
is one of research area which studies such non-standard
phenomenon [14], [15]. In anomalous statistics, long tailed
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probability distributions and their related distributions are
important objects. A deformed exponential family is a sta-
tistical model which includes such non-standard probability
distributions [10], [11], [13].

In this paper, after reviewing geometry of contrast functions
and pre-contrast functions, we focus on geometry of anoma-
lous statistics. Then we construct a pre-contrast function for a
deformed exponential family. A deformed expectation, called
an escort expectation, plays important role in this framework.

II. STATISTICAL MANIFOLDS

We assume that all the objects are smooth throughout this
paper. We start reviewing the definition of statistical manifolds.

Let M be a manifold of dimension n. Let h be a semi-
Riemannian metric on M , and ∇ be an affine connection on
M . Denote by T the torsion tensor field of ∇.

Definition II.1 (statistical manifold). For given geometric
objects (M,∇, h), we assume that the following relation holds.

(∇Xh)(Y, Z)− (∇Y h)(X,Z) = −h(T (X,Y ), Z), (1)

where X,Y and Z are arbitrary vector fields on M . In this
case, we call the triplet (M,∇, h) a statistical manifold admit-
ting torsion. (We sometimes use an abbreviation “SMAT” for
simplicity.) If the torsion tensor field vanishes everywhere on
M , we say that the triplet (M,∇, h) is a statistical manifold.

As we will see latter in this paper, a statistical manifold
structure naturally arises in geometry of statistical model.
Historically, the notion of statistical manifold was originally
introduced by Lauritzen [7]. He called the triplet (M, g,C) a
statistical manifold, where (M, g) is a Riemannian manifold
and C is a totally symmetric (0, 3)-tensor field. Subsequently,
Kurose [6] redefined a statistical manifold from the viewpoint
of affine differential geometry.

For a statistical manifold admitting torsion (M,∇, h), we
define the dual connection ∇∗ of ∇ with respect to h by

Xh(Y, Z) = h(∇∗
XY, Z) + h(Y,∇XY ). (2)

Since h is nondegenerate, the dual connection ∇∗ can be
determined uniquely. The dual of the dual connection is the
original one, that is, (∇∗)∗ = ∇, since h is symmetric.
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Moreover, the dual connection ∇∗ is always torsion-free. In
fact, from the definition of the dual connection (2), we have

(∇Xh)(Y, Z)− (∇Y h)(X,Z)

= Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ)

−Y h(X,Z) + h(∇YX,Z) + h(Y,∇ZX)

= h(∇∗
XY, Z)− h(∇XY, Z)

−h(∇∗
YX,Z) + h(∇YX,Z)

= h(T ∗(X,Y ), Z)− h(T (X,Y ), Z),

where T ∗ is the torsion tensor filed of ∇∗. From Equation
(1), T ∗ vanishes everywhere on M , and this implies that ∇∗

is torsion-free.
We suppose that R and R∗ are the curvature tensors of ∇

and ∇∗, respectively. From Equation (2), we have

h(R(X,Y )Z, V ) + h(Z,R∗(X,Y )V ) = 0.

Therefore, ∇ is curvature-free if and only if ∇∗ is curvature-
free. We say that a statistical manifold admitting torsion
(M,∇, h) is a space of distant parallelism if ∇ is curvature-
free. That is, R = R∗ = 0, T ∗ = 0, but T ̸= 0.

Let us review examples of statistical manifolds [8].

Example II.1 (Riemannian manifold with the Levi-Civita
connection). Let (M, g) be a Riemannian manifold, and ∇(0)

be the Levi-Civita connection with respect to g. Then the
triplet (M, g,∇(0)) is a trivial statistical manifold since ∇(0) is
torsion-free and it is a metric connection. The dual connection
∇∗ of ∇(0) coincides with the original connection ∇(0), that
is, ∇∗ = ∇(0).

Example II.2 (statistical model). Let Ω be a total sample
space. Suppose that p(x; ξ) is a positive probability density
distribution on Ω with parameter ξ = (ξ1, . . . , ξn) ∈ Ξ ⊂ Rn,
where Ξ is an open subset in Rn. The set of all such probability
densities S is called a statistical model, that is,

S =

{
p(x; ξ)

∣∣∣∣∫
Ω

p(x; ξ)dx = 1, p(x; ξ) > 0, ξ ∈ Ξ

}
. (3)

We regard S is a manifold, and (ξi) is its local coordinate
system. (See [2] for further details.)

