

Abstract— The development of logics brought forth a

multiplicity of various logical systems. This situation demands
building sound foundations and common formalism for all these
systems. Construction of logical foundation is done in metalogic. In
the same way as metamathematics studies formalized mathematical
theories, metalogic studies theories in logic, or logics and logical
calculi. The discipline of logic has been developed with the aim to
model and study human thinking and reasoning. A more realistic
understanding relates logic only to reasoning but extends logical
applications from humans to computers. Reasoning is a mental and
verbal activity. Any activity is based on actions and operations
organized by procedures and algorithms. That is why procedures and
algorithms are basic for the development of different logics, their
study and application. In this work, we study structures used in logic
with the aim to reflect primary goals of logic as a discipline. Logical
structures are stratified forming three levels: logical languages on the
first level, logical calculi on the second level and logical varieties and
prevarieties on the third level. Here only syntactic structures of
logics, namely, deductive logical calculi, varieties, prevarieties and
corresponding languages are considered. Semantic and pragmatic
structures are studied elsewhere.

Keywords—logic, algorithm, procedure, language, syntactic
calculus, logical language, inference, logical variety, logical
prevariety

I. INTRODUCTION

LANGUAGES are created and used for communication.

Procedures and algorithms are created and used for action and
transformation. Calculi combine languages, procedures and
algorithms to provide means for derivation and generation of
new entities from existing ones. Logical varieties and
prevarieties combine logical calculi to represent complex

This work was supported in part by the U.S. Department of Commerce

under Grant BS123456 (sponsor and financial support acknowledgment goes
here). Paper titles should be written in uppercase and lowercase letters, not all
uppercase. Avoid writing long formulas with subscripts in the title; short
formulas that identify the elements are fine (e.g., "Nd–Fe–B"). Do not write
"(Invited)" in the title. Full names of authors are preferred in the author field,
but are not required. Put a space between authors' initials.

F. A. Author is with the National Institute of Standards and Technology,
Boulder, CO 80305 USA (corresponding author to provide phone: 303-555-
5555; fax: 303-555-5555; e-mail: author@ boulder.nist.gov).

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He
is now with the Department of Physics, Colorado State University, Fort
Collins, CO 80523 USA (e-mail: author@lamar. colostate.edu).

T. C. Author is with the Electrical Engineering Department, University of
Colorado, Boulder, CO 80309 USA, on leave from the National Research
Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

knowledge systems and inference processes in them.
As a result, logical structures are stratified forming three

levels:
• Linguistic structures in the form of logical languages with

their syntax, semantics and pragmatics
• Linear logical structures in the form of logical calculi with

their syntax, semantics and pragmatics
• Nonlinear logical structures in the form of logical varieties

and prevarieties with their syntax, semantics and
pragmatics
The word calculus has two meanings in mathematics. The

most popular in general mathematics understanding is that
Calculus is a name that is now used to denote the field of
mathematics that studies properties of functions, curves, and
surfaces. As this is the most popular meaning in mathematics,
we call it the calculus. It is usually subdivided into two parts:
differential calculus and integral calculus. The main tool of
the calculus is operating with functions to study properties of
these functions. This operation can be regarded as a
generalized calculation with these functions. This explains the
name calculus used for this field, which originated from the
Latin word meaning pebble because people many years ago
used pebbles to count and do arithmetical calculations. The
Romans used calculos subducere for "to calculate."

Thus, the calculus is called so because it provides analytic,
algebra-like techniques, or means of computing, which apply
algorithmically to various functions and curves. Many
mathematical problems that had very hard solutions or even
such problems that mathematicians had not been able to solve,
after the calculus had been developed, became easily solvable
by mathematics students. Later the calculus developed into
analysis, or mathematical analysis. There are also other calculi
in analysis, for instance, operational calculus and calculus of
variations.

Another mathematical meaning of the word calculus comes
from mathematical logic where calculus is a formal system
used for logical modeling of mathematical and scientific
theories. A logical calculus consists of three parts: axioms,
rules of deduction (inference), and theorems (cf., for example,
[1, 2].

The idea of the concept of logical calculus comes from
Leibniz, who also introduced names differential calculus and
integral calculus. He wrote that in future informal and vague
arguments of philosophers would be changes for formal and
exact calculations with formulas. Such calculations would
allow one to find who of those philosophers was right and who
was wrong.

Metalogic in the context of logical varieties

M. Burgin

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 64

To make such generalized calculations with formulas,
people use definite rules. Systems of rules form algorithms
when they are precise, exactly realizable and sufficiently
simple to be performed by a mechanical device. Otherwise,
such systems are called procedures.

 Generalized calculations are performed with symbolic
expressions, which are elements of definite languages, usually,
formal languages. The goal of this work is to study relations
between algorithms, procedures, languages, and calculi as a
part of metalogic.

Here we are interested mostly in logical languages and
calculi, as well as in algorithms of deduction and formal
inference. Algorithms form a foundation for logic as logic as
field has been developed with the aim to model and study
human thinking and reasoning. A more realistic approach
relates logic only to reasoning. Reasoning is an activity. Any
activity is based on actions and operations organized in
procedures and algorithms. That is why algorithms are
necessary for the development of different logics, their study
and application.

Some think that algorithms are necessary only for syntax.
However, semantics and pragmatics of any language and logic
are also determined by corresponding algorithms given, as a
rule, in a form of rules.

Logical varieties and prevarieties are built from logical
calculi and form the higher level of logic. Utilization of
inconsistent knowledge systems and implicit knowledge makes
logical varieties and prevarieties necessary for logical
representation of knowledge systems and processes (cf., for
example, [3 – 8].

In this work, we study only syntactic parts of logics, namely,
deductive logical calculi, varieties and prevarieties. Semantic
and pragmatic parts are studied elsewhere. A logical calculi in
the metalogical setting are constructed as a two-tier
hierarchical systems. The first level gives a constructive
representation of a logical and algorithmic languages used in
logic. This level serves as the base for the second level, which
consists of syntactic, or deductive, logical calculi. In the same
way, the second level serves as the base for the third level,
which consists of the syntactic, or deductive, logical varieties
and prevarieties. That is why to build a mathematical theory
(metatheory) of logic, which is called metalogic, we utilize
constructions from the theory of logical varieties [4-7].
Properties of constructive representations of logical languages
(Section 2), syntactic (deductive) logical calculi (Section 3)
and syntactic (deductive) logical varieties and prevarieties
(Section 4) are analyzed and explored allowing achievement of
better understanding and wider utilization of logic.

A. Denotations and basic definitions
N is the set of all natural numbers.

1. ω is the sequence of all natural numbers.
2. ∅ is the empty set.
3. The logical symbol ∀ means “for any”.
4. The logical symbol ∃ means “there exists”.

If X is a set, then P(X) is the set of all subsets and Pfin(X) is

the set of all finite subsets of X.
If A is a system of algorithms and X is a set, then A(X)

denotes the set of all elements that can be obtained by
application of algorithms from A to the elements from X. For
instance, if algorithms from A cannot be applied to the
elements from X, then A(X) = ∅.

A binary relation T between sets X and Y is a subset of the
direct product X×Y. The set X is called the domain of T and
denoted by D(T) and the set Y is called the codomain of T and
denoted by CD(T). The range of the relation T is the set R(T)
= { y ; ∃ x ∈ X ((x, y) ∈ T)}. The definability domain of the
relation T is the set DD(T) = { x ; ∃ y ∈ Y ((x, y) ∈ T) }.

An n-ary relation Q in a set X is a subset of the direct power
Xn.

The sequential composition T ° P of a binary relation T
between sets X and Y and a binary relation P between sets Y
and Z is a subset of the direct product X×Z defined as T ° P = {
(a, c) where a ∈ X, c ∈ Z, and there is b ∈ Y such that (a, b) ∈
T and (b, c) ∈ P }.

The closure T* of a binary relation T in a set X is the union
of all sequential powers of the binary relation T, i.e., T* =
∪n=1

∞ Tn.
A function or total function from X to Y is a binary relation

between sets X and Y that satisfies two following conditions: 1)
there are no elements from X which are corresponded to more
than one element from Y; and 2) some element from Y is
corresponded to any element from X. Often total functions are
also called everywhere defined functions.

A partial function f from X to Y is a binary relation in which
there are no elements from X which are corresponded to more
than one element from Y.

A word in an alphabet X is any finite string of elements from
X. The symbol ε denotes the empty word. A formal language L
in an alphabet X is any subset of the set X* of all words in the
alphabet X.

II. LANGUAGES AS CALCULI
A definition of any logic starts with a definition of its

language. A definition of any language starts with a definition
of its alphabet. In the most general case, we assume that any
set X may be an alphabet of a language. This assumption is
made to allow us to use, for example, a vocabulary as an
alphabet and thus, to build a conventional (natural or artificial
like programming) language from words and not only from
symbols/letters. A formal language is any set of words in some
alphabet. However, to really know a language, we need to
have its more concrete definition. There are three forms of
language definitions/representations: demonstrative,
descriptive and constructive definitions.

Definition 2.1. A demonstrative definition of a language L
represents this language as a list (collection) of words.

When the language L is not very big, such presentation can
be complete. For infinite languages and even very big

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 65

languages, this form allows only representation of a part of the
language. For instance, decimal representation of natural
numbers can be given in form of a list: 1, 2, 3, … or 1, 2, 3, …
, n, n + 1, …

Definition 2.2. A descriptive definition of a language L
gives some description of this language.

A conventional description of a language in the theory of
formal languages is representation of this language by a
formula.

Example 2.1. Any regular language is defined by a formula
that is called a regular expression [9].

Definition 2.3. A constructive definition of a language L
gives an algorithm (rules or operations) to construct this
language.

In some cases, rules of language construction form a
procedure.

