
 

 

  
Abstract—We find relations between Levi-Civita connection and 

semi-symmetric metric connection of a doubly warped product 
manifold M=f B×b F. We also obtain some results of Einstein doubly 
warped product manifolds with respect to a semi-symmetric metric 
connection. 
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I. INTRODUCTION 
HE idea of a semi-symmetric linear connection on a 
Riemannian manifold was introduced by A. Friedmann 

and J. A. Schouten in [1]. Later, H. A. Hayden [4] gave the 
definition of a semi-symmetric metric connection. In 1970, K. 
Yano [15] considered semi-symmetric metric connection and 
studied some of its properties. He proved that a Riemannian 
manifold admitting the semi-symmetric metric connection has 
vanishing curvature tensor if and only if it is conformally flat. 
Then, the generalization of this result for vanishing Ricci 
tensor of the semi-symmetric metric connection was given by 
T. Imai ( [5], [6] ).  

    On the other hand, doubly warped product submanifolds 
are studied by several authors in ( [2], [8] and [13]). 

    Motivated by the above studies, we study doubly warped 
product manifolds with a semi-symmetric metric connection 
and find relations between the Levi-Civita connection and the 
semi-symmetric metric connection.  

    Furthermore, in [3], A. Gebarowski studied Einstein 
warped product manifolds. As an application, in this study we 
consider Einstein doubly warped product manifolds endowed 
with a semi-symmetric metric connection. 

    There are also various studies on doubly warped product 
manifolds as [2], [10], [11]. We have examined these studies 
and have comparisons of the features of doubly warped 
product manifolds endowed with Levi-Civita connection and 
semi-symmetric metric connection.  

II. SEMI-SYMMETRIC METRIC CONNECTION 
 

Let M be an n-dimensional Riemannian manifold with a 
Riemannian metric g. A linear connection ∇ on a Riemannian 
manifold M is called a semi-symmetric connection if the 
torsion tensor T of the connection ∘ ∇ 

 
 

 

         T(X,Y) = ∘ ∇XY -∘ ∇YX - [X,Y]                            (1)            
satisfies 

 
                                   T(X,Y) = π(Y)X - π(X)Y,                         (2)       

where π is a 1-form associated with the vector field P on M defined 
by 
                                            π(X) = g(X,P).                                      (3) 

  
   ∘ ∇ is called a semi-symmetric metric connection if it 

satisfies 
 
 ∘ ∇g=0. 
 
If ∇ is the Levi-Civita connection of a Riemannian 

manifold M, the semi-symmetric metric connection ∘ ∇ is 
given by 

 
                     ∘ ∇XY = ∇XY+ π(Y)X - g(X,Y)P,           (4) 

(see [15] ). 
    Let R and ∘ R be curvature tensors of ∇ and ∘ ∇ of a 

Riemannian manifold M, respectively. Then R and ∘ R are 
related by 

 
 ∘ R(X,Y)Z  = R(X,Y)Z+g(Z,∇XP)Y- g(Z,∇YP)X 

                 +g(X,Z)∇YP - g(Y,Z)∇XP 
                 +π(P)[g(X,Z)Y- g(Y,Z)X]                             (5) 
                 +[g(Y,Z)π(X) - g(X,Z)π(Y)]P 
                 +π(Z)[π(Y)X - π(X)Y], 
 

for any vector fields X,Y,Z on M [15]. For a general survey of 
different kinds of connections see also [12]. 
 

III. DOUBLY WARPED PRODUCT MANIFOLDS 
 
    Let (B,gB) and (F,gF) be two Riemannian manifolds and 

b:B→(0,∞) and f:F→(0,∞) smooth functions. Consider the 
product manifold B×F with its projections π:B×F→B and 
σ:B×F→F. The doubly warped product f B×b F is the manifold 
B×F with the Riemannian structure such that 

 
g = (f∘ σ)²π∗ (gB)⊕(b∘ π)²σ∗ (gF), 

 
which implies that 
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                               g = f²gB +b² gF                                    (6) 
 

The functions b:B→(0,∞) and f:F→(0,∞) are called warping 
functions of the doubly warped product [7]. 