Let f(x) be a function on Ω. For p ∈ S, we denote by Ep[f ]
the expectation of f(x) with respect to p(x; ξ). By setting
∂i = ∂/∂ξi, lξ = log p(x; ξ), we define a Riemannian metric
gF = (gFij) on S, called a Fisher metric, by

gFij(ξ) = Ep[∂ilξ∂j lξ].

We remark that ∂ilξ is called the score function of p(x; ξ).
Intuitively, it is a tangent vector of statistical model S at point
p(x; ξ). (cf. [5], [10], [11])

For a fixed α ∈ R, we define a torsion-free affine connection
∇(α) on S, called the α-connection, by

Γ
(α)
ij,k(ξ) = Ep

[(
∂i∂j lξ +

1− α

2
∂ilξ∂j lξ

)
(∂klξ)

]
,

where {Γ(α)
ij,k(ξ)} are the Christoffel symbols of the first

kind for ∇(α). We can check that ∇(0) is the Levi-Civita
connection with respect to the Fisher metric gF and that

∇(α)gF is totally symmetric. Hence the triplet (S,∇(α), gF )
is a statistical manifold. We call (S,∇(α), gF ) an invariant
statistical manifold of S. It is known that (S,∇(α), gF ) is
independent of the choice of reference measure on Ω [1], [2].

Example II.3 (quantum state space with SLD Fisher metric).
Let Herm(n) be the set of all Hermitian matrices of degree
n. Suppose that S is the set of positive definite Hermitian
matrices whose traces equal one, that is,

S = {P ∈ Herm(n) | P > 0, trP = 1} .

Intuitively, S is regarded as the set of finite dimensional
quantum states. Let T0 be the set of traceless Hermitian
matrices T0:

T0 = {X ∈ Herm(n) | trX = 0} .

For an arbitrary point P in S, we identify T0 the tangent space
TPS. We denote by X the vector field corresponding to the
tangent vector X ∈ T0.

For an arbitrary point P in S and an arbitrary tangent vector
X in T0, we define a symmetric logarithmic derivative ωP (X )
in Herm(n) by

X =
1

2
(PωP (X ) + ωP (X )P ).

The symmetric logarithmic derivative ωP (X ) is an analogy of
a score function ∂i log p(x; ξ) in classical statistical model.

A Riemannian metric g, called a SLD Fisher metric, is
defined by

gP (X ,Y) =
1

2
tr (P (ωP (X )ωP (Y) + ωP (Y)ωP (X ))) .

An affine connection ∇ is defined by

(∇XY)P = hP (X ,Y)P − 1

2
(XωP (Y) + ωP (Y)X).

The connection ∇ is curvature-free but it is not torsion-
free in general. This implies that the triplet (S,∇, g) is a
statistical manifold admitting torsion, and it is a space of
distant parallelism.

III. CONTRAST FUNCTIONS AND PRE-CONTRAST
FUNCTIONS

A contrast function is an asymmetric squared distance like
function, and a pre-contrast function is a direction depend
distance like function. In this section, we review geometry
of contrast and pre-contrast functions.

Let D be a function on M ×M . For arbitrary points p and
q in M , and arbitrary vector fields X1, . . . Xi and Y1, . . . Yj
on M , we define a function D[X1 · · ·Xi|Y1 · · ·Yj ] on M by
the following formula.

D[X1 · · ·Xi|Y1 · · ·Yj ](r)
:= (X1)p · · · (Xi)p(Y1)q · · · (Yj)qD(p, q)|p=r

q=r
.

That is, (X1)p · · · (Xi)p differentiate the first argument, and
(Y1)q · · · (Yj) differentiate the second argument on M ×M ,
then consider the restriction onto the diagonal {(r, r)|r ∈M}.
We say that D is a contrast function on M if it satisfies the
following conditions.
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1) For an arbitrary point p ∈M , D(p, p) = 0.
2) D[X|] = D[|X] = 0.
3) h(X,Y ) := −D[X|Y ] is a semi-Riemannian metric on

M .
These conditions are sometimes called the Eguchi relation [4].
We say that g is the induced Riemannian metric on M from
a contrast function D.

Proposition III.1. For a contrast function D on M , we define
∇ and ∇∗ by

h(∇XY, Z) := −D[XY |Z],
h(Y,∇∗

XZ) := −D[Y |XZ].