Here we are mostly interested in constructive definitions of
languages. The reason for this is that in its most general form,
a logical language is usually treated as a set of rules for
constructing formulas for some logic. Logic works with these
formulas, deducing some formulas from others, transforming
formulas, and assigning truth values to formulas based on the
rules of that logic.

It is necessary to note that a constructive definition of a
language L is a kind of a formal calculus (compare Definitions
2.4 and 3.1).

According to the axiomatic theory of algorithms [9],
construction of a language can be organized in three main
types:

1. Production/computation when an algorithm (system of
algorithms) A (in general, potentially) builds all words
from L and only such words.

2. Acceptation (or separation) when an algorithm (system of
algorithms) A (in general, potentially) accepts all words
from L and only such words.

3. Decision when an algorithm (system of algorithms) A (in
general, potentially) accepts all words from L and
rejects all other words.

Thus, we have three types of constructive language
definitions/representations: production, acceptation, and
decision definitions.

Example 2.2. Context-free languages are usually defined by
derivation of their words utilizing rules from a context-free
grammar G [9]. The grammar G is an algorithm that is used for
production of a context-free language as derivation is a kind of
production.

Example 2.3. Context-free languages are also defined by
recursive inference utilizing rules from a context-free grammar
G [9]. In this case, the grammar G is an algorithm that is used
for acceptation of a context-free language as recursive
inference is a kind of production.

Remark 2.1. To build languages, it is possible to use not
only recursive inference and conventional derivation, but also
inductive inference and inductive derivation, which are more
powerful than recursive inference and conventional derivation

[11].
Constructive definition gives a more detailed representation

of a language than two other kinds of representation. It is
formalized by means of the corresponding fundamental triad
[12] described in the following definition.

Definition 2.4. A language in a constructive
representation/definition is a triad (a named set) of the form L
= (X, R, L) where X is the alphabet, R is the set of constructive
algorithms/rules and L is the set of words of the language L.

Logical languages are a special kind of artificial languages
developed intentionally within a culture. The typical feature of
logical languages is that their structure Inner relations) and
grammar (formation rules) are intended to express the logical
information within linguistic expressions in clear and effective
ways. Languages used in logic have, as a rule, constructive
definitions in a form of production rules. Elements of logical
languages are logical expressions or formulas. To emphasize
that these formulas are constructed in a proper way, they are
often called well-formed formulas.

Example 2.4. Elements of the language of the classical
propositional or sentential logic/calculus give a formal
representation of propositions. Propositional variables are
denoted by the capital letters of the Latin alphabet (A, B, C,
etc.) or the small letters of the Greek alphabet (χ, φ, ψ, etc.).
However, only one alphabet is usually used, but the two are
not mixed. These letters are considered as atomic formulas and
form a part of the alphabet of the language. Another part is
formed by the symbols denoting the following connectives (or
logical operators): negation denoted by , logical “and”
denoted by ∧, logical “or” denoted by ∨, implication denoted
by →, and equivalence denoted by ↔. Logicians use other
symbols to denote the same logical operators: negation is also
denoted by ∼ , logical “and” is also denoted by & and ⋅,
implication is also denoted by ⇒ and ⊃, and equivalence is
also denoted by ≡ and ⇔. It is possible to use fewer operators
(and thus, a smaller alphabet) by expressing some of these
operators by mean of others, e.g., P → Q is equivalent to P ∨
Q. For example, Church uses only one logical operator ⊃ [13].
In addition, the left and right parentheses, and/or the left and
right brackets [and] are included in the alphabet.

Elements of the language LP of the classical propositional or
sentential logic/calculus are called well-formed formulas
(wffs). To build the set of well-formed formulas (wffs) the
following rules are used:

1. Letters of the alphabet are wffs from LP .
2. If φ is a wff, then φ is a wff from LP .
3. If φ and ψ are wffs, then (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and

(φ ↔ ψ) are wffs from LP .
These rules form the set of algorithms R that build the

language LP of the classical propositional calculus.
Example 2.5. Elements of the language LCPC of the classical

predicate logic/calculus of the first order give a formal
representation of binary properties. The predicate calculus
language has a developed alphabet, making heavy use of
symbolic notation. Lower-case letters a, b, c, ..., x, y, z, ... are

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 66

used to denote individuals. Upper-case letters M, N, P, Q, R, ...
are used to denote predicates.

The alphabet LCPC of the language LCPC consists of the
following parts:
- A set F of function symbols (common examples include +

and ⋅);
- A set P of predicate symbols (common examples include

= and <);
- A set C of logical connectives (usually, it is , ∧, ∨, →,

and ↔);
- A set S of punctuation symbols (usually, examples include

(,), : and ,);
- A set Q of quantifiers (usuallly, they are ∀ and ∃);
- A set V of variables.

Every function symbol, relation symbol, and connective is
associated with an arity. Namely, an n-ary function has the
form f: Xn → X and an n-ary function has the form P(x1 , x2 ,
…, xn). The set of n-ary function symbols is denoted Fn , and
the set of n-ary predicate symbols is denoted Pn . As a rule, 0-
ary predicates and/or 0-ary functions are called constants.
Another way to deal with constants is to include their names in
the alphabet of the language.

The language LCPC of the classical predicate calculus
encompasses the language LP of the classical propositional
calculus as propositions may be formed by juxtaposition of a
predicate with an individual.

Elements of the language LCPC of the classical predicate
logic/calculus are also called well-formed formulas (wffs). To
build the set of well-formed formulas (wffs) the following rules
are used:

1. Letters of the alphabet are wffs from LCPC .
2. If φ is a wff, then φ is a wff from LCPC .
3. If φ and ψ are wffs, then (φ∧ψ), (φ ∨ ψ), (φ → ψ), and

(φ ↔ ψ) are wffs from LCPC .
4. If φ is a wff containing a free instance of variable x,

then ∃xφ and ∀xφ are wffs from LCPC .
Here a variable is free if it is not related to a quantifier.

Consequently, transformation rule (4) makes any instance of x
bound (that is, not free) in the formulas ∃xφ and ∀xφ .

Example 2.6. Elements of the language LQA of the logic of
questions and answers are questions and propositions [14].
Such logics are called erotetic. A formalized language of an
erotetic logic consists of two parts: assertoric and erotetic. The
assertoric part of LQA is usually a first-order language. As far
as the assertoric part of LQA is concerned, the concepts of term,
well-formed formulas, variables, deduction, etc., are defined in
a conventional way. Questions are the meaningful expressions
of the erotetic part of LQA .

Usually questions are separated into relevant classes. One
way of classifying questions is in terms of the surface
characteristics that give such classes as:

1) yes/no questions (for example: “Is it now ten a.m.?”);
2) item-specification questions (for example: “Who is a

student?”);
3) instruction-seeking questions (for example: “How to

learn logic?”).
Another way to classify questions is to take into account the

nature of the answers. It gives us factual questions (for
example: “What time is it now?”), normative questions (for
example: “How it is necessary to drive when it is raining?”),
and counter-factual questions (for example: “What might
happen if we met a year ago?”). There are also special rules to
build correct questions of the erotetic calculus.

Thus, we can see that logicians use a diversity of logical
languages and continue to invent new ones.

Utilization of a logical language involves different
operations with their elements. Such operations are performed
according to definite rules (algorithms). The main operations
are inference and substitution. Consequently, to build a logic,
we need algorithms and it is natural to consider algorithmic
languages, elements of which are texts/expressions that
describe algorithms. Examples of algorithmic languages are
the language of Turing machines, the language of finite
automata or the language of inductive Turing machines [11].
All these algorithms can be used for inference. Although there
is a difference between algorithms and their descriptions, as it
is demonstrated in [11], here we do not emphasize this
difference and for simplicity, assume that algorithms belong to
an algorithmic language. More exactly, an algorithm is a
structure that determines a process, e.g., computational
algorithms determine computational processes. However, to
operate with these structures and to use them, people
elaborated algorithmic languages and represent algorithms as
texts in these languages.

Algorithmic languages have the same types of
representations as logical languages or any other languages
have, that is, there are three classes of language
representations: representative or model representations,
descriptive or parametric representations, and operational or
constructive representations. As in a general case, a
constructive representation of an algorithmic language has the
form of a fundamental triad.

Systems of algorithms are often algebras or calculi because
there are rules of composition of algorithms and of inference
or derivation of algorithms in such a system. Examples of
composition are sequential composition of two algorithms
when the result of the first algorithm is given as the input for
the second algorithms and parallel composition of two
algorithms when the result of them composition algorithm
consists of the results of both composed algorithms. An
example of inference or derivation is given by the following
reasoning: if in a monotone logical calculus C, there are
inference algorithms r and q, then their sequential composition
also belongs to this calculus.

However, there is an essential difference between logical
and algorithmic languages with respect to problems of logic. In
the syntactic context, semantics of a logical language, which is
a language of formulas, can be ignored. For instance, it is
possible to treat propositions simply as letters or words. In
contrast to this, semantics and, especially, the dynamic

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 67

semantics of algorithmic languages are pivotal for logic. The
reason is that to use algorithms, we need rules telling us how to
apply these algorithms. Such rules, or sometimes they are
called metarules, form the dynamic semantics of algorithmic
languages. Algorithms together with metarules, which
determine applications of the corresponding algorithms, are
called second-level algorithms [15, 16].

III. LOGICAL CALCULI
According to the theory of logical varieties [3 – 8], there are

three kinds of logical calculi or simply, logics:
1. Deductive or syntactic logical calculi.
2. Functional or semantic logical calculi.
3. Model or pragmatic logical calculi.

Informally, a deductive or syntactic logical calculus C is a
named set (A, H, T), in which A and T are sets of well-formed
formulas and R consists of deduction (inference) rules.