    We need the following three lemmas from [7], for the 
later use : 

 
Lemma 3.1: Let us consider M=f B×b F and denote by ∇, 

B∇ and F∇ the Riemannian connections on M, B and F, 
respectively. If  X,Y are vector fields on B and V,W on F, 
then: 

 
 (i)∇XY = B∇XY - (1/(fb²))g(X,Y)gradF f, 
 
 
 (ii)∇XV = ∇VX = ((V(f))/f)X+((X(b))/b)V, 
 
 
 (iii)∇VW = F∇XY - (1/(bf²))g(V,W)gradBb. 
 

Lemma 3.2: Let M=f B×b F be a doubly warped product, with 
Riemannian curvature MR. Given fields X,Y,Z on B and 
U,V,W on F, then: 

 
 (i) MR(X,Y)Z  = BR(X,Y)Z 
             +(1/(fb³))[g(Y,Z)X(b) - g(X,Z)Y(b)] gradF f 
              - (1/(b²))[gB(Y,Z)X - gB(X,Z)Y]( gradF f)(f), 
 
 
 (ii) MR(X,V)Y = ((HB

b(X,Y))/b)V- ((Hf∘ σ(Y,V))/f)X 
           +((gB(X,Y))/b)[((fF)/b)∇V gradFf-((V(f))/f)gradBb], 
 
 
 (iii) MR (X,Y)V = ((Hf∘ σ(Y,V))/f)X+((Hf∘ σ(X,V))/f)Y, 
 
 
 (iv) MR(V,W)X =-((Hb∘ π(X,W))/b)V+((Hb∘ π(X,V))/b)W, 
 
 
 (v) MR(X,V)W  = -((HF

f(V,W))/f)X+((Hb∘ π(X,W))/b)V 
         - ((gF(V,W))/f)[((bB)/f)∇X gradBb-((X(b))/b)grad f] 
 
 
 (vi) MR(V,W)U  = FR(V,W)U 
          +(1/(bf³))[g(V,W)U(f)-g(U,W)V(f)]gradBb 
          -(1/(f²))[gF(V,W)U-gF(U,W)V](grad Bb)(b). 
 

Lemma 3.3: Let M=f B×b F be a doubly warped product with 
Ricci tensor MS. Given fields X,Y on B and V,W on F, then: 

 
 (i) MS(X,Y)  = BS(X,Y) 
              -(1/(b²))[(r-1)(grad Ff)(f)+fΔF(f)]gB(X,Y) 
           -(s/b)HB

b(X,Y), 

 
where r = dimB and s = dimF, 
 
 (ii) MS(X,V) = (n-2)((V(f)X(b))/(fb)), 
 
 
 (iii) MS(V,W)  = FS(V,W) 
              -(1/(f²))[(s-1)(gradBb)(b)+bΔB(b)]gF(V,W) 
           -(r/f)HF

f(V,W). 
 
 
    Moreover, the scalar curvature Mτ of M satisfies the 

condition 
 
                  Mτ = (Bτ)/(b²)+(Bτ)/(f²) 
                          - 2s((ΔB(b))/(bf²))-2r((ΔF(f))/(fb²))  
                       - s(s-1)(((gradBb)(b))/(f²b²)) 
                          - r(r-1)(((gradFf)(f))/(f²b²)),                      (7) 
 

where Bτ and Fτ are scalar curvatures of B and F, respectively. 
 

IV. DOUBLY WARPED PRODUCT MANIFOLDS WITH  
A SEMI-SYMMETRIC METRIC CONNECTION 

 
    In this section, we consider doubly warped product 

manifolds with respect to the semi-symmetric metric 
connection and find new expressions concerning with 
curvature tensor, Ricci tensor and the scalar curvature 
admitting this connection where the associated vector field 
P∈χ(M) that 

 
                                  P = PB+PF ,                                    (8)  
 

where PB (resp. PF) is the component of  P on B (resp. on F). 
    Now, let begin with the following lemma: 
 

Lemma 4.1: Let us consider M=f B×b F and denote by ∇ the 
semi-symmetric metric connection on M, M∇ and F∇ be 
connections on B and F, respectively. If X,Y∈χ(B), 
V,W∈χ(F), then: 

 
 (i) ∘ ∇XY = B∘ ∇XY- (1/(fb²))g(X,Y)(gradFf)(f) 
                    - g(X,Y)PF, 
 
 
 (ii) ∘ ∇XV = ((V(f))/f)X+((X(b))/b)V+π(V)X, 
 
 
 (iii) ∘ ∇VX = ((V(f))/f)X+((X(b))/b)V+π(X)V, 
 
 
 (iv) ∘ ∇VW = F∘ ∇XY-(1/(bf²))g(V,W)(grad Bb)(b)  
                        -g(V,W)PB. 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 53