Then ∇ and ∇∗ are torsion-free affine connections on M
mutually dual with respect to the induced metric h. Moreover,
∇h and ∇h are totally symmetric. Therefore, the triplets
(M,∇, h) and (M,∇∗, h) are statistical manifolds.

Next, let us define a pre-contrast function. Let ρ be a
function on TM×M . A similar argument of contrast function,
we define a function ρ[X1 · · ·XiZ|Y1 · · ·Yj ] on M by the
following formula.

ρ[X1 · · ·XiZ|Y1 · · ·Yj ](r)
:= (X1)p · · · (Xi)p(Y1)q · · · (Yj)qρ(Zp, q)|p=r

q=r
,

where p and q are arbitrary points in M , and X1, . . . Xi,
Y1, . . . Yj and Z are arbitrary vector fields on M .

We say that ρ is a pre-contrast function on M if it satisfies
the following conditions.

1) For arbitrary functions f1, f2 ∈ C∞(M),
ρ(f1X1 + f2X2, q) = f1ρ(X1, q) + f2ρ(X2, q).

2) ρ[X|] = 0.
3) h(X,Y ) := −ρ[X|Y ] is a semi-Riemannian metric on

M .
If D(p, q) is a contrast function on M , XpD(p, q) is a trivial
pre-contrast function.

Proposition III.2. For a pre-contrast function ρ on M , we
can define affine connections ∇ and ∇∗ by

h(∇XY, Z) := −ρ[XY |Z],
h(Y,∇∗

XZ) := −ρ[Y |XZ].

Then ∇ and ∇∗ are mutually dual with respect to h. Moreover,
the dual connection ∇∗ is torsion-free. Therefore, the triplet
(M,∇, h) is a statistical manifold admitting torsion.

Example III.1 (Euclidean distance). Let Rn be the standard
Euclidean space. Suppose that gE is the standard inner product
on Rn, and that ∇E is the standard flat affine connection on
Rn. Then the triplet (Rn,∇E , gE) is a statistical manifold.
In this case, a half of the Euclidean distance

D(x, y) =
1

2
||x− y||2

is a contrast function on Rn which induces the statistical
manifold (Rn,∇E , gE). Its directional differential

ρ(∂/∂xi, y) = (∂/∂xi)xD(x, y) = xi − yi

is a pre-contrast function on M .

Example III.2 (Kullback-Leibler divergence). Let S be a
statistical model on Ω defined by (3). For two probability
densities p1 = p(x; ξ1) and p2 = p(x; ξ2) in S, the Kullback-
Leibler divergence (or the relative entropy) on S is defined
by

DKL(p1, p2) :=

∫
Ω

p(x; ξ2) log
p(x; ξ2)

p(x; ξ1)
dx.

Then DKL is a contrast function on S which induces dual
statistical manifolds (S,∇(1), gF ) and (S,∇(−1), gF ). Its di-
rectional differential

DKL

((
∂/∂ξi

)
p1
, p2

)
(4)

= −
∫
Ω

(
∂

∂ξi
log p(x; ξ1)

)
p(x; ξ2)dx

= −Eξ2

[
∂

∂ξi
log p(x; ξ1)

]
(5)

is a pre-contrast function on S.

We remark that this pre-contrast function ρKL is important
in the theory of statistical inference. Suppose that X1, . . . , XN

are random variables independently identically distributed to
p(x; ξ). Then the equation

1

N

N∑
a=1

∂

∂ξi
log p(Xa; ξ) = 0 (6)

is called an estimating equation. We also remark that a non-
trivial pre-contrast function and its use for statistical inference
have been studied in [5].

IV. PRE-CONTRAST FUNCTIONS AND ESTIMATING
FUNCTIONS FOR DEFORMED EXPONENTIAL FAMILIES

In this section, we construct a pre-contrast function on
a statistical model under deformed expectations of random
variables.

Let χ be a strictly increasing function from R++ to R++.
We consider the following non-linear differential equation.

d

dt
expχ t := χ(expχ t).

The eigenfunction expχ t is called a χ-exponential function (or
a deformed exponential function) [13], the function χ is called
the deformation function of χ-exponential. If χ is the identity
function, the standard exponential function is recovered.

The inverse of a χ-exponential function is called a χ-
logarithm function (or a deformed logarithm function), and
it is defined by

lnχ s :=

∫ s

1

1

χ(t)
dt.

