
 

 

  
Abstract— The development of logics brought forth a 

multiplicity of various logical systems. This situation demands 
building sound foundations and common formalism for all these 
systems. Construction of logical foundation is done in metalogic. In 
the same way as metamathematics studies formalized mathematical 
theories, metalogic studies theories in logic, or logics and logical 
calculi. The discipline of logic has been developed with the aim to 
model and study human thinking and reasoning. A more realistic 
understanding relates logic only to reasoning but extends logical 
applications from humans to computers. Reasoning is a mental and 
verbal activity. Any activity is based on actions and operations 
organized by procedures and algorithms. That is why procedures and 
algorithms are basic for the development of different logics, their 
study and application. In this work, we study structures used in logic 
with the aim to reflect primary goals of logic as a discipline. Logical 
structures are stratified forming three levels: logical languages on the 
first level, logical calculi on the second level and logical varieties and 
prevarieties on the third level. Here only syntactic structures of 
logics, namely, deductive logical calculi, varieties, prevarieties and 
corresponding languages are considered. Semantic and pragmatic 
structures are studied elsewhere. 
 

Keywords—logic, algorithm, procedure, language, syntactic 
calculus, logical language, inference, logical variety, logical 
prevariety 

I. INTRODUCTION 

LANGUAGES are created and used for communication. 

Procedures and algorithms are created and used for action and 
transformation. Calculi combine languages, procedures and 
algorithms to provide means for derivation and generation of 
new entities from existing ones. Logical varieties and 
prevarieties combine logical calculi to represent complex 
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knowledge systems and inference processes in them. 
As a result, logical structures are stratified forming three 

levels:  
• Linguistic structures in the form of logical languages with 

their syntax, semantics and pragmatics 
• Linear logical structures in the form of logical calculi with 

their syntax, semantics and pragmatics 
• Nonlinear logical structures in the form of logical varieties 

and prevarieties with their syntax, semantics and 
pragmatics 
The word calculus has two meanings in mathematics. The 

most popular in general mathematics understanding is that 
Calculus is a name that is now used to denote the field of 
mathematics that studies properties of functions, curves, and 
surfaces. As this is the most popular meaning in mathematics, 
we call it the calculus. It is usually subdivided into two parts: 
differential calculus and integral calculus. The main tool of 
the calculus is operating with functions to study properties of 
these functions. This operation can be regarded as a 
generalized calculation with these functions. This explains the 
name calculus used for this field, which originated from the 
Latin word meaning pebble because people many years ago 
used pebbles to count and do arithmetical calculations. The 
Romans used calculos subducere for "to calculate."  

Thus, the calculus is called so because it provides analytic, 
algebra-like techniques, or means of computing, which apply 
algorithmically to various functions and curves. Many 
mathematical problems that had very hard solutions or even 
such problems that mathematicians had not been able to solve, 
after the calculus had been developed, became easily solvable 
by mathematics students. Later the calculus developed into 
analysis, or mathematical analysis. There are also other calculi 
in analysis, for instance, operational calculus and calculus of 
variations. 

Another mathematical meaning of the word calculus comes 
from mathematical logic where calculus is a formal system 
used for logical modeling of mathematical and scientific 
theories. A logical calculus consists of three parts: axioms, 
rules of deduction (inference), and theorems (cf., for example, 
[1, 2].  

The idea of the concept of logical calculus comes from 
Leibniz, who also introduced names differential calculus and 
integral calculus. He wrote that in future informal and vague 
arguments of philosophers would be changes for formal and 
exact calculations with formulas. Such calculations would 
allow one to find who of those philosophers was right and who 
was wrong. 
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To make such generalized calculations with formulas, 
people use definite rules. Systems of rules form algorithms 
when they are precise, exactly realizable and sufficiently 
simple to be performed by a mechanical device. Otherwise, 
such systems are called procedures. 

 Generalized calculations are performed with symbolic 
expressions, which are elements of definite languages, usually, 
formal languages. The goal of this work is to study relations 
between algorithms, procedures, languages, and calculi as a 
part of metalogic.  

Here we are interested mostly in logical languages and 
calculi, as well as in algorithms of deduction and formal 
inference. Algorithms form a foundation for logic as logic as 
field has been developed with the aim to model and study 
human thinking and reasoning. A more realistic approach 
relates logic only to reasoning. Reasoning is an activity. Any 
activity is based on actions and operations organized in 
procedures and algorithms. That is why algorithms are 
necessary for the development of different logics, their study 
and application. 

Some think that algorithms are necessary only for syntax. 
However, semantics and pragmatics of any language and logic 
are also determined by corresponding algorithms given, as a 
rule, in a form of rules. 

Logical varieties and prevarieties are built from logical 
calculi and form the higher level of logic. Utilization of 
inconsistent knowledge systems and implicit knowledge makes 
logical varieties and prevarieties necessary for logical 
representation of knowledge systems and processes (cf., for 
example, [3 – 8].  

In this work, we study only syntactic parts of logics, namely, 
deductive logical calculi, varieties and prevarieties. Semantic 
and pragmatic parts are studied elsewhere. A logical calculi in 
the metalogical setting are constructed as a two-tier 
hierarchical systems. The first level gives a constructive 
representation of a logical and algorithmic languages used in 
logic. This level serves as the base for the second level, which 
consists of syntactic, or deductive, logical calculi. In the same 
way, the second level serves as the base for the third level, 
which consists of the syntactic, or deductive, logical varieties 
and prevarieties. That is why to build a mathematical theory 
(metatheory) of logic, which is called metalogic, we utilize 
constructions from the theory of logical varieties [4-7]. 
Properties of constructive representations of logical languages 
(Section 2), syntactic (deductive) logical calculi (Section 3) 
and syntactic (deductive) logical varieties and prevarieties 
(Section 4) are analyzed and explored allowing achievement of 
better understanding and wider utilization of logic. 