 

 

Proof : In view of the Koszul formula from [7] we can write 
 
 2g(∇XY,Z)  = Xg(Y,Z)+Yg(X,Z) - Zg(X,Y)                (9) 
                      - g(X,[Y,Z]) - g(Y,[X,Z])+g(Z,[X,Y]), 
 

for all vector fields X,Y,Z on M, where ∇ is the Levi-Civita 
connection of M. By the use of (4) for the semi-symmetric 
metric connection, the equation (9) turns into 

 
 2g(∘ ∇XY,V)  = Xg(Y,V)+Yg(X,V) -Vg(X,Y)               (10) 

                      - g(X,[Y,V]) - g(Y,[X,V])+g(V,[X,Y])  
                     +2π(Y)g(X,V) - 2π(V)g(X,Y), 
 

for any vector fields X,Y∈χ(B) and V∈χ(F). 
Since X,Y and [X,Y] are lifts from B and V is vertical, we 

know from [7] we can write 
 
                              g(Y,V)=g(X,V)=0                           (11) 
 
and 
 
                               [X,V]=[Y,V]=0.                             (12) 
 
Hence, the equation (10) reduces to 
 
             2g(∘ ∇X Y,V) =-Vg(X,Y)-2π(V)g(X,Y).        (13) 
 

By the definition of the doubly warped product metric from 
(6), we have 

 
g(X,Y) = (f∘ σ)²gB(X,Y). 

 
Then by making use of the function f instead of (f∘ σ), we get 

 
g(X,Y) = f²(gB(X,Y)∘ π). 

 
Hence, we can write 

 
 Vg(X,Y)  = V[f²(gB(X,Y)∘ π)] 
                 = 2fV(f)(gB(X,Y)∘ π)+f²V(gB(X,Y)∘ π). 
 

Since the term (gB(X,Y)∘ π) is constant on fibers, by the use 
of (6), the above equation turns into 

 
                     Vg(X,Y) = 2((V(f))/f)g(X,Y).                  (14) 
 

By making use of (14) in (13), we obtain 
 
               g(∘ ∇XY,V) = -[((V(f))/f)+π(V)]g(X,Y).      (15) 
 

Since V(f) = (1/(b²))g(gradFf,V) on F, by making use of (6) 
and (8) in (15) we get (i). 

By the use of the definition of the covariant derivative with 
respect to the semi-symmetric metric connection, we can write 

g(∘ ∇XV,Y) = Xg(Y,V) - g(V, ∘ ∇XY), 
 

for all vector fields X,Y on B and V on F. By making use of 
(11) and (15), the above equation turns into 

 
                  g(∘ ∇XV,Y) = [((V(f))/f)+π(V)]g(X,Y).     (16) 
 

On the other hand, from Koszul formula and the definition of 
and the semi-symmetric metric connection we can write 

 
2g(∘ ∇XV,W)  = Xg(V,W)+Vg(X,W) - Wg(X,V) 
                       - g(X,[V,W]) - g(V,[X,W])+g(W,[X,V]) 
                       +2π(V)g(X,W) - 2π(W)g(X,V), 
 

for any vector fields X on B and V,W on F. In view of (11) 
and (12), the last equation reduces to 

 
                    2g(∘ ∇XV,W) = Xg(V,W) - g(X,[V,W]). 
 

Since X is horizontal and [V,W] is vertical, g(X,[V,W])=0, 
thus we obtain 

 
                           2g(∘ ∇XV,W) = Xg(V,W).                (17) 
 

By the use of the equation (6), we have 
 
                            g(V,W) = (b∘ π)²gF(V,W). 
 

Then by making use of  the function b instead of  (b∘ π), we 
get 

 
                       g(V,W) = b²(gF(V,W)∘ σ). 
 

Hence, we can write 
 
       Xg(V,W)  = X[b²(gF(V,W)∘ σ)] 
                        = 2bX(b)(gF(V,W)∘ σ)+b²X(gF(V,W)∘ σ). 
 