A functional or semantic logical calculus D is a named set
(L, t, D), in which L is the set of well-formed formulas, D is
the value domain, for example, in the classical logic, the value
domain consists of two value T or 1 for true and F or 0 for
false, and t is the valuation (function), which assigns values
from D to the well-formed formulas from L. For instance, in
the classical logic, t is the truth function.

Finally, a model or pragmatic logical calculus M is a named
set (T, r, M), in which T is a set of well-formed formulas,
which belong to a syntactic logical calculus C = (A, H, T), M is
a relational structure (model) and r is an interpretation of
formulas from the language L in the relational structure M.
such that all formulas from T are true.

Here we are mostly interested in syntactic logical calculi. In
the majority of cases, such calculi are logical system used to
prove true formulas (called theorems) and model
argumentation and reasoning. Basic building blocks for
syntactic logical calculi are formulas from logical languages,
algorithms/rules of logical inference and formula
transformations, and metarules that determine how to apply
algorithms/rules of logical inference to elements from logical
languages.

Let L be a logical language or a language of well-formed
formulas and R be an algorithmic language, procedural
language or a language of rules of inference in L. All
expressions from R are descriptions of algorithms that work
with words from L. A standard example of L is the first order
predicate language or any language of mathematical logics.
But practically L may be any language: natural, mathematical,
programming, of chemical formulas, etc. Any language in
which it is possible to describe inference rules is an example of
R. However, R usually contains not only inference rules but
also transformation rules.

Definition 3.1. A syntactic (deductive) logical calculus in
the pair of languages (L, R) is a triad (a named set [12] of the
form C = (A, H, T) where H ⊆ R, A, T ⊆ L and T is obtained
by applying algorithms/procedures/rules from H to elements
from A.

We consider two main types of deductive logical calculi:
exact and relaxed (soft).

In an exact deductive logical calculus C = (A, H, T), the
system H consists of algorithms.

In a relaxed deductive logical calculus C = (A, H, T), the
system H consists of procedures some of which are not
algorithms.

Examples of exact deductive logical calculi are the
syllogistic logic, classical propositional/sentential and
predicate logics, intuitionistic logic, inductive logic, deontic
logic, weak and strong paraconsistent logics, the logic of
imperatives, different temporal logics, class logic, relevant
logics, a variety of modal logics, the logic of values, the logic
of norms, epistemic logic, erotetic logics, and so on and so
forth.

Examples of relaxed deductive logical calculi are dialectic
logic, transcendental logic [17], a logic of diagnosis [18] and a
logic of goal control [19].

Usually, two cases of logical calculi are studied and
constructed: monotonic and non-monotonic.

In the case of a monotonic logical calculus C, we have T =
∪n=1

∞ Tn where T1 is equal to A, Tn is equal to H(Tn-1), and
H(M) = { r(N); r ∈ H and N ⊆ M }. Another way to represent
the set T in a monotonic logical calculus is to consider the
closure H* of H with respect to compositions of algorithms.
Then T = H*(A).

In the case of a non-monotonic logical calculus C, axioms
are changing with time and we have A = {An ; n = 1, 2, 3, …}
and T = {Tn ; n = 1, 2, 3, … } where An is the system of axioms
at time (period) n and Tn is the system of axioms at the same
time. Sometimes rules of inference H also change with time.

When L is a logical language and H consists of rules of
logical deduction, C is a deductive calculus. The same
syntactic logical calculus can be considered in different pairs
of languages (L, R) as the following simple property shows.

Lemma 3.1. If L1 ⊆ L2 and R1 ⊆ R2 , then any syntactic
logical calculus in (L1 , R1) is a syntactic logical calculus in (L2
, R2).

 Usually we do not explicitly indicate in what pair of
languages (L, R) a syntactic logical calculus is considered.

Remark 3.1. It is possible to build/define a general
syntactic calculus taking any language L and algorithmic
language R with algorithms that work with words from L.
Practically, L may be any language: natural, mathematical,
programming, of chemical formulas, etc. For instance, when L
contains descriptions and denotations of real/complex numbers
and functions, while H consists of rules of
differentiation/integration, C is the differentiation/integration
calculus. Another example of a general syntactic calculus is
any universal algebra (e.g., a group, ring or linear algebra over
a field of real numbers). One more example of a general
syntactic calculus is a productive representation of a language,
i.e., a language is usually represented as a calculus (cf.,
Definition 2.4).

Remark 3.2. In what follows, it is always assumed that H

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 68

forms a cumulative system, i.e., algorithms from H only add
formulas or change them but never exclude formulas. At the
same time, it is possible to consider both inclusive and
exclusive algorithms. This brings us to nonmonotonic calculi,
which formalize nonmonotonic reasoning and nonmonotonic
logics.

Definition 3.2. a) A is called the axiom system (base or
generating system if C is not a logical calculus) of the calculus
C.

b) H is called the system of inference rules of the calculus C.
c) T is called the body (the set of theorems or set of the

deducible expressions) of the calculus C. It is constructed by
applying algorithms from H to expressions from A.

Components of a syntactic calculus C = (A, H, T) are
denoted as follows: A = A(C), H = H(C), and T = T(C).

It is possible that the set of axioms A is empty or countably
infinite. In the second case, this set is represented by axiom
schemata, which contain variables for elements from the
corresponding language L or/and from the alphabet of this
language.

Example 3.1. Let us consider the classical propositional or
sentential logic/calculus. Many systems of propositional
calculus have been devised to achieve consistency,
completeness, and independence of axioms. All these systems
are logically equivalent in the sense of Definition 3.2a. Thus, it
is more correct to call these systems not the same calculus but
logically equivalent representations of the classical
propositional or sentential logic/calculus.

For instance, Kleene suggests the following list of axioms
(axiom schemas) of the classical propositional calculus [1]:

φ → (χ → φ) (1)
(φ → (χ → ψ)) → ((φ → χ) → (φ → ψ)) (2)
φ → (χ → (φ ∧ χ)) (3)
φ → φ ∨ χ (4)
χ → φ ∨ χ (5)
φ ∧ χ → φ (6)
φ ∧ χ → χ (7)
(φ → ψ) → ((χ → ψ) → (φ ∨ χ → ψ)) (8)
(φ → χ) → ((φ → χ) → ¬ φ) (9)
 φ → φ (10)
Usually the system of inference rules has only one rule

called modus ponens:
φ , φ → ψ ├ ψ

or the natural/programming language notation
If φ and φ → ψ, then ψ.

Other rules are derived from modus ponens and then used in
formal proofs to make proofs shorter and more
understandable. These rules serve to directly introduce or
eliminate connectives, e.g.,

“If φ and χ, then φ ∧ χ “ (or φ , χ ├ φ ∧ χ)
or

“If φ, then φ ∨ χ “ (or φ├ φ ∨ χ).

A standard transformation rule is substitution. This rule is
necessary because axiom schemas demand substitution to
become axioms and be applied. Namely, formulas (1) – (10)
are axioms when the system of inference rules includes the
substitution rule (cf. Example 3.2) and are axiom schemas
when the system of inference rules has only Modus Ponens
[20].

Example 3.2. There are other representations of the
classical propositional logic/calculus. Let us consider some of
them.

Thus, Church suggests two logically equivalent
representations P1 and P2 for the classical propositional
calculus [13]. The alphabet of P1 contains: one symbol of the
logical operator ⊃, two punctuation symbols [and] , a
constant symbol f, and a countable set of variables q, p, s, … .

The system P1 has the following list of axiom schemata:
[p ⊃ [q ⊃ p]] (1)
[[s ⊃ [p ⊃ q]] ⊃ [[s ⊃ p] ⊃ [s ⊃ q]]] (2)
[[[p ⊃ f] ⊃ f] ⊃ p] (3)
The system of inference rules of P1 contains two elements:
1. Modus ponens: p , p → q imply q
2. Substitution Rule: p implies Sx

q p where Sx
q denotes

the substitution of a variable x by a formula q.
The alphabet of P2 contains: two symbols of logical

operators ⊃ and ∼, two punctuation symbols [and] , and a
countable set of variables q, p, s, … .

The system P2 has the following list of axiom schemata:
[p ⊃ [q ⊃ p]] (1)
[[s ⊃ [p ⊃ q]] ⊃ [[s ⊃ p] ⊃ [s ⊃ q]]] (2)
[[∼ p ⊃ ∼q] ⊃ [q ⊃ p]] (3)
The system of inference rules of P2 is the same as the system

of inference rules of P1 . Namely, it contains:
1. Modus ponens: p , p → q imply q
2. Substitution Rule: p implies Sx

q p where Sx
q denotes the

substitution of a variable x by a formula q.
Example 3.3. Let us consider the classical first-order

predicate logic/calculus. Various systems of first-order
predicate calculus have been devised to achieve consistency,
flexibility, and independence of axioms. All these systems are
logically equivalent in the sense of Definition 3.2a.