A. Denotations and basic definitions  
N is the set of all natural numbers.  

1. ω is the sequence of all natural numbers. 
2. ∅ is the empty set.  
3. The logical symbol ∀ means “for any”.  
4. The logical symbol ∃ means “there exists”. 

If X is a set, then P(X) is the set of all subsets and Pfin(X) is 

the set of all finite subsets of X. 
If A is a system of algorithms and X is a set, then A(X) 

denotes the set of all elements that can be obtained by 
application of algorithms from A to the elements from X. For 
instance, if algorithms from A cannot be applied to the 
elements from X, then A(X) = ∅. 

A binary relation T between sets X and Y is a subset of the 
direct product X×Y. The set X is called the domain of T and 
denoted by D(T) and the set Y is called the codomain of T and 
denoted by CD(T). The range of the relation T is the set R(T) 
= { y ; ∃ x ∈ X ((x, y) ∈ T)}. The definability domain of the 
relation T is the set DD(T) = { x ; ∃ y ∈ Y ((x, y) ∈ T) }.  

An n-ary relation Q in a set X is a subset of the direct power 
Xn. 

The sequential composition T ° P of a binary relation T 
between sets X and Y and a binary relation P between sets Y 
and Z is a subset of the direct product X×Z defined as T ° P = { 
(a, c) where a ∈ X, c ∈ Z, and there is b ∈ Y such that (a, b) ∈ 
T and ( b, c) ∈ P }. 

The closure T* of a binary relation T in a set X is the union 
of all sequential powers of the binary relation T, i.e., T* = 
∪n=1

∞ Tn. 
A function or total function from X to Y is a binary relation 

between sets X and Y that satisfies two following conditions: 1) 
there are no elements from X which are corresponded to more 
than one element from Y; and 2) some element from Y is 
corresponded to any element from X. Often total functions are 
also called everywhere defined functions. 

A partial function f from X to Y is a binary relation in which 
there are no elements from X which are corresponded to more 
than one element from Y. 

A word in an alphabet X is any finite string of elements from 
X. The symbol ε denotes the empty word. A formal language L 
in an alphabet X is any subset of the set X* of all words in the 
alphabet X. 

 

II. LANGUAGES AS CALCULI  
A definition of any logic starts with a definition of its 

language. A definition of any language starts with a definition 
of its alphabet. In the most general case, we assume that any 
set X may be an alphabet of a language. This assumption is 
made to allow us to use, for example, a vocabulary as an 
alphabet and thus, to build a conventional (natural or artificial 
like programming) language from words and not only from 
symbols/letters. A formal language is any set of words in some 
alphabet. However, to really know a language, we need to 
have its more concrete definition. There are three forms of 
language definitions/representations: demonstrative, 
descriptive and constructive definitions. 

Definition 2.1. A demonstrative definition of a language L 
represents this language as a list (collection) of words. 

When the language L is not very big, such presentation can 
be complete. For infinite languages and even very big 
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languages, this form allows only representation of a part of the 
language. For instance, decimal representation of natural 
numbers can be given in form of a list: 1, 2, 3, … or 1, 2, 3, … 
, n, n + 1, … 

Definition 2.2. A descriptive definition of a language L 
gives some description of this language. 

A conventional description of a language in the theory of 
formal languages is representation of this language by a 
formula. 

Example 2.1. Any regular language is defined by a formula 
that is called a regular expression [9]. 

Definition 2.3. A constructive definition of a language L 
gives an algorithm (rules or operations) to construct this 
language. 

In some cases, rules of language construction form a 
procedure. 

Here we are mostly interested in constructive definitions of 
languages. The reason for this is that in its most general form, 
a logical language is usually treated as a set of rules for 
constructing formulas for some logic. Logic works with these 
formulas, deducing some formulas from others, transforming 
formulas, and assigning truth values to formulas based on the 
rules of that logic. 

It is necessary to note that a constructive definition of a 
language L is a kind of a formal calculus (compare Definitions 
2.4 and 3.1). 

According to the axiomatic theory of algorithms [9], 
construction of a language can be organized in three main 
types: 

1. Production/computation when an algorithm (system of 
algorithms) A (in general, potentially) builds all words 
from L and only such words. 

2. Acceptation (or separation) when an algorithm (system of 
algorithms) A (in general, potentially) accepts all words 
from L and only such words. 

3. Decision when an algorithm (system of algorithms) A (in 
general, potentially) accepts all words from L and 
rejects all other words. 

Thus, we have three types of constructive language 
definitions/representations: production, acceptation, and 
decision definitions.  

Example 2.2. Context-free languages are usually defined by 
derivation of their words utilizing rules from a context-free 
grammar G [9]. The grammar G is an algorithm that is used for 
production of a context-free language as derivation is a kind of 
production. 

Example 2.3. Context-free languages are also defined by 
recursive inference utilizing rules from a context-free grammar 
G [9]. In this case, the grammar G is an algorithm that is used 
for acceptation of a context-free language as recursive 
inference is a kind of production. 

Remark 2.1. To build languages, it is possible to use not 
only recursive inference and conventional derivation, but also 
inductive inference and inductive derivation, which are more 
powerful than recursive inference and conventional derivation 

[11]. 
Constructive definition gives a more detailed representation 

of a language than two other kinds of representation. It is 
formalized by means of the corresponding fundamental triad 
[12] described in the following definition. 

Definition 2.4. A language in a constructive 
representation/definition is a triad (a named set) of the form L 
= (X, R, L) where X is the alphabet, R is the set of constructive 
algorithms/rules and L is the set of words of the language L. 