Since the term (gF(V,W)∘ σ) is constant on leaves, by the use 
of (6), the above equation turns into 

 
                Xg(V,W) = 2((X(b))/b)g(V,W).                   (18) 
 

By making use of (18) in (17), we obtain 
 
                  g(∘ ∇XV,W) = ((X(b))/b)g(V,W).                 (19) 

Then in view of the equations (16) and (19), we get (ii). 
Now, by the use of (1) we can write 
 
                    ∘ ∇VX =∘ ∇XV - [X,V] - T(X,V). 
 

Using (2) and (12), the above equation reduces to 
 
                ∘ ∇VX =∘ ∇VV- π(V)X+π(X)V.                  (20) 
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By virtue of the equation (ii), we get 

 
        ∘ ∇VX = ((X(b))/b)V+((V(f))/f)X+π(X)V.          (21)   
 

Hence we obtain (iii). 
On the other hand, by the definition of the covariant 

derivative with respect to the semi-symmetric metric 
connection, we can write 

 
              Vg(X,W) = g(∘ ∇VX,W)+g(∘ ∇VW,X), 
 

for any vector fields X on B and V,W on F. From (12), the 
above equation reduces to 

 
                 g(∘ ∇VW,X) = -g(∘ ∇VX,W).                     (22) 
 

By the use of (22), we get 
 
                  g(∘ ∇VW,X) = -[((X(b))/b)+π(X)]g(V,W), 
 

which implies that 
 
 ∘ ∇VW = F∘ ∇VW- (1/(bf²))g(V,W)gradBb - g(V,W)PB, 
 

where X(b) = (1/(f²))g(gradBb,X) for any vector field X on B. 
Thus, the proof of the lemma is completed. 

 
Lemma 4.2 : Let M=f  B×b  F be a doubly warped product and 
R and ∘ R denote the Riemannian curvature tensors of M with 
respect to the Levi-Civita connection and the semi-symmetric 
metric connection, respectively . If  X,Y,Z ∈χ(B)  and 
U,V,W∈χ(F), then: 

 
 (i) B∘ R(X,Y)Z  = BR(X,Y)Z 
                           - (1/(b²))[gB(Y,Z)X-gB(X,Z)Y](gradFf)(f) 
                           +g(Z,B∇XPB)Y-g(Z,B∇YPB)X 
                           +2((PF(f))/f)[g(X,Z)Y-g(Y,Z)X] 
                           +g(X,Z)B∇YPB-g(Y,Z)B∇XPB 

                           +π(P)[g(X,Z)Y-g(Y,Z)X] 
                           +[g(Y,Z)π(X)-g(X,Z)π(Y)]PB 

                           +π(Z)[π(Y)X-π(X)Y], 
 
 
 (ii) F∘ R(X,Y)Z  = (1/(fb²))[g(Y,Z)((X(b))/b) 
                               - g(X,Z)((Y(b))/b) 
                           +g(Y,Z)π(X)-g(X,Z)π(Y)]gradFf 
                           - [g(Y,Z)((X(b))/b)-g(X,Z)((Y(b))/b) 
                           - g(Y,Z)π(X)+g(X,Z)π(Y)]PF, 
 
 
 (iii) B∘ R(V,X)Y = ((Hf∘ σ(Y,V))/f)X 
                    +((V(f))/(fb))gB(X,Y)gradBb 
                 +((V(f))/f)[π(Y)X-g(X,Y)PB] 

                 - ((Y(b))/b)π(V)X+(1/(bf²))g(X,Y)PB 

                 +g(X,Y)π(V)PB-π(Y)π(V)X, 
 
 
 (iv) F∘ R(V,X)Y  = ((HB

b(X,Y))/b)V 
                               - (f/(b²))gB(X,Y)F∇VgradFf  
                               - g(Y,B∇XPB)V 
                               - [((PF(f))/f)+((PB))/b)]g(X,Y)V 
                            - g(X,Y)F∇VPF-g(X,Y)π(P)V 
                            +g(X,Y)π(V)PF+π(X)π(Y)V, 
 
 
 (v) B∘ R(X,Y)V  = -((Hf∘ σ(Y,V))/f)X+((Hf∘ σ(X,V))/f)Y 
                            - ((V(f))/f)[π(X)Y-π(Y)X] 
                            +[((X(b))/b)Y-((Y(b))/b)X]π(V) 
                            - [π(X)Y-π(Y)X]π(V), 
 