Shoenfield suggests the following list of axiom schemata of
the classical first-order predicate calculus [21]:

Propositional Axiom: φ ∨ φ
Identity Axiom: x = x
Substitution Axiom: φx[a] → ∃x φ
Equality Axioms: a) If f is a symbol of an n-ary function

from F, then
x1 = y1∧x2 = y2,…, xn = yn → f(x1, x2,…, xn) = f(y1, y2, …, yn);

b) If f is a symbol of an n-ary predicate from P, then
x1 = y1∧x2 = y2,…, xn = yn → p(x1, x2,…, xn) = p(y1, y2, …, yn)

The system of inference rules of the classical first-order
predicate calculus contains two elements:

Extension rule: φ implies φ ∨ ψ

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 69

Cancellation rule: φ ∨ φ implies φ
Associative rule: (φ ∨ ψ) ∨ χ = φ ∨ (ψ ∨ χ)
Cut rule: (φ ∨ ψ) and (φ ∨ χ) imply (ψ ∨ χ)
∃-introduction rule: φ → ψ implies ∃x φ → ψ if x is not a

free variable in ψ.
Example 3.4. Syntactic logical calculi provide functional

formalization to the notion of a formal theory [20]. In turn, a
formal theory formalizes some source theory from a scientific
discipline (e.g., mathematics, physics or economics). In order
to specify a formal theory, one first chooses a small collection
of predicates, functions and relations, which are regarded as
basic for a given field of study (groups, topological spaces or
geometry). The chosen predicates delimit the scope of the
formal theory. These predicates are the primitives of the theory
and together with logical and punctuation symbols (such as the
symbols (or ,) form the alphabet of the theory (calculus)
language. The language consists of expressions (functions,
relations, and predicates) defined in terms of the primitives.
Using them, one writes down certain predicates that are
regarded as basic or self-evident within the given field of
study. These predicates are the axioms of the theory. It is
crucial to make all of underlying assumptions of the source
theory explicit as axioms. Often this is not a simple task. One
can compare formalization of the Euclidean geometry given by
Euclid and Hilbert [22]. Using logical rules/algorithms of
inference (usually, it is only Modus Ponens and substitution
rule) theorems of the theory are deduced from the axioms. As a
result, a formal theory is this structure of theory language,
axioms, and theorems.

The process of codifying a scientific discipline by means of
primitives and axioms in the predicate calculus is known as
formalization. The key issue here is the choice of primitives
and axioms. They can be chosen arbitrarily but it is better to
exercise a certain aesthetic touch and use the following
principles: it must not be too many axioms; they must be basic
and self-evident from the discipline’s point of view; and they
must account for the largest possible number of other concepts
and facts.

In all given examples, the system H consists only of simple
rules such as modus ponens and substitution. Thus it is
possible to ask a question why in the definition of a calculus, it
is necessary to consider algorithms and not only of simple
rules such as modus ponens and substitution. The following
example explains such a necessity.

Example 3.5. Applications of logic, such as program
verification, demand utilization of decidable inference rules. In
logic/calculus with validation LV, all inference rules are
decidable. In this calculus, H contains a variety of different
algorithms in addition to inference rules. In particular, we have
a decidable modus ponens:

If p → q and it is validated that p is true, then q is true.
To validate that a proposition is true may have different

meanings. It can mean:
a) To prove that p is true in the classical sense.
b) To prove that p is true with ordinal induction.

c) To test that p is true.
In such a system, the pair of propositions p → q and p does

not imply q if there is no algorithms in H to check p. If
validation of propositions is temporary, i.e., it is true only for
some time, then the logic/calculus with validation LV is
nonmonotonic. Examples from mathematics of such temporary
validation are given in the book [23].

Other kinds of inference rules (algorithms) are used in fuzzy
logics [24, 25].

Proposition 3.1. If C = (A, H, T) and D = (B, K, Q) are
syntactic logical calculi in (L, R), A ⊆ B, and H ⊆ K, then T ⊆
Q.

Let us assume that the algorithmic language R contains an
identity algorithm E, for which E(w) = w for any expression w
from L. Assuming that H can contain only the identity
algorithm E, we have the following result.

Lemma 3.2. Any subset Q of L is the body of some
syntactic logical calculus C = (A, H, Q).

This result shows that the concept of a syntactic logical
calculus is very general and to get models better suited to tasks
of logic, it is necessary to have some restrictions on those
algorithms that are used in logical calculi.

Lemma 3.3. For any syntactic logical calculus C = (A, H,
T), we have A ⊆ T if H contains the identity algorithm.

It is possible to define syntactic logical calculi by a closure
operation.

Proposition 3.2. If a set of logical formulas B is closed
with respect of inference rules H, then B is the set of all
theorems of a syntactic logical calculus C with inference rules
H.

Corollary 3.1. The intersection of the sets of all theorems
of two syntactic logical calculi is the set of all theorems of a
syntactic logical calculus.

Corollary 3.2. The intersection of the sets of all theorems
of two classical syntactic logical calculi is the set of all
theorems of a classical syntactic logical calculus.

Special kinds of syntactic logical calculi are important for
metalogic.

Definition 3.3. If A = L, then a syntactic logical calculus C
= (L, H, T) is called a free syntactic logical calculus or a
formal deduction system.

Let us assume that H contains an identity algorithm E.
Corollary 3.3. The body of a free syntactic logical calculus

C = (L, H, T) is equal to L.
Remark 3.3. There are free syntactic logical calculi in

which the language L is infinite, but the body is finite. For
instance, we can take the language of the classical
propositional calculus as L and such rules of classical
deduction that work only with formulas the length of which is
less than 1000 as set of inference rules H. In this case, the
body T of the calculus C = (L, H, T) is finite.

Let L1 and L2 be logical languages, R1 and R2 be algorithmic
languages with algorithms that work with words from L1 and
L2, correspondingly, and f: L1 → L2 is a one-to-one mapping
(bijection) of L1 onto L2.

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 70

Definition 3.4. a) Two syntactic logical calculi C = (A, H,
T) in (L1 , R1) and D = (B, K, Q) in (L2 , R2) are called logically
(or semantically) equivalent with respect to f if Q = f(T). This
relation is denoted by C ~f

lg D.
b) Two syntactic logical calculi C = (A, H, T) in (L, R) and

D = (B, K, Q) in (L, R) are called logically (or semantically)
equivalent if T = Q. It is denoted by C ~lg D.

Proposition 3.3. Relation ~f
lg is an equivalence relation if

and only if L1 = L2 and f is the identity mapping.
Indeed, when f is not the identity mapping, we have f ≠ g = f

-1 and thus, the relation C ~f
lg D does not imply the relation C

~g
lg D. Consequently, ~f

lg is not reflexive and thus, not an
equivalence relation.

Sufficiency of conditions in Proposition 3.3 follows from
Definition 3.4.

Corollary 3.4. Relation ~lg is an equivalence relation.
Axioms (or their schemata) and rules of inference define a

proof theory. Such proof theories are usually considered
equivalent when the corresponding calculi are logically
equivalent. For instance, various equivalent proof theories of
propositional calculus have been constructed (cf. Examples 3.1
and 3.2).

Definition 3.5. a) Two syntactic logical calculi C = (A, H,
T) in (L1 , R1) and D = (B, K, Q) in (L2 , R2) are called
algorithmically (or inferentially) equivalent with respect to f if
B = f(A) and Q = f(T). It is denoted by C ~f

alg D.
b) Two syntactic logical calculi C = (A, H, T) in (L, R) and

D = (B, K, Q) in (L, R) are called algorithmically (or
inferentially) equivalent if T = Q and A = B. It is denoted by C
~alg D.

Algorithmically equivalent logical calculi are usually
considered as different axiomatizations of the same logic.

Proposition 3.4. Relation ~f
alg is an equivalence relation if

and only if L1 = L2 and f is the identity mapping.
Corollary 3.5. Relation ~alg is an equivalence relation.
Lemma 3.4. Algorithmic equivalence (with respect to f)

implies logical equivalence (with respect to f).
Syntactic logical calculi can be named by classes of

algorithms to which their inference rules belong. For instance,
there are finite automaton calculi, recursive calculi, and
superrecursive calculi.

Proposition 3.5. If the body T of a syntactic logical calculus
C = (A, H, T) is finite, then C is logically equivalent to a
nondeterministic finite automaton calculus.

Proof. Let us consider a syntactic logical calculus C = (A,
H, T) with the finite set T of theorems. Taking this finite set T
of formulas and choosing some formula w from T, it is
possible to build a deterministic finite automaton Aw with ε-
transition that given the empty word ε as its input, computes w
and nothing else. When some other symbol is given to Aw, its
output is ε.

The finite automaton AT , which computes the set T,
contains all automata Aw with w ∈ T. It is possible to do
because there are only a finite number of such automata Aw.
The automaton AT has the start state q0 that is different from

the start states of all Aw and works according to the following
rules.

With the empty input, the automaton AT makes a transition
to the start state q0w of one of the automata Aw . As AT is a
nondeterministic automaton, it has a possibility to make a
transition from q0 to any of the states q0w . After this transition,
the automaton Aw computes the formula w, which is produced
as the output of AT . In such a way, the automaton AT computes
(deduces) all elements from T.

When some other symbol is given to AT , it gives no output
as there are no transition from q0 beside ε-transitions.
Consequently, if we take K = {AT}, we obtain a
nondeterministic finite automaton calculus C0 = (A, K, T),
which is algorithmically and logically equivalent to C = (A, H,
T).

Proposition is proved.
Remark 3.4. It is possible to prove by the same technique

that C = (A, H, T) is algorithmically and logically equivalent to
a deterministic finite automaton with ε-transitions syntactic
calculus.

Remark 3.5. If ε-transitions are not permitted, then the
result of Proposition 3.5 is not true for deterministic finite
automaton syntactic calculi. For example, when the set of
axioms A is empty, the set of theorems a deterministic finite
automaton syntactic calculus is also empty.

Definition 3.6. Two syntactic logical calculi C = (A, H, T)
and D = (B, K, Q) are called axiomatically (or generatively)
equivalent if T = Q and H = K. It is denoted by C ~ax D.

Axiomatic equivalence of calculi informally means that
given the same inference rules/algorithms, different axiom
systems produce the same set of theorems.

Definitions imply the following results.
Lemma 3.5. The relation ~ax is an equivalence relation.
Lemma 3.6. Axiomatic equivalence implies logical

equivalence.
Lemma 3.7. Two syntactic logical calculi C = (A, H, T) and

D = (B, K, Q) are axiomatically and inferentially equivalent if
and only if they coincide.

Let us consider some specific classes of syntactic logical
calculi.