Logical languages are a special kind of artificial languages 
developed intentionally within a culture. The typical feature of 
logical languages is that their structure Inner relations) and 
grammar (formation rules) are intended to express the logical 
information within linguistic expressions in clear and effective 
ways. Languages used in logic have, as a rule, constructive 
definitions in a form of production rules. Elements of logical 
languages are logical expressions or formulas. To emphasize 
that these formulas are constructed in a proper way, they are 
often called well-formed formulas. 

Example 2.4. Elements of the language of the classical 
propositional or sentential logic/calculus give a formal 
representation of propositions. Propositional variables are 
denoted by the capital letters of the Latin alphabet (A, B, C, 
etc.) or the small letters of the Greek alphabet (χ, φ, ψ, etc.). 
However, only one alphabet is usually used, but the two are 
not mixed. These letters are considered as atomic formulas and 
form a part of the alphabet of the language. Another part is 
formed by the symbols denoting the following connectives (or 
logical operators): negation denoted by  , logical “and” 
denoted by ∧, logical “or” denoted by ∨, implication denoted 
by →, and equivalence denoted by ↔. Logicians use other 
symbols to denote the same logical operators: negation is also 
denoted by ∼ , logical “and” is also denoted by & and ⋅, 
implication is also denoted by ⇒ and ⊃, and equivalence is 
also denoted by ≡ and ⇔. It is possible to use fewer operators 
(and thus, a smaller alphabet) by expressing some of these 
operators by mean of others, e.g., P → Q is equivalent to  P ∨  
Q. For example, Church uses only one logical operator ⊃ [13]. 
In addition, the left and right parentheses, and/or the left and 
right brackets [ and ] are included in the alphabet. 

Elements of the language LP of the classical propositional or 
sentential logic/calculus are called well-formed formulas 
(wffs). To build the set of well-formed formulas (wffs) the 
following rules are used: 

1. Letters of the alphabet are wffs from LP . 
2. If φ is a wff, then   φ is a wff from LP . 
3. If φ and ψ are wffs, then (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and 

(φ ↔ ψ) are wffs from LP . 
These rules form the set of algorithms R that build the 

language LP of the classical propositional calculus. 
Example 2.5. Elements of the language LCPC of the classical 

predicate logic/calculus of the first order give a formal 
representation of binary properties. The predicate calculus 
language has a developed alphabet, making heavy use of 
symbolic notation. Lower-case letters a, b, c, ..., x, y, z, ... are 
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used to denote individuals. Upper-case letters M, N, P, Q, R, ... 
are used to denote predicates.  

The alphabet LCPC of the language LCPC consists of the 
following parts: 
- A set F of function symbols (common examples include + 

and ⋅ );  
- A set P of predicate symbols (common examples include 

= and <);  
- A set C of logical connectives (usually, it is  , ∧, ∨, →, 

and ↔ ); 
- A set S of punctuation symbols (usually, examples include 

( , ), : and ,); 
- A set Q of quantifiers (usuallly, they are ∀ and ∃ );  
- A set V of variables.  

Every function symbol, relation symbol, and connective is 
associated with an arity. Namely, an n-ary function has the 
form f: Xn → X and an n-ary function has the form P(x1 , x2 , 
…, xn ). The set of n-ary function symbols is denoted Fn , and 
the set of n-ary predicate symbols is denoted Pn . As a rule, 0-
ary predicates and/or 0-ary functions are called constants. 
Another way to deal with constants is to include their names in 
the alphabet of the language. 

The language LCPC of the classical predicate calculus 
encompasses the language LP of the classical propositional 
calculus as propositions may be formed by juxtaposition of a 
predicate with an individual.  

Elements of the language LCPC of the classical predicate 
logic/calculus are also called well-formed formulas (wffs). To 
build the set of well-formed formulas (wffs) the following rules 
are used: 

1. Letters of the alphabet are wffs from LCPC . 
2. If φ is a wff, then  φ is a wff from LCPC . 
3. If φ and ψ are wffs, then (φ∧ψ), (φ ∨ ψ), (φ → ψ), and 

(φ ↔ ψ) are wffs from LCPC . 
4. If φ is a wff containing a free instance of variable x, 

then ∃xφ and ∀xφ are wffs from LCPC .  
Here a variable is free if it is not related to a quantifier. 

Consequently, transformation rule (4) makes any instance of x 
bound (that is, not free) in the formulas ∃xφ and ∀xφ . 

Example 2.6. Elements of the language LQA of the logic of 
questions and answers are questions and propositions [14]. 
Such logics are called erotetic. A formalized language of an 
erotetic logic consists of two parts: assertoric and erotetic. The 
assertoric part of LQA is usually a first-order language. As far 
as the assertoric part of LQA is concerned, the concepts of term, 
well-formed formulas, variables, deduction, etc., are defined in 
a conventional way. Questions are the meaningful expressions 
of the erotetic part of LQA .  

Usually questions are separated into relevant classes. One 
way of classifying questions is in terms of the surface 
characteristics that give such classes as:  

1) yes/no questions (for example: “Is it now ten a.m.?”);  
2) item-specification questions (for example: “Who is a 

student?”);  
3) instruction-seeking questions (for example: “How to 

learn logic?”). 
Another way to classify questions is to take into account the 

nature of the answers. It gives us factual questions (for 
example: “What time is it now?”), normative questions (for 
example: “How it is necessary to drive when it is raining?”), 
and counter-factual questions (for example: “What might 
happen if we met a year ago?”). There are also special rules to 
build correct questions of the erotetic calculus. 

Thus, we can see that logicians use a diversity of logical 
languages and continue to invent new ones.  