 
 (vi) F∘ R(X,Y)V=0, 
 
 
 (vii) B∘ R(V,W)X=0, 
 
 
 (viii) F∘ R(V,W)X=((Hb∘ π(X,W))/b)V+((Hb∘ π(X,V))/b)W 
                              - ((X(b))/b)[π(V)W-π(W)V] 
                             +π(X)[((V(f))/f)W-((W(f))/f)V] 
                              - π(X)[π(V)W-π(W)V], 
 
 
 (ix) B∘ R(X,V)W  = - ((HF

f(V,W))/f)X 
                                 - (b/(f²))gF(V,W)B∇XgradBb 
                              - [((PB (b))/b)+((PF(f))/f)]g(V,W)X 
                              - g(W,F∇VPF)X-g(V,W)B∇XPB 

                              - g(V,W)π(P)X+g(V,W)π(X)PB                        

                                                 +π(V)π(W)X, 
 
 
 (x) F∘ R(X,V)W  = ((Hb∘ π(X,W))/b)V 
                               +((X(b))/(bf))gF(V,W)gradFf 
                            - ((W(f))/f)π(X)V+((X(b))/b)π(W)V 
                            +(1/(fb²))g(V,W)π(X)gradFf 
                               - ((X(b))/b)g(V,W)PF 

                            +g(V,W)π(X)PF - π(X)π(W)V, 
 
 
 (xi) B∘ R(U,V)W  = (1/(bf²))[g(V,W)((U(f))/f) 
                                 - g(U,W)((V(f))/f) 
                              +g(V,W)π(U)-g(U,W)π(V)]gradBb 
                              - [g(V,W)((U(f))/f)-g(U,W)((V(f))/f) 
                              -g(V,W)π(U)-g(U,W)π(V)]PB, 
 
 
 (xii) F∘ R(U,V)W  = FR(U,V)W 
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   -(1/(f²))[gF(V,W)U-gF(U,W)V](gradBb)(b) 
   +g(W,F∇UPF)V-g(W,F∇VPF)U 
   +2((PB(b))/b)[g(U,W)V-g(V,W)U] 
   +g(U,W)F∇VPF-g(V,W)F∇UPF 

   +π(P)[g(U,W)V-g(V,W)U] 
   +[g(V,W)π(U)-g(U,W)π(V)]PF 

   +[π(V)U-π(U)V]π(W). 
 
                    

Proof : Assume that M=f B×b F is a doubly warped product 
and R and ∘ R denote the curvature tensors of the Levi-Civita 
connection and the semi-symmetric metric connection, 
respectively. 
By the use of equation (5), we have 

 
 ∘ R(X,Y)Z  = R(X,Y)Z+g(Z,∇XP)Y-g(Z,∇YP)X 
                    - g(X,Z)∇YP+g(Y,Z)∇XP  
                   +π(P)[g(X,Z)Y-g(Y,Z)X] 
                   +[g(Y,Z)π(X)-g(X,Z)π(Y)]P 
                   +π(Z)[π(Y)X-π(X)Y],                                (23) 
 

for any vector fields X,Y,Z on B. 
In view of the equation (8), Lemma 3.1 and Lemma 3.2, we 
get 

 
 ∘ R(X,Y)Z  = BR(X,Y)Z 

                 +(1/(fb²))[g(Y,Z)((X(b))/b)-g(X,Z)((Y(b))/b) 
                 +g(Y,Z)π(X)-g(X,Z)π(Y)]gradFf 
                 - (1/(b²))[gB(Y,Z)X-gB(X,Z)Y](gradFf)(f) 
                +g(Z,B∇XPB)Y-g(Z,B∇YP)X 
                +2((PF(f))/f)[g(X,Z)Y-g(Y,Z)X] 
                +g(X,Z)B∇YPB-g(Y,Z)B∇XPB 

                +π(P)[g(X,Z)Y-g(Y,Z)X] 
                +[g(Y,Z)π(X)-g(X,Z)π(Y)]PB 

                +π(Z)[π(Y)X-π(X)Y] 
                - [g(Y,Z)((X(b))/b)-g(X,Z)((Y(b))/b) 
                - g(Y,Z)π(X)+g(X,Z)π(Y)]PF, 
 

which gives us (i) and (ii). 
In view of the equation (5), we can write 

 
     ∘ R(V,X)Y  = R(V,X)Y+g(Y,∇VP)X-g(Y,∇XP)V  

                    - g(X,Y)[∇VP+π(P)V-π(V)P] 
                   +π(Y)[π(X)V-π(V)X],                               (24) 
 

for all vector fields X,Y∈χ(B) and V∈χ(F), respectively. By 
making use of the equation (8), Lemma 3.1 and Lemma 3.2 
again we obtain (iii) and (iv). 