If χ is the identity function, obviously the standard logarithm
function is recovered.

We define a statistical model Sχ by the following formula.

Sχ :=

{
p(x; θ)

∣∣∣∣∣ p(x; θ) = expχ

[
n∑

i=1

θiFi(x)− ψ(θ)

]}
,

where F1(x), . . . , Fn(x) are functions on the sample space Ω,
θ = t(θ1, . . . , θn) ∈ Θ ⊂ Rn is a parameter, and ψ(θ) is
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the normalization of probability density function defined by∫
Ω
p(x; θ)dx = 1.

In anomalous statistics, the standard expectation may not
work effectively [3], [13]. We consider deformations of ex-
pectations.

Let Sχ = {p(x; θ)} be a χ-exponential family. We define
the escort distribution Pχ(x; θ) of p(x; θ) ∈ Sχ by

Pχ(x; θ) := χ(p(x; θ)),

and the escort expectation Eχ,p[f(x)] by

Eχ,p[f(x)] =

∫
Ω

f(x)Pχ(x; θ)dx

=

∫
Ω

f(x)χ(p(x; θ))dx.

We remark that the escort distribution Pχ(x; θ) is not a
probability distribution, but a positive valued distribution in
general. However, it is useful in the study of anomalous
statistics [9], [12].

Definition IV.1 (estimating function). Suppose that S =
{p(x; ξ) | ξ ∈ Ξ} is a statistical model, and that u(x; ξ) is
a Rn-valued function on Ω × Ξ. We say that u(x; ξ) is an
(unbiased) estimating function on S if, for arbitrary point
p ∈ S, the following conditions are satisfied.

1) Eχ,p[u(x; ξ)] = 0,
2) Eχ,p[||u(x; ξ)||2] <∞,
3) det (Eχ,p[∂/∂ξu(x; ξ)]) ̸= 0.

The first condition implies that the estimating function
u(x; ξ) is unbiased with respect to the escort expectation. The
third condition is the distinguishability of estimating functions.
In other ward, functions{

∂u

∂ξ1
(x; ξ), . . . ,

∂u

∂ξn
(x; ξ)

}
should be linearly independent as functions on Ω.

Theorem IV.1. Let Sχ = {p(x; θ)} be a χ-exponential family,
and u(x; θ) be an unbiased estimating function. Then, for two
points p = p(x; θ1) and q = p(x; θ2) in Sχ,

ρu((∂/∂θ
i
1)p, q) := −

∫
Ω

ui(x; θ1)χ{p(x; θ2)}dx (7)

= −Eχ,q

[
ui(x; θ1)

]
is a pre-contrast function on Sχ.

Proof: 1). From fundamental properties of integration, we
obtain ρu(f1X1 + f2X2, q) = f1ρu(X1, q) + f2ρu(X2, q).

2). Since u(x; θ) is an unbiased estimating function, we
have ρ[X|] = 0.

3) By differentiating (7), since det (Eχ,p[∂/∂ξu(x; ξ)]) ̸=
0. we obtain that h(X,Y ) = −ρ[X|Y ] is a semi-Riemannian
metric on Sχ.

At the end of this paper, we give an example of contrast
function on a deformed exponential family.

Example IV.1 (χ-relative entropy). Let Sχ be a deformed
exponential family. For two probability densities p1 = p(x; θ1)

and p2 = p(x; θ2) in Sχ, we define the χ-relative entropy by

Dχ(p1, p2) :=

∫
Ω

χ(p2)[lnχ p2 − lnχ p1]dx

= Eχ,p2 [lnχ p(x; θ2)− lnχ p(x; θ1)].

If the deformation function χ is identity Dχ is nothing but a
Kullback-Leibler divergence DKL. If χ is a power function
χ(t) = tβ , Dχ is as the α-divergence in information geometry
[1], [2].

By differentiating the χ-relative entropy, we have

ρχ
((
∂/∂θi

)
p1
, p2

)
= −Eχ,p2

[
∂

∂θi
lnχ p(x; ξ1)

]
. (8)

Then ρχ is a pre-contrast function on Sχ.

We remark again that an escort expectation plays an impor-
tant role on a deformed exponential family. If we consider the
standard expectation in Equation (8), (∂/∂θi) lnχ p(x; ξ1) is
biased, so the function ρχ may not be a pre-contrast function.
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