Utilization of a logical language involves different 
operations with their elements. Such operations are performed 
according to definite rules (algorithms). The main operations 
are inference and substitution. Consequently, to build a logic, 
we need algorithms and it is natural to consider algorithmic 
languages, elements of which are texts/expressions that 
describe algorithms. Examples of algorithmic languages are 
the language of Turing machines, the language of finite 
automata or the language of inductive Turing machines [11]. 
All these algorithms can be used for inference. Although there 
is a difference between algorithms and their descriptions, as it 
is demonstrated in [11], here we do not emphasize this 
difference and for simplicity, assume that algorithms belong to 
an algorithmic language. More exactly, an algorithm is a 
structure that determines a process, e.g., computational 
algorithms determine computational processes. However, to 
operate with these structures and to use them, people 
elaborated algorithmic languages and represent algorithms as 
texts in these languages. 

Algorithmic languages have the same types of 
representations as logical languages or any other languages 
have, that is, there are three classes of language 
representations: representative or model representations, 
descriptive or parametric representations, and operational or 
constructive representations. As in a general case, a 
constructive representation of an algorithmic language has the 
form of a fundamental triad. 

Systems of algorithms are often algebras or calculi because 
there are rules of composition of algorithms and of inference 
or derivation of algorithms in such a system. Examples of 
composition are sequential composition of two algorithms 
when the result of the first algorithm is given as the input for 
the second algorithms and parallel composition of two 
algorithms when the result of them composition algorithm 
consists of the results of both composed algorithms. An 
example of inference or derivation is given by the following 
reasoning: if in a monotone logical calculus C, there are 
inference algorithms r and q, then their sequential composition 
also belongs to this calculus. 

However, there is an essential difference between logical 
and algorithmic languages with respect to problems of logic. In 
the syntactic context, semantics of a logical language, which is 
a language of formulas, can be ignored. For instance, it is 
possible to treat propositions simply as letters or words. In 
contrast to this, semantics and, especially, the dynamic 
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semantics of algorithmic languages are pivotal for logic. The 
reason is that to use algorithms, we need rules telling us how to 
apply these algorithms. Such rules, or sometimes they are 
called metarules, form the dynamic semantics of algorithmic 
languages. Algorithms together with metarules, which 
determine applications of the corresponding algorithms, are 
called second-level algorithms [15, 16]. 

III. LOGICAL CALCULI  
According to the theory of logical varieties [3 – 8], there are 

three kinds of logical calculi or simply, logics:  
1. Deductive or syntactic logical calculi. 
2. Functional or semantic logical calculi. 
3. Model or pragmatic logical calculi. 

Informally, a deductive or syntactic logical calculus C is a 
named set (A, H, T), in which A and T are sets of well-formed 
formulas and R consists of deduction (inference) rules.  

A functional or semantic logical calculus D is a named set 
(L, t, D), in which L is the set of well-formed formulas, D is 
the value domain, for example, in the classical logic, the value 
domain consists of two value T or 1 for true and F or 0 for 
false, and t is the valuation (function), which assigns values 
from D to the well-formed formulas from L. For instance, in 
the classical logic, t is the truth function. 

Finally, a model or pragmatic logical calculus M is a named 
set (T, r, M), in which T is a set of well-formed formulas, 
which belong to a syntactic logical calculus C = (A, H, T), M is 
a relational structure (model) and r is an interpretation of 
formulas from the language L in the relational structure M. 
such that all formulas from T are true. 

Here we are mostly interested in syntactic logical calculi. In 
the majority of cases, such calculi are logical system used to 
prove true formulas (called theorems) and model 
argumentation and reasoning. Basic building blocks for 
syntactic logical calculi are formulas from logical languages, 
algorithms/rules of logical inference and formula 
transformations, and metarules that determine how to apply 
algorithms/rules of logical inference to elements from logical 
languages. 

Let L be a logical language or a language of well-formed 
formulas and R be an algorithmic language, procedural 
language or a language of rules of inference in L. All 
expressions from R are descriptions of algorithms that work 
with words from L. A standard example of L is the first order 
predicate language or any language of mathematical logics. 
But practically L may be any language: natural, mathematical, 
programming, of chemical formulas, etc. Any language in 
which it is possible to describe inference rules is an example of 
R. However, R usually contains not only inference rules but 
also transformation rules. 

Definition 3.1. A syntactic (deductive) logical calculus in 
the pair of languages (L, R) is a triad (a named set [12] of the 
form C = (A, H, T) where H ⊆ R, A, T ⊆ L and T is obtained 
by applying algorithms/procedures/rules from H to elements 
from A. 

We consider two main types of deductive logical calculi: 
exact and relaxed (soft). 

In an exact deductive logical calculus C = (A, H, T), the 
system H consists of algorithms. 

In a relaxed deductive logical calculus C = (A, H, T), the 
system H consists of procedures some of which are not 
algorithms. 

Examples of exact deductive logical calculi are the 
syllogistic logic, classical propositional/sentential and 
predicate logics, intuitionistic logic, inductive logic, deontic 
logic, weak and strong paraconsistent logics, the logic of 
imperatives, different temporal logics, class logic, relevant 
logics, a variety of modal logics, the logic of values, the logic 
of norms, epistemic logic, erotetic logics, and so on and so 
forth.  

Examples of relaxed deductive logical calculi are dialectic 
logic, transcendental logic [17], a logic of diagnosis [18] and a 
logic of goal control [19]. 

Usually, two cases of logical calculi are studied and 
constructed: monotonic and non-monotonic. 

In the case of a monotonic logical calculus C, we have T = 
∪n=1

∞ Tn where T1 is equal to A, Tn is equal to H(Tn-1 ), and 
H(M) = { r(N); r ∈ H and N ⊆ M }. Another way to represent 
the set T in a monotonic logical calculus is to consider the 
closure H* of H with respect to compositions of algorithms. 
Then T = H*(A).  

In the case of a non-monotonic logical calculus C, axioms 
are changing with time and we have A = {An ; n = 1, 2, 3, …} 
and T = {Tn ; n = 1, 2, 3, … } where An is the system of axioms 
at time (period) n and Tn is the system of axioms at the same 
time. Sometimes rules of inference H also change with time. 