Putting Z = V in equation (5), we get 
 
 ∘ R(X,Y)V  = R(X,Y)V+g(V,∇XP)Y-g(V,∇YP)X 
                    +π(V)[π(Y)X-π(X)Y], 
 

where X,Y∈χ(B) and V∈χ(F). By virtue of the equation (8), 

Lemma 3.1 and Lemma 3.2, the above equation can be written 
as follows 

 
 ∘ R(X,Y)V  = - ((Hf∘ σ(Y,V))/f)X+((Hf∘ σ(X,V))/f)Y 
                       - ((V(f))/f)[π(X)Y-π(Y)X] 
                      +[((X(b))/b)Y-((Y(b))/b)X]π(V) 
                      - [π(X)Y-π(Y)X]π(V), 
 

which shows us (v) and (vi). 
By making use of (8) and Lemma 3.2, we can write 
 
 ∘ R(V,W)X  = R(V,W)X+g(X,∇VP)W-g(X,∇WP)V 
                     +π(X)[π(W)V-π(V)W], 
 

for any vector fields X on B and V,W on F, respectively. 
Similarly using (8), Lemma 3.1 and Lemma 3.2, we get 

 
 ∘ R(V,W)X  = - ((Hb∘ π(X,W))/b)V+((Hb∘ π(X,V))/b)W 
                     - ((X(b))/b)[π(V)W-π(W)V] 
                     +π(X)[((V(f))/f)W-((W(f))/f)V] 
                     - π(X)[π(V)W-π(W)V]. 
 

Hence we obtain (vii) and (viii). 
From the equation (5), we have 

 
 ∘ R(X,V)W  = R(X,V)W+g(W,∇XP)V-g(W,∇VP)X 
                     - g(V,W)[∇XP+π(P)X-π(X)P] 
                     +π(W)[π(V)X-π(X)V], 
 

for all vector fields X∈χ(B) and V,W∈χ(F). In view of 
Lemma 3.1 and Lemma 3.2 and by the use of (8), we obtain 
(ix) and (x), respectively. 
In view of the equation (5) again, we have 

 
 ∘ R(U,V)W  = R(U,V)W+g(W,∇UP)V-g(W,∇VP)U 

                  +g(U,W)∇VP-g(V,W)∇UP 
                  +π(P)[g(U,W)V-g(V,W)U]  
                  +[g(U,W)π(U)-g(V,W)π(V)]P 
                  +π(W)[π(V)U-π(U)V], 
 

for any vector fields U,V,W on F. Similarly by making use of 
(8), Lemma 3.1 and Lemma 3.2 we get (xi) and (xii). Hence, 
the proof of the lemma is completed. 

 
    As a consequence of Lemma 4.2, by a contraction of the 

curvature tensors we obtain the Ricci tensors of doubly warped 
product manifold with respect to the semi-symmetric metric 
connection as follows: 

 
Corollary 4.3: Let M=f B×b F be a doubly warped product and 
S and ∘ S denote the Ricci tensors of M with respect to the 
Levi-Civita connection and the semi-symmetric metric 
connection, respectively, where dimB=r and dimF=s. If 
X,Y∈χ(B), V,W∈χ(F), then: 
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(i) ∘ S(X,Y)  = B∘ S(X,Y) -((r-1))/(b²f²))g(X,Y)(gradFf)(f) 
           - ∑[g(Y,B∇eiPB)g(X,ei) - g(X,Y)g(B∇eiPB,ei)] 
           - (n-1)g(Y,B∇XPB)-s((HB

b(X,Y))/b) 
           - [((ΔF(f))/(fb²))+(2r+s-2)((PF(f))/f) 
              +(n-2)π(P)+s((PB(b))/b)]g(X,Y) +(n-2)π(X)π(Y)                                     
              - ∑g(X,Y)g(F∇eiPF,ei), 
 