Definition 3.7. A syntactic calculus C = (A, H, T) is called:
(1) constructing if by means of the algorithms (rules) from

H new constructions are elaborated;
(2) transforming if by means of the algorithms (rules) from

H expressions from L are only transformed;
(3) closed with respect to A if all elements from A are used

for the construction of the set T;
(4) closed with respect to H if all algorithms from H are

used for the construction of the set T;
(5) basically closed if any algorithm from H may be

applied to any set of expressions from A;
(6) transitively closed if any sequential composition of

algorithms from H is admissible;
(7) completely closed if it is closed with respect to A and H

and is transitively closed;

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 71

(8) admissible if T ≠ L, i.e., the set of theorem does not
coincide with the whole language;

(9) consistent with a subset P of the language L if T ∩ P =
∅ where ∅ is an empty set;

(10) complete with respect to a set F of algorithms/rules
from R and a subset Q of L if the set Q can be constructed
from T by means of F, i.e. Q ⊆ F(T);

(11) consistent if T does not include contradictory (false)
expressions from L (for example, expressions having the form
a & a when L contains standard logical connectives);

(12) complete with respect to a mapping f: L → L if for any
a ∈ L we have a ∈ T or f(a) ∈ T.

For example, when L is a logical language with negation
and we take f(a) = a then completeness with respect to such f
is the conventional completeness of a logical calculus. If we
take any classical logical calculus C = (A, H, T) and P consists
of some expressions having the form a& a, then consistency
with P is equivalent to conventional definitions of consistency.
From the point of view of classical logic, we are compelled to
derive any conclusion from inconsistent premises.
Consequently, any admissible classical calculus is consistent.

At the same time, when we have an admissible but
inconsistent knowledge system, accumulating reports of
empirical observations can help in deciding in favor of one
alternative over another, allowing one to restore consistency in
many cases. However, practical situations show that even
without restoring consistency, an inconsistent system can still
produce useful information. Examples of admissible but not
necessarily consistent syntactic logical calculi are given by
different paraconsistent logics [26]. Relevant logics [27] give
another class of examples of admissible but possibly
inconsistent syntactic logical calculi. In these logics, efficient
proof procedures infer only "relevant" conclusions with
varying degrees of accessibility, as stated by the criteria of
non-classical relevant entailment.

Many of properties from Definition 3.7 are the same for
logically equivalent calculi.

Proposition 3.6. If C = (A, H, T) is an admissible
(consistent with a subset P of the language L, complete with
respect to a set F of algorithms/rules from R and a subset Q of
L, consistent, complete with respect to a mapping f: L → L)
syntactic logical calculus and a syntactic logical calculus B =
(B, K, Q) is logically equivalent to C, then B is an admissible
(consistent with a subset P of the language L, complete with
respect to a set F of algorithms/rules from R and a subset Q of
L, consistent, complete with respect to a mapping f: L → L,
respectively) syntactic logical calculus.

Let us assume that all calculi are completely closed.
Proposition 3.7. a) If T ⊆ L, H ⊆ R and H(T) = T, then T is

the body of some transitively closed calculus with the system
of inference rules H. b) If T is the body of a transitively closed
calculus C = (A, H, T) and A ⊆ T, then H(T) = T.

Let H includes an algorithm that defines the identity
function on L. Then Proposition 3.3 implies the following
results.

Corollary 3.6. If H(T) ⊆ T, then T is the body of some
transitively closed calculus with the inference rules H.

 Corollary 3.7. The intersection of any set of bodies of
transitively closed calculi is the body of some transitively
closed calculus.

 Any ordinary logical calculus will be completely closed if
to the inference rules we add the identity operator on L.

Proposition 3.8. A calculus C = (A, H, T) is transitively
closed if and only if H(T) ⊆ T.

 Let P ⊆ L and the whole L may be constructed by applying
algorithms from H to an arbitrary element p from P.

Proposition 3.9. A transitively closed calculus C = (A, H,
T) is admissible if and only if it is consistent with P.

Usually relations of some arity are considered in a set as
subsets of direct powers of this set (cf. Denotations and Basic
Definitions). In logic, we need a more general kind of relations
defined between subsets of formulas and individual formulas.
Let X be a set. Then a subset R of the direct product P(X) × X
is called an abstract logic or logical structure [28].

The relation R is an abstract form of a consequence, or
inference, relation in X. For instance, the inference relation ├
in conventional logic is derived from the consequence relation
(denoted by ╟) of this logic. This consequence relation is
called operational. The consequence relation is a subset of the
inference relation. Application of one deduction rule, such as
modus ponens, gives the consequence relation. Consecutive
application of several deduction rules gives the inference
relation. However, when the set of algorithms H is closed
under sequential composition, inference and consequence
relations coincide. Thus, the inference relation is a kind of the
consequence relation.

Besides, the operational consequence relation ╟ there are
other types of consequence relations. For instance, there is the
model consequence relation ⊨ when Φ╟ ψ if ψ is true in all
models in which Φ is true.

In non-monotonic logics, the operational consequence
relation ∼ called a conditional assertion is used [29]. This
relation Φ∼ ψ is interpreted as if Φ, normally ψ, or ψ is a
plausible consequence of Φ.

The consequence relation in an abstract logic determines a
formal logical syntax. Logical syntax is not the same as the
syntax of a logical language. The syntax or, more exactly,
linguistic syntax of a logical language is defined/given by the
rules of well-formed formulas construction.

Definition 3.8. A consequence relation ╟ [in a calculus C =
(A, H, T)] is defined by the inference system H in the
following way: for any system of formulas Φ and formula ψ,
we have Φ╟ ψ if ψ∈ H(Φ), i.e., it is possible to deduce ψ
from the formulas in Φ using the rules from H [Φ╟C ψ if ψ∈
H(A ∪ Φ), i.e., it is possible to deduce ψ from the formulas in
A ∪ Φ using the rules from H].

In this case, H is called an operational semantics for the
consequence relation ╟ .

An operational semantics for the consequence relation ╟C is
called an operational semantics for the logical calculus C. The

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 72

operational semantics for the logical calculus C can consists of
algorithms of a definite type, e.g., recursive algorithms or
inductive algorithms [11]. The type of algorithms determines
the type of operational semantics. For example, all
conventional logics have a recursive operational semantics.
Inductive operational semantics allows one to use inductive
Turing machines for logical inference.

Definition 3.9. A inference relation├ [in a calculus C = (A,
H, T)] is defined by the inference system H in the following
way: for any system of formulas Φ and formula ψ, we have
Φ├ ψ if ψ∈ H*(Φ) [Φ├C ψ if ψ∈ H*(A ∪ Φ)].

Usually, logic is built from a logical calculus by adding
truth (functional) and/or model (representational) semantics.
The classical truth semantics is a mapping of all well-formed
formulas of a logical language L into the set {True, False} or
{T, F} or {1, 0}. It is always supposed all axioms, i.e.,
elements from the set A, are true. The truth semantics of a
fuzzy logic is a mapping of all well-formed formulas of a
logical language L into the set [0, 1]. The truth semantics of an
intuitionistic logic is a mapping of all well-formed formulas of
a logical language L into the set {True, False, Unknown}.

In this context, the first Gödel incompleteness theorem has
the following form.

Theorem 3.1. The truth semantics of a formal system,
which contains the formal arithmetic, cannot have (be defined
by) an equivalent recursive operational semantics.

A logical calculus with an inductive operational semantics is
more powerful than a logical calculus with a recursive
operational semantics and the same system of axioms. For
instance, the main result from (Burgin, 2003) implies the
following result.

Theorem 3.2. The formal arithmetic with the truth
semantics of can also have (be defined by) an equivalent
inductive operational semantics.

Usually each step of logical inference or deduction involves
only a finite number of formulas. Thus, it is more reasonable
to consider only finitely based abstract logics.

Definition 3.10. A subset R of the direct product Pfin(X) × X
is called a finitely based abstract logic or logical structure.

Lemma 3.8. It is possible to represent any finitely based
inference relation R in X as a union of n-ary relations in X, i.e.,
R ≅ ∪n=1

∞ Rn where ({x1 , x2 , … , xk }, z) ∈ R if and only if (x1
, x2 , … , xk , z) ∈ Rk+1 for all k = 0, 1, 2, … , n , … .

In logic, inference relations have additional properties. For
instance, Kraus, et al, write, “Reflexivity (i.e., p → p) seems to
be satisfied universally by any kind of reasoning based on
notion of consequence” (Kraus, et al, 1990). However there
are logics in which this is not true.

Example 3.6. Let us consider a prediction logic/calculus
PV. Its goal is to deduce future from the past and/or present. In
this context, knowing that some proposition/predicate p has
been true even for a long time, we cannot assert that p will be
true tomorrow.

The most notable example of such a situation is given by the
famous model of a true empirical proposition that is attributed

to Aristotle:
All swans are white.

Europeans had believed in this until they came to Australia
where they found black swans and disproved this statement.

Many scientific laws have found themselves in a similar
situation. For instance, Newton’s laws were considered as
absolute truth for centuries. However, relativity theory and
quantum mechanics demonstrated limitations of these laws. A
similar story happened to the famous Church-Turing Thesis,
which one of the cornerstones of the contemporary computer
science. For a long time, this Thesis was considered as
absolute truth. Only recently with the advent of superrecursive
algorithms, it was refuted ([11].

Definition 3.11. A formal consequence/inference relation R
in X is called m-bounded if R ≅ = ∪n=1

m
 Rn .

Definition 3.12. A formal consequence/inference relation R
in X is called functionally m-bounded if the range Rg(R) =
∪n=1

m Rg(Qn) where each Qn is an n-ary relation in X for n = 1,
2, … , m.

Informally, functional m-boundedness means that to get the
range of R, we need only m-ary relations and relations of
smaller arity. The range is important because if R is an
inference relation in some actual logic, its range consists of all
theorems of this logic.