When L is a logical language and H consists of rules of 
logical deduction, C is a deductive calculus. The same 
syntactic logical calculus can be considered in different pairs 
of languages (L, R) as the following simple property shows. 

Lemma 3.1. If L1 ⊆ L2 and R1 ⊆ R2 , then any syntactic 
logical calculus in (L1 , R1) is a syntactic logical calculus in (L2 
, R2). 

 Usually we do not explicitly indicate in what pair of 
languages (L, R) a syntactic logical calculus is considered. 

Remark 3.1. It is possible to build/define a general 
syntactic calculus taking any language L and algorithmic 
language R with algorithms that work with words from L. 
Practically, L may be any language: natural, mathematical, 
programming, of chemical formulas, etc. For instance, when L 
contains descriptions and denotations of real/complex numbers 
and functions, while H consists of rules of 
differentiation/integration, C is the differentiation/integration 
calculus. Another example of a general syntactic calculus is 
any universal algebra (e.g., a group, ring or linear algebra over 
a field of real numbers). One more example of a general 
syntactic calculus is a productive representation of a language, 
i.e., a language is usually represented as a calculus (cf., 
Definition 2.4). 

Remark 3.2. In what follows, it is always assumed that H 
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forms a cumulative system, i.e., algorithms from H only add 
formulas or change them but never exclude formulas. At the 
same time, it is possible to consider both inclusive and 
exclusive algorithms. This brings us to nonmonotonic calculi, 
which formalize nonmonotonic reasoning and nonmonotonic 
logics. 

Definition 3.2.  a) A is called the axiom system (base or 
generating system if C is not a logical calculus) of the calculus 
C.  

b) H is called the system of inference rules of the calculus C.  
c) T is called the body (the set of theorems or set of the 

deducible expressions) of the calculus C. It is constructed by 
applying algorithms from H to expressions from A.  

Components of a syntactic calculus C = (A, H, T) are 
denoted as follows: A = A(C), H = H(C), and T = T(C). 

It is possible that the set of axioms A is empty or countably 
infinite. In the second case, this set is represented by axiom 
schemata, which contain variables for elements from the 
corresponding language L or/and from the alphabet of this 
language. 

Example 3.1. Let us consider the classical propositional or 
sentential logic/calculus. Many systems of propositional 
calculus have been devised to achieve consistency, 
completeness, and independence of axioms. All these systems 
are logically equivalent in the sense of Definition 3.2a. Thus, it 
is more correct to call these systems not the same calculus but 
logically equivalent representations of the classical 
propositional or sentential logic/calculus. 

For instance, Kleene suggests the following list of axioms 
(axiom schemas) of the classical propositional calculus [1]:  

φ → (χ → φ)                                                         (1) 
(φ → (χ → ψ)) → ((φ → χ) → (φ → ψ))               (2) 
φ → (χ → (φ ∧ χ))                                                 (3) 
φ → φ ∨ χ                                                             (4) 
χ → φ ∨ χ                                                              (5) 
φ ∧ χ → φ                                                             (6) 
φ ∧ χ → χ                                                              (7) 
(φ → ψ) → ((χ → ψ) → (φ ∨ χ → ψ))                   (8) 
(φ → χ) → ((φ →  χ) → ¬ φ)                                (9) 
    φ → φ                                                             (10) 
Usually the system of inference rules has only one rule 

called modus ponens: 
φ , φ → ψ ├ ψ 

or the natural/programming language notation 
If  φ and φ → ψ, then ψ. 

Other rules are derived from modus ponens and then used in 
formal proofs to make proofs shorter and more 
understandable. These rules serve to directly introduce or 
eliminate connectives, e.g.,  

“If φ and χ, then φ ∧ χ “ ( or  φ , χ ├ φ ∧ χ ) 
or  

“If φ, then φ ∨ χ “ ( or   φ├ φ ∨ χ ). 

A standard transformation rule is substitution. This rule is 
necessary because axiom schemas demand substitution to 
become axioms and be applied. Namely, formulas (1) – (10) 
are axioms when the system of inference rules includes the 
substitution rule (cf. Example 3.2) and are axiom schemas 
when the system of inference rules has only Modus Ponens 
[20]. 

Example 3.2. There are other representations of the 
classical propositional logic/calculus. Let us consider some of 
them. 

Thus, Church suggests two logically equivalent 
representations P1 and P2 for the classical propositional 
calculus [13]. The alphabet of P1 contains: one symbol of the 
logical operator ⊃, two punctuation symbols [ and ] , a 
constant symbol f, and a countable set of variables q, p, s, … . 

The system P1 has the following list of axiom schemata:  
[p ⊃ [q ⊃ p]]                                                  (1) 
[[s ⊃ [p ⊃ q]] ⊃ [[s ⊃ p] ⊃ [s ⊃ q]]]               (2) 
[[[p ⊃ f] ⊃ f ] ⊃ p]                                          (3) 
The system of inference rules of P1 contains two elements: 
1. Modus ponens:  p , p → q imply q  
2. Substitution Rule: p implies Sx

q p where Sx
q denotes 

the substitution of a variable x by a formula q. 
The alphabet of P2 contains: two symbols of logical 

operators ⊃ and ∼, two punctuation symbols [ and ] , and a 
countable set of variables q, p, s, … . 