 
(ii) ∘ S(X,V) = -(r-1)((Hf∘ σ(X,V))/f -(s-1)((Hb∘ π(X,V))/b) 
                    +(n-2)((V(f))/f)π(X)-(n-2)((X(b))/b)π(V) 
                       +(n-2)π(V)π(X), 
 
 
(iii) ∘ S(V,X) =-(r-1)((Hf∘ σ(X,V))/f)-(s-1)((Hb∘ π(X,V))/b) 
                      - (n-2)((V(f))/f)π(X)+(n-2)((X(b))/b)π(V) 
                        +(n-2)π(V)π(X), 
 
 
 (iv) ∘ S(V,W) =F∘ S(V,W)- ((s-1))/(b²f²))g(V,W)(gradBb)(b) 
                - ∑[g(W,F∇eiPF)g(V,ei)-g(V,W)g(F∇eiPF,ei)] 
                - (n-1)g(W,F∇VPF)-r((HF

f(V,W))/f) 
                - [((ΔB(b))/(bf²))+(2s+r-2)((PB(b))/b) 
                   +(n-2)π(P)+r((PF(f))/f)]g(V,W)+(n-2)π(V)π(W) 
                   -∑g(V,W)g(B∇eiPB,ei). 
 
 
    As a consequence of Corollary 4.3, by a contraction of 

the Ricci tensors we get scalar curvatures of doubly warped 
product with respect to the semi-symmetric metric connection 
as follows: 

 
Corollary 4.4 : Let M=f B×b F be a doubly warped product 
and τ and ∘ τ denote the scalar curvatures of M with respect to 
the Levi-Civita connection and the semi-symmetric metric 
connection, respectively. Then, we have 

 
 ∘ τ = (B∘ τ)/(f²))+((F∘ τ)/(b²)) - ((r(r-1))/(b²f²))(gradFf)(f) 
         - ((s(s-1))/(b²f²))(gradBb)(b) 
      - 2(n-1)∑g(B∇eiPB,ei) - 2(n-1)∑g(F∇eiPF,ei) 
      - 2s(n-1)((PB(b))/b) - 2r(n-1)((PF(f))/f)-(n-1)(n-2)π(P) 
      - (r/f)[1+(1/(b²))]ΔF(f) - (s/b)[1+(1/(f²))]ΔB(b). 
 

V. EINSTEIN DOUBLY WARPED PRODUCT 
MANIFOLDS ENDOWED WITH THE                                

SEMI-SYMMETRIC METRIC CONNECTION 
 

    In this section we consider Einstein doubly warped 
products endowed with the semi-symmetric metric connection. 

    Now, let us begin with the following theorem: 
 

Theorem 5.1: Let (M,g) be a doubly warped product f I×b F, 
where dimI=1 and dimF=n-1 (n≥3). Then (M,g) is an Einstein 
manifold with respect to the semi-symmetric metric 

connection, PF∈χ(F) is parallel on F with respect to the Levi-
Civita connection and f is constant on F, then b is constant on I 
and F is a quasi-Einstein manifold with respect to the Levi-
Civita connection. 

 
Proof : Let denote by gI the metric on I. By making use of 
Corollary 4.3, we can write 

 
 ∘ S((∂/(∂t)),(∂/(∂t))) = -(n-2)f²π(P)+(n-2)f⁴ 
                                  - (n-1)((b′′)/b)-(n-1)((b′)/b),           (25) 
 
 
 ∘ S((∂/(∂t)),V) = -(n-2)((Hb∘ π((∂/(∂t)),V))/b) 
                         - (n-2)[((b′)/b)-f²]π(V),                           (26) 
 
 
 ∘ S(V,(∂/(∂t))) = -(n-2)((Hb∘ π((∂/(∂t)),V))/b) 
                         +(n-2)[((b′)/b)+f²]π(V)                            (27) 

and 
 
 ∘ S(V,W) = FS(V,W)-(n-2)g(V,W)π(P) 
                  +(n-2)π(V)π(W),                                            (28) 
 

for any vector fields V,W on F. 
Since M is an Einstein manifold with respect to the semi-

symmetric metric connection, we have 
 
 ∘ S((∂/(∂t)),(∂/(∂t))) = αg((∂/(∂t)),(∂/(∂t))),                  (29) 
 