Definition 3.13. A formal consequence/inference relation R
in X is called m-strict if R ≅ Rm .

Definition 3.14. A formal consequence/inference relation R
in X is called functionally m-strict if Rg(R) = Rg(Qm) where
Qm is an m-ary relation.

Let H be a system of (inference) algorithms/rules in a
logical language L.

Lemma 3.9. If the system H is closed with respect to the
sequential composition of algorithms, then ├ = ╟.

Theorem 3.3. For any syntactic logical calculus C = (A, H,
T), we have T = { ϕ ∈ L; A ├C ϕ }.

It is useful to specify the concept of a logical structure,
making it closer to concrete logics and logical calculi.

Let L be an arbitrary language and A and T be subsets of L.
Definition 3.15. An abstract universal logical calculus U in

a set X with a base A and inference relation F is a triad U = (A,
F, T) such that F ⊆ P(X) × X and T = F(A) .

Let L be a logical language and A and T be subsets of L.
Definition 3.16. A formal universal logical calculus is an

abstract universal logical calculus in a logical language L.
Theorem 3.4. The consequence relation ╟C in C is

functionally m-bounded in C if and only if for any pair ({x1 , x2
, … , xk }, x) from ╟C with k > m there is a set {x1 , x2 , … , xn
} of element z in L such that ({x1 , x2 , … , xn }, x) also
belongs to ╟C and n < m + 1.

Corollary 3.8. The consequence relation ╟C in C is
functionally 2-bounded in C if and only if for any pair ({x1 , x2
, … , xk }, x) from ╟C there is an element z in L such that (z, x)
also belongs to ╟C .

Theorem 3.5. The inference relation ├C in L with respect
to C is functionally m-bounded in C if and only if for any pair

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 73

({x1 , x2 , … , xk }, x) from ├C with k > m there is a set {x1 , x2
, … , xn } of element z in L such that ({x1 , x2 , … , xn }, x)
also belongs to ├C and n < m + 1.

Corollary 3.9. The inference relation ├C in L with respect
to C is functionally 2-bounded in C if and only if for any pair
({x1 , x2 , … , xk }, x) from ├C there is an element z in L such
that (z, x) also belongs to ├C .

IV. LOGICAL VARIETIES AND PREVARIETIES
According to the theory of logical varieties [3 – 8], there are

three kinds of logical varieties and prevarieties:
1. Deductive or syntactic logical varieties and prevarieties.
2. Functional or semantic logical varieties and prevarieties.
3. Model or pragmatic logical varieties and prevarieties.

Informally, a deductive or syntactic logical variety Vd or
prevariety is a named set (V, F, V), in which V is the union of
sets Cj of well-formed formulas, each of which is the set of
theorems of a syntactic logical calculus Cj , and F consists of
function that glue together some formulas from the sets Cj .

A functional or semantic logical variety or prevariety Vs is a
named set (L, t, D), in which L is the set of well-formed
formulas, D is the value domain, for example, in the classical
logic, the value domain consists of two value T or 1 for true
and F or 0 for false, and t is a multivalued function, which
assigns values from D to the well-formed formulas from L. For
instance, in the classical logic, t is the truth function.

Finally, a model or pragmatic logical variety or prevariety
Vm is a named set (T, r, M), in which T the union of sets Tj of
well-formed formulas, each of which is the set of theorems of a
syntactic logical calculus Cj , M is the union (amalgamation) of
relational structures (models) Mjk and r is an interpretation of
formulas from the language L in M such that all formulas from
Tj are true in each Mjk . A topological n-dimensional manifold
M (cf., for example, [30,31]) is an example of a model logical
variety, in which the set T consists of axioms that define open
domains in the Euclidean space Rn and relational structures
(models) Mjk are components of M, which are homeomorphic
to open domains in the Euclidean space Rn.

Here we are mostly interested in syntactic logical varieties
and prevarieties. Basic building blocks for syntactic logical
varieties and prevarieties are logical syntactic calculi.

Let K be some class of syntactic logical calculi with a
logical language L, R be a set of inference rules, and F be a
class of partial mappings from L to L.

Definition 4.1. A triad M = (A, H, M), where A and M are
sets of expressions that belong to L, A consists of axioms of
M, M consists of theorems of M, and H is a set of inference
rules of M, which belong to the set R, is called:

(1) a projective syntactic (K,F)-quasi-prevariety if there
exists a collection of logical calculi Ci = (Ai , Hi , Ti) from K
and a system of mappings fi : Ai → L and gi : Mi → L (i ∈ I)
from F in which Ai consists of axioms and Mi consists of some
(not necessarily all) theorems of the logical calculus Ci, such
that the equalities A = ∪i∈I fi(Ai), H = ∪i∈I Hi and M = ∪i∈I

gi(Mi) are valid; it is possible that Ci = Cj for some i ≠ j.

(2) a syntactic K-quasi-prevariety if it is a projective
syntactic (K,F)- quasi-prevariety where all mappings fi and gi
that define M are inclusions, i.e., A = ∪i∈I Ai and M = ∪i∈I Mi .

Projective syntactic (K, F)-quasi-prevarieties are used for
building syntactic (K,F)-quasivarieties as additionally
logically organized structures.

Definition 4.2. A projective syntactic (K, F)-quasi-
prevariety M = (A, H, M) is called:

(1) a projective syntactic (K, F)-quasivariety with the depth

k if for any i1 , i2 , i3 , … , ik from I either the intersections ∩j=1

k
fij(Aij) and ∩j=1

k
gij(Tij) are empty or there exists a calculus C =

(A, H, T) from K and projections f: A → ∩j=1
k
fij(Aij) and g: N

→ ∩j=1
k
gij(Mij) from F where N ⊆ T;

(2) a syntactic K-quasivariety with the depth k if it is a
projective syntactic (K, F)-quasivariety with depth k in which
all mappings fi and gi that define M are bijections on the sets
Ai and Mi , correspondingly.

(3) a (full) projective syntactic (K, F)-quasivariety if for
any k > 0, it is a projective syntactic (K, F)-quasivariety with
the depth k;

(4) a (full) syntactic K-quasivariety if for any k > 0, it is a
K-quasivariety with the depth k.

Projective syntactic (K, F)-quasi-prevarieties are also used
for building syntactic (K,F)-prevarieties as logically structures
with higher organization.

Definition 4.3. A projective syntactic (K, F)-quasi-
prevariety M = (A, H, M) is called:

(1) a projective syntactic (K, F)-prevariety if Mi = Ti for all
i ∈ I;

(2) a syntactic K-prevariety if it is a syntactic (K, F)-quasi-
prevariety in which Mi = Ti for all i ∈ I.

We see that the collection of mappings fi and gi combines
different calculi Ci into an amalgamated system M called a
prevariety or quasi-prevariety. In particular, mappings fi and gi
allow one to establish a correspondence between axioms of
different calculi. For instance, the Euclidean geometry and
hyperbolic geometries have first four Euclid’s axioms in
common.

A fragmentation of a set of formulas in order to make a
logical prevariety or quasi-prevariety allows separation of
contradictory formulas making each calculus consistent and
restricting interference of contradictory formulas.

Definition 4.4. A projective syntactic (K, F)-quasi-
prevariety M = (A, H, M) is called:

(1) a projective syntactic (K, F)-variety with the depth k if it
is a projective syntactic (K, F)-quasi-prevariety in which Mi =
Ti for all i ∈ I;

(2) a syntactic K-variety with the depth k if it is a projective
syntactic (K, F)-quasivariety with depth k in which Mi = Ti for
all i ∈ I;

(3) a (full) projective syntactic (K, F)-variety if for any k >
0, it is a projective syntactic (K, F)-variety with the depth k;

(4) a (full) syntactic K-variety if for any k > 0, it is a K-

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 74

variety with the depth k.

We see that the collection of the intersections ∩j=1
k
 fij(Aij)

and ∩j=1
k
gij(Tij) makes a unified system called a variety out of

separate logical calculi Ci . In particular, mappings fi and gi
allow one to establish a correspondence between theorems of
different calculi.

The main goal of syntactic logical varieties, quasivarieties
and prevarieties is in presenting sets of formulas as a
structured logical system using logical calculi, which have
means for inference and other logical operations. Semantically,
it allows one to describe a domain of interest, e.g., a database,
knowledge of an individual or the text of a novel, by a
syntactic logical variety dividing the domain in parts that allow
representation by calculi.

A fragmentation of a set of formulas in order to make a
logical variety allows separation of contradictory formulas
making each calculus consistent and restricting interference of
contradictory formulas.

In comparison with varieties and prevarieties, logical
quasivarieties and quasi-prevarieties are not necessarily closed
under logical inference. This trait allows better flexibility in
knowledge representation and management.

Definition 4.5. In the logical quasivariety, prevariety or
variety M, which is built from the calculi Cj , these calculi
used in the formation of M are called components of M.

An example of a logical variety is a distributed database or
knowledge base, each component of which consists of
consistent knowledge/data. Then components of this
knowledge/database are naturally represented by components
of a logical variety. Besides, in one knowledge base different
object domains may be represented. In these domains some
object may have properties that contradict properties of an
object from another domain. As an example let us consider a
knowledge base containing mathematical information.
Suppose that this information concerns some large
mathematical field like topology or even its part – set-
theoretical topology. Mathematical logics are frequently
considered to be the basis of mathematics while logical calculi
are viewed as precise models and formalizations of real
mathematical theories. But the theory of fields does not
coincide with elementary (logical) theory of fields that is a
deductive calculus.

Indeed, in the theory of fields, such mathematical objects as
fields of different characteristics are studied. In any fields of
characteristic p, where p is a prime number, the formula ∀x (
px = 0) is valid, while in fields of characteristic 0, another
formula ∀x∀n (nx = 0) is true. Thus, if theory of fields with
its subtheories, such as the theory of fields of characteristic p
and theory of fields of characteristic 0, is represented as a
single calculus, then both these formulae produce a
contradiction. At the same time, a relevant logical variety in
which subtheories are represented by its components provides
means for consistent representation of the theory of fields.