The system P2 has the following list of axiom schemata:  
[p ⊃ [q ⊃ p]]                                                      (1) 
[[s ⊃ [p ⊃ q]] ⊃ [[s ⊃ p] ⊃ [s ⊃ q]]]                   (2) 
[[∼ p ⊃ ∼q] ⊃ [q ⊃ p]]                                         (3) 
The system of inference rules of P2 is the same as the system 

of inference rules of P1 . Namely, it contains: 
1. Modus ponens:  p , p → q imply q  
2. Substitution Rule: p implies Sx

q p where Sx
q denotes the 

substitution of a variable x by a formula q. 
Example 3.3. Let us consider the classical first-order 

predicate logic/calculus. Various systems of first-order 
predicate calculus have been devised to achieve consistency, 
flexibility, and independence of axioms. All these systems are 
logically equivalent in the sense of Definition 3.2a. 

Shoenfield suggests the following list of axiom schemata of 
the classical first-order predicate calculus [21]:  

Propositional Axiom:     φ ∨  φ 
Identity Axiom:     x = x  
Substitution Axiom:     φx[a] → ∃x φ  
Equality Axioms:   a)  If f is a symbol of an n-ary function 

from F, then  
x1 = y1∧x2 = y2,…, xn = yn → f(x1, x2,…, xn) = f(y1, y2, …, yn); 

b) If f is a symbol of an n-ary predicate from P, then  
x1 = y1∧x2 = y2,…, xn = yn → p(x1, x2,…, xn) = p(y1, y2, …, yn) 

The system of inference rules of the classical first-order 
predicate calculus contains two elements: 

Extension rule: φ implies φ ∨ ψ 
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Cancellation rule: φ ∨ φ implies φ  
Associative rule: (φ ∨ ψ) ∨ χ = φ ∨ (ψ ∨ χ)  
Cut rule: (φ ∨ ψ) and ( φ ∨ χ) imply (ψ ∨ χ) 
∃-introduction rule: φ → ψ implies ∃x φ → ψ if x is not a 

free variable in ψ. 
Example 3.4. Syntactic logical calculi provide functional 

formalization to the notion of a formal theory [20]. In turn, a 
formal theory formalizes some source theory from a scientific 
discipline (e.g., mathematics, physics or economics). In order 
to specify a formal theory, one first chooses a small collection 
of predicates, functions and relations, which are regarded as 
basic for a given field of study (groups, topological spaces or 
geometry). The chosen predicates delimit the scope of the 
formal theory. These predicates are the primitives of the theory 
and together with logical and punctuation symbols (such as the 
symbols ( or , ) form the alphabet of the theory (calculus) 
language. The language consists of expressions (functions, 
relations, and predicates) defined in terms of the primitives. 
Using them, one writes down certain predicates that are 
regarded as basic or self-evident within the given field of 
study. These predicates are the axioms of the theory. It is 
crucial to make all of underlying assumptions of the source 
theory explicit as axioms. Often this is not a simple task. One 
can compare formalization of the Euclidean geometry given by 
Euclid and Hilbert [22]. Using logical rules/algorithms of 
inference (usually, it is only Modus Ponens and substitution 
rule) theorems of the theory are deduced from the axioms. As a 
result, a formal theory is this structure of theory language, 
axioms, and theorems. 

The process of codifying a scientific discipline by means of 
primitives and axioms in the predicate calculus is known as 
formalization. The key issue here is the choice of primitives 
and axioms. They can be chosen arbitrarily but it is better to 
exercise a certain aesthetic touch and use the following 
principles: it must not be too many axioms; they must be basic 
and self-evident from the discipline’s point of view; and they 
must account for the largest possible number of other concepts 
and facts. 

In all given examples, the system H consists only of simple 
rules such as modus ponens and substitution. Thus it is 
possible to ask a question why in the definition of a calculus, it 
is necessary to consider algorithms and not only of simple 
rules such as modus ponens and substitution. The following 
example explains such a necessity. 

Example 3.5. Applications of logic, such as program 
verification, demand utilization of decidable inference rules. In 
logic/calculus with validation LV, all inference rules are 
decidable. In this calculus, H contains a variety of different 
algorithms in addition to inference rules. In particular, we have 
a decidable modus ponens: 

If p → q and it is validated that p is true, then q is true. 
To validate that a proposition is true may have different 

meanings. It can mean: 
a) To prove that p is true in the classical sense. 
b) To prove that p is true with ordinal induction. 

c) To test that p is true. 
In such a system, the pair of propositions p → q and p does 

not imply q if there is no algorithms in H to check p. If 
validation of propositions is temporary, i.e., it is true only for 
some time, then the logic/calculus with validation LV is 
nonmonotonic. Examples from mathematics of such temporary 
validation are given in the book [23]. 

Other kinds of inference rules (algorithms) are used in fuzzy 
logics [24, 25]. 

Proposition 3.1.  If C = (A, H, T) and D = (B, K, Q) are 
syntactic logical calculi in (L, R), A ⊆ B, and H ⊆ K, then T ⊆ 
Q. 

Let us assume that the algorithmic language R contains an 
identity algorithm E, for which E(w) = w for any expression w 
from L. Assuming that H can contain only the identity 
algorithm E, we have the following result. 

Lemma 3.2. Any subset Q of L is the body of some 
syntactic logical calculus C = (A, H, Q). 

This result shows that the concept of a syntactic logical 
calculus is very general and to get models better suited to tasks 
of logic, it is necessary to have some restrictions on those 
algorithms that are used in logical calculi. 

Lemma 3.3. For any syntactic logical calculus C = (A, H, 
T), we have A ⊆ T if H contains the identity algorithm. 

It is possible to define syntactic logical calculi by a closure 
operation. 

Proposition 3.2.  If a set of logical formulas B is closed 
with respect of inference rules H, then B is the set of all 
theorems of a syntactic logical calculus C with inference rules 
H. 

Corollary 3.1.  The intersection of the sets of all theorems 
of two syntactic logical calculi is the set of all theorems of a 
syntactic logical calculus. 

Corollary 3.2.  The intersection of the sets of all theorems 
of two classical syntactic logical calculi is the set of all 
theorems of a classical syntactic logical calculus. 