 
 ∘ S((∂/(∂t)),V) = ∘ S(V,(∂/(∂t))) = αg(V,(∂/(∂t)))         (30) 
 
and 
 
 ∘ S(V,W) = αg(V,W).                                                  (31) 
 
Comparing the right hand sides of the equations (26) and 

(27) and by the use of (30), we get 
 
                         2(n-2)((b′)/b)π(V)=0, 
 

which gives us b′=0 (n≥3). So, b is constant on I. 
On the other hand by making use of (6), the equations (29) 

and (31) reduce to 
 
 ∘ S((∂/(∂t)),(∂/(∂t))) = αf²                                             (32) 
 

and 
 
 ∘ S(V,W) = αb²gF(V,W).                                              (33) 

 
Comparing the right hand sides of (25) and (32), we get 

 
                   α = (n-2)[f²-π(P)].                                      (34) 
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Similarly, comparing the right hand sides of (28) and (31) and 
by the use of (34), we obtain 

 
 FS(V,W) = (n-2)b²f²gF(V,W)-(n-2)π(V)π(W), 
 

which implies that F is a quasi-Einstein manifold with respect 
to the Levi-Civita connection. Thus, the proof of the theorem 
is completed. 

 
Theorem 5.2 : Let (M,g) be a doubly warped product f B×b I, 
where dimI=1 and dimB=n-1 (n≥3), PB∈χ(B) is parallel on B 
with respect to the Levi-Civita connection on B and b and f are 
both constant on B and I, respectively. Then 

(i) If (M,g) is an Einstein manifold with respect to the semi-
symmetric metric connection, then: 

 
Bτ = f²(n-2)[(n-1)π(P)-g(PB,PB)]. 

 
(ii) If B is an Einstein manifold with respect to the the Levi-

Civita connection, then M is a quasi-Einstein manifold 
endowed with a semi-symmetric metric connection. 

 
Proof : (i) Assume that (M,g) is an Einstein manifold with 
respect to the semi-symmetric metric connection. Then we can 
write 

 
                      ∘ S(X,Y) = (∘ τ/n)g(X,Y),                        (35) 
 

for any vector fields X,Y∈χ(B). By the use of the equation (6) 
and Corollary 4.4, the equation (35) reduces to 

 
∘ S(X,Y)=(1/n)[((Bτ)/(f²))-(n-1)(n-2)π(P)]g(X,Y). 

 
By a contraction from the above equation over X and Y, we 
get 

 
          ∘ τ = ( (n-1)/n)[((Bτ)/(f²))-(n-1)(n-2)π(P)].            (36) 
 

On the other hand, by making use of Corollary 4.3, we can 
write 

 
 ∘ S(X,Y)  = BS(X,Y)-(n-2)g(X,Y)π(P) 
                 +(n-2)π(X)π(Y). 
 

Similarly, by a contraction from the last equation over X and 
Y, it can be easily seen that 

 
 ∘ τ=((Bτ)/(f²))-(n-1)(n-2)π(P)+(n-2)g(PB,PB).               (37) 
 

Comparing the right hand sides of the equations (36) and (37), 
we get 

 
  ( (n-1)/n)[((Bτ)/(f²))-(n-1)(n-2)π(P)] 
  = ((Bτ)/(f²))-(n-1)(n-2)π(P)+(n-2) g(PB,PB), 
 

which gives us 
 

Bτ = f²(n-2)[(n-1)π(P)- g(PB,PB)]. 
 
(ii) Assume that B is an Einstein manifold with respect to 

the Levi-Civita connection. Then we have 
 
            BS(X,Y)=αgB(X,Y),                                          (38) 
 

for any vector fields X,Y on B. In view of (6) in the last 
equation, we obtain 

 
             BS(X,Y)=(α/(f²))g(X,Y).                                  (39) 
 

On the other hand, in view of Corollary 4.3, we can write 
 
 ∘ S(X,Y) = BS(X,Y)-(n-2)π(P)g(X,Y)+(n-2)π(X)π(Y). 
 

By the use of (39) in the last equation, we obtain 
 
 ∘ S(X,Y)=[(α/(f²))-(n-2)π(P)]g(X,Y)+(n-2)π(P)g(X,Y), 
 

which shows us f B×b I is a quasi-Einstein manifold with 
respect to the semi-symmetric metric connection. Therefore, 
we complete the proof of the theorem. 
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