Inference in a logical variety M is restricted to inference in
its components because at each step of inference, it is

permissible to use only rules from one set Hi applying these
rules only to elements from the set Ti . This allows one to
better model non-monotonicity of human thinking.

Indeed, the main difference between monotonic and non-
monotonic reasoning arises from the different kinds of
knowledge used in the process of inference. For instance, in
the case of non-monotonic reasoning an inference rule of the
following type can be used: "A is true if B cannot be proved",
i.e. to prove A the system relies on its ignorance of B. The
statement B is not included in the system of initial axioms.
That is why by the given above rule of inference, the statement
A becomes true in the intellectual system. However, it is
possible that B becomes proved at some stage of the inference.
So in this situation, the intellectual system must invalidate A
and even more - to revise each piece of knowledge depending
on A. In this way the monotonic property of the consequence
relation is violated. Usually, the statement A is excluded and
the knowledge/belief revision takes place. Logical varieties
allow not to eliminate knowledge/beliefs in the process of
revision but to build a new component from which all
knowledge/beliefs that contradict B are eliminated. In such a
way, all previously obtained knowledge/beliefs are preserved.

Although any logical calculus is a logical variety, this
particular case does not give anything new in logic because
logical calculi already exist in logic. A non-trivial example of
logical varieties is given by many-sorted logics [32, 33]. In
these logics, the variables range over different domains.
Consequently, logical variables are "typed" as variables in
many computer programming languages. Many-sorted logics
allow one not to work with the domain of discourse as a
homogeneous collection of objects, but to partition this
domain into several parts with various functions and relations
connecting them. In this case, these parts being formalized
form a model variety, while the system of logics that describe
these parts forms a syntactic variety.

For instance, semantics of computer languages employ
different types (domains) of data, such as the integers and the
real numbers. Each domain has its own equality, relations,
identities, and arithmetical operations. The logical language
that describes the union of these domains will have two sorts
of variables, real variables and integer variables. The meaning
of a quantifier would be determined by the type of the variable
it binds. The corresponding logic will be a logical variety built
of two calculi. Intersection of these calculi will include such
formulas as the commutative law

x + y = y + x
and the distributive law

x(y + z) = xy + xz
Any big mathematical theory, such as group theory, ring

theory or topology (theory of topological spaces), forms a
syntactic logical variety. For instance, topology as the set of all
consistent formulas in the formal language of topology
contains many subtheories, such as the theory of Hausdorff
spaces, the theory of metric spaces, the theory of normed
spaces, the theory of hypermetric spaces, the theory of

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 75

hypernormed spaces [34], the theory of manifolds, and the
theory of supermanifolds [35].

The field that is called in mathematics topology contains
various subtheories [36]. Some of these subtheories contain
inconsistent axioms and consequently, cannot be represented
by one consistent logical calculus. For instance, in the theory
of connected spaces, there is an axiom

∀X (if X = Y ∪ Z & Y is closed and open, then Y = X)
At the same time, in spaces of dimension zero, any point has

a neighborhood, which is closed and open. These axioms are
inconsistent for Hausdorff spaces.

A similar situation also exists in other disciplines, for
example, in archeology. Indeed, archaeological theory has
been fragmented into a thousand fundamentalisms. By working
on a broader set of empirical issues than ever before,
archaeologists are indeed applying and refining a variety of
perspectives when some of them are incompatible with others
[37].

One more example of naturally formed logical varieties is
the technique Chunk and Permeate used in artificial
intelligence and common sense reasoning [38]. This technique
suggests starting reasoning from inconsistent premises and
proceeds by separating the assumptions into consistent theories
(called by the authors chunks). In the context of the theory
presented in this paper, such chunks are components of the
logical variety shaped by them. After separation of chunks,
Brown and Priest suggest to derive appropriate consequences
utilizing only one component (chunk) at a time. Then those
consequences are transfered to a different component (chunk)
for further consequences to be derived. This is exactly the way
how logical varieties are used to perform and model
nonmonotonic reasoning [3]. Brown and Priest suggest that
Newton's original reasoning in taking derivates in the calculus
was of this form [38].

Logical varieties are used for modeling and exploration of
mental processes because in contrast to pure logic human
thinking and feelings are full with contradictions and
inconsistencies [39].

An interesting type of logical varieties was developed in
artificial intelligence and large knowledge bases. As Amir and
McIlraith write, there is growing interest in building large
knowledge bases of everyday knowledge about the world,
comprising tens or hundreds of thousands of assertions [40,
41]. However working with large knowledge bases, general-
purpose reasoning engines tend to suffer from combinatorial
explosion when they answer user's queries. A promising
approach to grappling with this complexity is to structure the
content into multiple domain- or task-specific partitions. These
partitions generate a logical variety comprising the knowledge
base content. For instance, a first-order predicate theory or a
propositional theory is partitioned into tightly coupled
subtheories according to the language of the axioms in the
theory. This partitioning induces a graphical representation
where a node represents a particular partition or subtheory and
an arc represents the shared language between subtheories.

The technology of content partitioning allows reasoning
engines to improve the efficiency of theorem proving in large
knowledge bases by identifying and exploiting the implicit
structure of the knowledge [40-42]. The basic approach is to
convert a graphical representation of the problem into a tree-
structured representation, where each node in the tree
represents a tightly-connected subproblem, and the arcs
represent the loose coupling between subproblems. To
maximize the effectiveness of partition-based reasoning, the
coupling between partitions is minimized, information being
passed between nodes is reduced, and local inference within
each partition is also minimized.

Additional advantage of portioning is a possibility to reason
effectively with multiple knowledge bases that have overlap in
content [40].

The tools and methodology of content partitioning and thus,
implicitly of logical varieties are applied for the design of
logical theories describing the domain of robot motion and
interaction [43].

Concepts of logical varieties and prevarieties provide
further an adequate base for formalization of local
mathematics [44 – 47], local logics [48], many-worlds model
of quantum reality of Everett [49, 50], and pluralistic quantum
field theory of Smolin, which is related to the many-worlds
theory [51].

Let us study possibilities of syntactic logical varieties and
prevarieties in representation different formal systems. The
following result is true for classical syntactic logical varieties,
i.e., for syntactic logical varieties, in which all components are
classical logical calculi [5].

Theorem 4.1. There is no finite classical syntactic logical
variety, theorems of which coincide with all true statements of
a formal system that contains the first order formal arithmetic.

However, there are possibilities to use infinite classical
syntactic logical varieties for such representations. To do this,
we consider special cases of classical syntactic logical
varieties.

Definition 4.6. A syntactic logical variety T with calculi Cj

= (Aj , Hj , Tj) as its components is called a syntactic logical
tower if j = 1, 2, 3, … and Cj ⊆ Cj+1 for all j, i.e., Aj ⊆ Aj+1 and
Hj ⊆ Hj+1 .

There are different types of syntactic logical towers.
Definition 4.7. A syntactic logical tower T with calculi Cj =

(Aj , Hj , Tj) as its components is called a theorem tower if Aj ⊆
Aj+1 and Hj = Hj+1 for all j = 1, 2, 3, …

Theorem towers of calculi were introduced and utilized for
representation and exploration of dynamic aspects of formal
theories [52].

Definition 4.8. A syntactic logical tower T with calculi Cj =
(Aj , Hj , Tj) as its components is called an inferential tower if
Aj = Aj+1 and Hj ⊆ Hj+1 for all j = 1, 2, 3, …

Lemma 4.1. In a syntactic logical tower T, the inclusion Tj
⊆ Tj+1 is true for all j = 1, 2, 3, …

Theorem 4.1 implies that a finite syntactic logical tower
cannot contain all true statements of a formal system that

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 76

contains the first order formal arithmetic as its theorems. For
infinite syntactic logical towers, this is not true.

Theorem 4.2. There is a theorem tower T, theorems of
which coincide with all true statements of the first order formal
arithmetic.

Corollary 4.1. There is a countable classical syntactic
logical variety M, theorems of which coincide with all true
statements of the first order formal arithmetic.

However, properties of recursively axiomatizable formal
systems [21] show that such a theorem tower T (syntactic
logical variety M) cannot be recursively constructible.

Theorem 4.3. There is no recursively constructible theorem
tower T, theorems of which coincide with all true statements
of the first order formal arithmetic.

A similar result is true for inference towers.
Theorem 4.4. There is no inference tower T with recursive

inference rules, theorems of which coincide with all true
statements of the first order formal arithmetic.

Results from [11] show that for inductive inference rules
this is not true. Namely, we have the following result.

Theorem 4.5. There is an inference tower T with inductive
inference rules, theorems of which coincide with all true
statements of the first order formal arithmetic.

However, it is important to have an infinite tower.
Theorem 4.6. There is no finite inference tower T with

inductive inference rules, theorems of which coincide with all
true statements of the first order formal arithmetic.

These results show differences between logical varieties and
prevarieties with finite and infinite number of components.

V. CONCLUSION

Basic properties of fundamental logical systems, such as

syntactic logical calculi, varieties and prevarieties, have been
explored. Relations between axiom systems (such as axiomatic
equivalence), systems of inference rules/algorithms (such as
algorithmic equivalence), and different calculi ((such as
logical equivalence) have been described. The inherent
structure of logical calculus has been explicated and
formalized as the first step in the development of metalogic.
This approach allows one to study how logical languages are
built and what is a general schema of theorem derivation from
axioms in a logical calculus.

The second step in the development of metalogic is done by
the construction and exploration of syntactic logical varieties
and prevarieties. Here many properties of the special kind of
syntactic logical varieties called towers are obtained.