Special kinds of syntactic logical calculi are important for 
metalogic. 

Definition 3.3.  If A = L, then a syntactic logical calculus C 
= (L, H, T) is called a free syntactic logical calculus or a 
formal deduction system. 

Let us assume that H contains an identity algorithm E. 
Corollary 3.3. The body of a free syntactic logical calculus 

C = (L, H, T) is equal to L. 
Remark 3.3. There are free syntactic logical calculi in 

which the language L is infinite, but the body is finite. For 
instance, we can take the language of the classical 
propositional calculus as L and such rules of classical 
deduction that work only with formulas the length of which is 
less than 1000 as set of inference rules H. In this case, the 
body T of the calculus C = (L, H, T) is finite. 

Let L1 and L2 be logical languages, R1 and R2 be algorithmic 
languages with algorithms that work with words from L1 and 
L2, correspondingly, and f: L1 → L2 is a one-to-one mapping 
(bijection) of L1 onto L2. 
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Definition 3.4. a) Two syntactic logical calculi C = (A, H, 
T) in (L1 , R1) and D = (B, K, Q) in (L2 , R2) are called logically 
(or semantically) equivalent with respect to f if Q = f(T). This 
relation is denoted by C ~f

lg D. 
b) Two syntactic logical calculi C = (A, H, T) in (L, R) and 

D = (B, K, Q) in (L, R) are called logically (or semantically) 
equivalent if T = Q. It is denoted by C ~lg D. 

Proposition 3.3. Relation ~f
lg is an equivalence relation if 

and only if L1 = L2 and f is the identity mapping. 
Indeed, when f is not the identity mapping, we have f ≠ g = f 

-1 and thus, the relation C ~f
lg D does not imply the relation C 

~g
lg D. Consequently, ~f

lg is not reflexive and thus, not an 
equivalence relation. 

Sufficiency of conditions in Proposition 3.3 follows from 
Definition 3.4. 

Corollary 3.4. Relation ~lg is an equivalence relation. 
Axioms (or their schemata) and rules of inference define a 

proof theory. Such proof theories are usually considered 
equivalent when the corresponding calculi are logically 
equivalent. For instance, various equivalent proof theories of 
propositional calculus have been constructed (cf. Examples 3.1 
and 3.2). 

Definition 3.5. a) Two syntactic logical calculi C = (A, H, 
T) in (L1 , R1) and D = (B, K, Q) in (L2 , R2) are called 
algorithmically (or inferentially) equivalent with respect to f if 
B = f(A) and Q = f(T). It is denoted by C ~f

alg D. 
b) Two syntactic logical calculi C = (A, H, T) in (L, R) and 

D = (B, K, Q) in (L, R) are called algorithmically (or 
inferentially) equivalent if T = Q and A = B. It is denoted by C 
~alg D. 

Algorithmically equivalent logical calculi are usually 
considered as different axiomatizations of the same logic. 

Proposition 3.4. Relation ~f
alg is an equivalence relation if 

and only if L1 = L2 and f is the identity mapping. 
Corollary 3.5. Relation ~alg is an equivalence relation. 
Lemma 3.4. Algorithmic equivalence (with respect to f) 

implies logical equivalence (with respect to f). 
Syntactic logical calculi can be named by classes of 

algorithms to which their inference rules belong. For instance, 
there are finite automaton calculi, recursive calculi, and 
superrecursive calculi. 

Proposition 3.5. If the body T of a syntactic logical calculus 
C = (A, H, T) is finite, then C is logically equivalent to a 
nondeterministic finite automaton calculus.    

Proof. Let us consider a syntactic logical calculus C = (A, 
H, T) with the finite set T of theorems. Taking this finite set T 
of formulas and choosing some formula w from T, it is 
possible to build a deterministic finite automaton Aw with ε-
transition that given the empty word ε as its input, computes w 
and nothing else. When some other symbol is given to Aw, its 
output is ε. 

The finite automaton AT , which computes the set T, 
contains all automata Aw with w ∈ T. It is possible to do 
because there are only a finite number of such automata Aw. 
The automaton AT has the start state q0 that is different from 

the start states of all Aw and works according to the following 
rules. 

With the empty input, the automaton AT makes a transition 
to the start state q0w of one of the automata Aw . As AT is a 
nondeterministic automaton, it has a possibility to make a 
transition from q0 to any of the states q0w . After this transition, 
the automaton Aw computes the formula w, which is produced 
as the output of AT . In such a way, the automaton AT computes 
(deduces) all elements from T. 

When some other symbol is given to AT , it gives no output 
as there are no transition from q0 beside ε-transitions. 
Consequently, if we take K = {AT}, we obtain a 
nondeterministic finite automaton calculus C0 = (A, K, T), 
which is algorithmically and logically equivalent to C = (A, H, 
T). 

Proposition is proved. 
Remark 3.4. It is possible to prove by the same technique 

that C = (A, H, T) is algorithmically and logically equivalent to 
a deterministic finite automaton with ε-transitions syntactic 
calculus. 

Remark 3.5. If ε-transitions are not permitted, then the 
result of Proposition 3.5 is not true for deterministic finite 
automaton syntactic calculi. For example, when the set of 
axioms A is empty, the set of theorems a deterministic finite 
automaton syntactic calculus is also empty. 

Definition 3.6.  Two syntactic logical calculi C = (A, H, T) 
and D = (B, K, Q) are called axiomatically (or generatively) 
equivalent if T = Q and H = K. It is denoted by C ~ax D. 

Axiomatic equivalence of calculi informally means that 
given the same inference rules/algorithms, different axiom 
systems produce the same set of theorems. 