There are several directions for future research. It would be
interesting to study the inner structure of the set of theorems.
For instance, it is possible to stratify this set by complexity of
theorem inference, time of inference or by other relations
between theorems. Inference complexity can be estimated by
the length of inference, by the maximal length of formulas
utilized in the inference procedure or by the complexity of
algorithms used for inference.

Another important direction is to study other types of logical
calculi, varieties and prevarieties that is, model and semantic
calculi, varieties and prevarieties, from an algorithmic
perspective.

Practical applications of logical varieties and prevarieties
show that they provide efficient tools for program integration
and interoperability [43]. Thus, it would be useful to utilize
logical varieties and prevarieties in software engineering and
database development.

REFERENCES
[1] S. Kleene, Mathematical Logic, New York: Courier Dover Publications,

2002
[2] E. Mendelson, Introduction to Mathematical Logic, London: Chapman

& Hall, 1997
[3] M. Burgin, Logical Methods in Artificial Intelligent Systems, Vestnik of

the Computer Society, No. 2, pp. 66-78, 1991 (in Russian)
[4] M. Burgin, Logical Tools for Inconsistent Knowledge Systems,

Information: Theories & Applications, v. 3, No. 10, 1995, pp. 13-19
[5] M. Burgin, Logical Varieties and Covarieties, in Methodological and

Theoretical Problems of Mathematics and Information Sciences, Kiev,
1997, pp. 18-34 (in Russian)

[6] M. Burgin and C.N.J. de Vey Mestdagh, The Representation of
Inconsistent Knowledge in Advanced Knowledge Based Systems,
Lecture Notes in Computer Science, Knowlege-Based and Intelligent
Information and Engineering Systems, v. 6882, 2011, pp. 524-537

[7] M. Burgin and C.N.J. de Vey Mestdagh, Consistent structuring of
inconsistent knowledge, Journal of Intelligent Information Systems, v.
45, No. 1, 2015, pp. 5-28

[8] C.N.J. de Vey Mestdagh and Burgin, M. Reasoning and Decision-
Making in an Inconsistent World: Labeled Logical Varieties as a Tool
for Inconsistency Robustness, in (R. Neves-Silva, L.C. Jain and R. J.
Howlette, Eds). Intelligent Decision Technologies, series Smart
Innovation, Systems and Technologies, Springer, 2015, v. 39, pp. 411-
438

[9] J.E. Hopcroft, R., Motwani and J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison Wesley, Boston/San
Francisco/New York, 2001

[10] M. Burgin, Measuring Power of Algorithms, Computer Programs, and
Information Automata, Nova Science Publishers, New York, 2010

[11] M. Burgin, Super-recursive Algorithms, Springer, New
York/Berlin/Heidelberg, 2005

[12] M. Burgin, Theory of Named Sets, New York: Nova Science Publishers,
2011

[13] A. Church, Introduction to Mathematical Logic, Princeton University
Press, Princeton, 1956

[14] N.D. Belnap and T.B. Steel, The Logic of Questions and Answers, Yale
University Press, New Haven and London, 1976

[15] M. Burgin and Debnath, N. Intelligent Testing Systems, in Proceedings
of the World Automation Congress 2010 (WAC 2010), pp. 1-6, Cobe,
Japan, September 2010, TSI Press, San Antonio, Texas, USA

[16] M. Burgin and Gupta, B. Second-level Algorithms, Superrecursivity,
and Recovery Problem in Distributed Systems, Theory of Computing
Systems, v. 50, No. 4, 2012, pp. 694-705

[17] E. Husserl, Formale und Tranzendentale Logic, Halle, 1929
[18] K.E. Tarasov, Velikov, V.K. and Frolova, A.I. Logic and Semiotics of

Diagnostics, Moscow: Medicine, 1989 (in Russian)
[19] I.S. Ladenko and Tulchinsky, G.L. Logic of Goal Control, Novosibirsk:

Nauka, 1988 (in Russian)
[20] R.M. Smullyan, Theory of Formal Systems, Princeton: Princeton

University Press, 1962
[21] J.R. Shoenfield, Mathematical Logic, Association for Symbolic Logic,

K Peters, Ltd., 2001
[22] D. Hilbert, Grundlagen der Geometrie, Berlin: von Teubner, 1899
[23] I. Lakatos, Proof and Refutation, New York: Cambridge University

Press, 1976
[24] L.A. Zadeh, Fuzzy Logic and Approximate Reasoning, Synthese, v. 80,

1975, pp. 407-428

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 77

[25] H. J. Zimmermann, Fuzzy Sets, Decision Making, and Expert Systems,
Lancaster, Boston, 1987

[26] A.I. Arruda, A Survey of Paraconsistent Logics, in Mathematical Logic
in Latin America, North-Holland P.C., Amsterdam/New York/Oxford,
pp. 1-41, 1980

[27] A. Anderson and N. Belnap, Entailment, Princeton University Press,
Princeton, 1975

[28] J.-Y. Béziau, Universal logic, in Logica’94 - Proceedings of the 8th
International Symposium, Prague, 1994, pp. 73-93

[29] S. Kraus, Lehmann, D. and Magidor, M. Nonmonotonic Reasoning,
Preferential Models, and Cumulative Logics, Artificial Intelligence, v.
18, 1990, pp. 167-207

[30] J.M. Lee, Introduction to Topological Manifolds, Graduate Texts in
Mathematics 202, Springer, New York, 2000

[31] J. McCleary, Tortoises and hares: a history of manifolds and bundles,
Supp. Rend. del Circ. Mat. Pal., v. (II) 72, 2004, pp. 9-29

[32] K. Meinke, and J.V. Tucker, (Eds.) Many-sorted logic and its
applications, John Wiley & Sons, Inc., New York, 1993

[33] A. Abadi, Rabinovich, A. and Sagiv, M. Decidable fragments of many-
sorted logic, J. Symb. Comput., v. 45, No. 2, 2010, 153-172

[34] M. Burgin, Semitopological Vector Spaces: Hypernorms,
Hyperseminorms and Operators, Toronto, Canada: Apple Academic
Press, 2017

[35] C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, The Geometry of
Supermanifolds, Dordrecht: Kluwer Academic Publ., 1991

[36] K. Kuratowski, Topology, Academic Press, Waszawa, v. 1, 1966; v. 2,
1968

[37] T.L. VanPool and VanPool, C.S. (Eds) Essential Tensions in
Archaeological Method and Theory, University of Utah Press, Salt Lake
City, 2003

[38] B. Brown, and G. Priest, Chunk and Permeate: A Paraconsistent
Inference Strategy, part I: The Infinitesimal Calculus, J. Philos. Log., v.
33, No. 4, 2004, pp. 379-388

[39] M. Burgin and A. Rybalov, Fuzzy Logical Varieties as Models of
Thinking, Emotions, and Will, in Proceedings of the 10th IFSA World
Congress, Istanbul, Turkey, 2003, pp. 31-34

[40] E. Amir and McIlraith, S. Partition-Based Logical Reasoning for First-
Order and Propositional Theories, Artificial Intelligence, v. 162, No.
1/2, 2005, pp. 49-88

[41] S. McIlraith and E. Amir, Theorem proving with structured theories, in
Proceedings of the 17th Intl' Joint Conference on Artificial Intelligence,
(IJCAI '01), 2001, pp. 624-631

[42] B. MacCartney, McIlraith, S.A., Amir, A. and Uribe, T. Practical
Partition-Based Theorem Proving for Large Knowledge Bases. In:
Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI-03), 2003, pp. 89-96

[43] E. Amir, Dividing and Conquering Logic, Ph.D. Thesis, Stanford
University, Computer Science Department, 2002

[44] P. Benioff, Local availability of mathematics and number scaling:
effects on quantum physics, in Quantum Information and Computation
X (Donkor, E.; Pirich, A.; Brandt, H., Eds.) Proceedings of SPIE, v.
8400; SPIE: Bellingham, WA, 84000T, 2012

[45] P. Benioff, Fiber bundle description of number scaling in gauge theory
and geometry, Quantum Studies: Mathematical Foundations, v. 2,
2015, pp. 289-313

[46] P. Benioff, Space and time dependent scaling of numbers in
mathematical structures: Effects on physical and geometric quantities,
Quantum Information Processing, v. 15, No. 3, 2016, pp. 1081-1102

[47] P. Benioff, Effects of a scalar scaling field on quantum mechanics,
Quantum Information Processing, v. 15, No. 7, 2016, pp. 3005-3034

[48] J. Barwise and Seligman, J. Information Flow: The Logic of Distributed
Systems, Cambridge Tracts in Theoretical Computer Science 44,
Cambridge University Press, 1997

[49] H. Everett, ‘Relative State’ Formulation of Quantum Mechanics, Rev.
Mod. Phys., v. 29, 1957, pp. 454-462

[50] B.S. DeWitt, The Many-Universes Interpretation of Quantum
Mechanics, in Foundations of Quantum Mechanics, Academic Press,
New York, pp. 167-218, 1971

[51] L. Smolin, The Bekenstein bound, topological quantum field theory and
pluralistic quantum field theory, Penn State preprint CGPG-95/8-7; Los
Alamos Archives preprint in physics, gr-qc/9508064, 1995

[52] S.Yu. Maslov, A theory of deductive systems and its applications,
Radio and Svyaz, Moscow, 1987 (in Russian)

[53] M. Burgin, Logical Tools for Program Integration and Interoperability,
in Proceedings of the IASTED International Conference on Software
Engineering and Applications, MIT, Cambridge, pp. 743-748, 2004

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017

ISSN: 2313-0571 78

	I. INTRODUCTION
	A. Denotations and basic definitions

	II. Languages as Calculi
	III. Logical Calculi
	IV. Logical Varieties and Prevarieties
	V. Conclusion