Definitions imply the following results. 
Lemma 3.5. The relation ~ax is an equivalence relation. 
Lemma 3.6. Axiomatic equivalence implies logical 

equivalence. 
Lemma 3.7. Two syntactic logical calculi C = (A, H, T) and 

D = (B, K, Q) are axiomatically and inferentially equivalent if 
and only if they coincide.  

Let us consider some specific classes of syntactic logical 
calculi. 

Definition 3.7.  A syntactic calculus C = (A, H, T) is called:  
(1) constructing if by means of the algorithms (rules) from 

H new constructions are elaborated; 
(2) transforming if by means of the algorithms (rules) from  

H expressions from L are only transformed; 
(3) closed with respect to A if all elements from A are used 

for the construction of the set T; 
(4) closed with respect to H  if  all algorithms from H are 

used for the construction of the set T; 
(5) basically closed if any algorithm from  H  may  be  

applied to any set of expressions from A; 
(6) transitively  closed  if  any  sequential  composition  of 

algorithms from H is admissible; 
(7) completely closed if it is closed with  respect  to A and H 

and is transitively closed; 
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(8) admissible if  T ≠ L, i.e., the set of theorem does not 
coincide with the whole language; 

(9) consistent with a subset P of the language L if T ∩ P = 
∅ where ∅ is an empty set; 

(10) complete with respect to a set F of algorithms/rules 
from R and a subset Q of L if the set Q can be constructed 
from T by means of F, i.e. Q ⊆ F(T); 

(11) consistent if T does not include contradictory (false) 
expressions from L (for example, expressions having the form 
a &  a when L contains standard logical connectives); 

(12) complete with respect to a mapping f: L → L if for any 
a ∈ L we have a ∈ T or f(a) ∈ T. 

For example, when L is a logical language with negation   
and we take f(a) =  a then completeness with respect to such f 
is the conventional completeness of a logical calculus. If we 
take any classical logical calculus C = (A, H, T) and P consists 
of some expressions having the form a& a, then consistency 
with P is equivalent to conventional definitions of consistency. 
From the point of view of classical logic, we are compelled to 
derive any conclusion from inconsistent premises. 
Consequently, any admissible classical calculus is consistent. 

At the same time, when we have an admissible but 
inconsistent knowledge system, accumulating reports of 
empirical observations can help in deciding in favor of one 
alternative over another, allowing one to restore consistency in 
many cases. However, practical situations show that even 
without restoring consistency, an inconsistent system can still 
produce useful information. Examples of admissible but not 
necessarily consistent syntactic logical calculi are given by 
different paraconsistent logics [26]. Relevant logics [27] give 
another class of examples of admissible but possibly 
inconsistent syntactic logical calculi. In these logics, efficient 
proof procedures infer only "relevant" conclusions with 
varying degrees of accessibility, as stated by the criteria of 
non-classical relevant entailment.  

Many of properties from Definition 3.7 are the same for 
logically equivalent calculi. 

Proposition 3.6. If C = (A, H, T) is an admissible 
(consistent with a subset P of the language L, complete with 
respect to a set F of algorithms/rules from R and a subset Q of 
L, consistent, complete with respect to a mapping f: L → L ) 
syntactic logical calculus and a syntactic logical calculus B = 
(B, K, Q) is logically equivalent to C, then B is an admissible 
(consistent with a subset P of the language L, complete with 
respect to a set F of algorithms/rules from R and a subset Q of 
L, consistent, complete with respect to a mapping f: L → L, 
respectively) syntactic logical calculus. 

Let us assume that all calculi are completely closed.  
Proposition 3.7. a) If T ⊆ L, H ⊆ R and H(T) = T, then T is 

the body of some transitively closed calculus with the system 
of inference rules H. b) If T is the body of a transitively closed 
calculus C = (A, H, T) and A ⊆ T, then H(T) = T. 

Let H includes an algorithm that defines the identity 
function on L. Then Proposition 3.3 implies the following 
results. 

Corollary 3.6. If H(T) ⊆ T, then T is the body of some 
transitively closed calculus with the inference rules H. 

 Corollary 3.7. The intersection of any set of bodies of 
transitively closed calculi is the body of some transitively 
closed calculus. 

 Any ordinary logical calculus will be completely closed if 
to the inference rules we add the identity operator on L.  

Proposition 3.8. A calculus C = (A, H, T) is transitively 
closed if and only if H(T) ⊆ T. 

 Let P ⊆ L and the whole L may be constructed by applying 
algorithms from H to an arbitrary element p from P.  

Proposition 3.9. A transitively closed calculus C = (A, H, 
T) is admissible if and only if it is consistent with P. 

Usually relations of some arity are considered in a set as 
subsets of direct powers of this set (cf. Denotations and Basic 
Definitions). In logic, we need a more general kind of relations 
defined between subsets of formulas and individual formulas. 
Let X be a set. Then a subset R of the direct product P(X) × X 
is called an abstract logic or logical structure [28]. 

The relation R is an abstract form of a consequence, or 
inference, relation in X. For instance, the inference relation ├ 
in conventional logic is derived from the consequence relation 
(denoted by ╟ ) of this logic. This consequence relation is 
called operational. The consequence relation is a subset of the 
inference relation. Application of one deduction rule, such as 
modus ponens, gives the consequence relation. Consecutive 
application of several deduction rules gives the inference 
relation. However, when the set of algorithms H is closed 
under sequential composition, inference and consequence 
relations coincide. Thus, the inference relation is a kind of the 
consequence relation. 

Besides, the operational consequence relation ╟ there are 
other types of consequence relations. For instance, there is the 
model consequence relation ⊨ when Φ╟ ψ if ψ is true in all 
models in which Φ is true. 

In non-monotonic logics, the operational consequence 
relation ∼ called a conditional assertion is used [29]. This 
relation Φ∼ ψ is interpreted as if Φ, normally ψ, or ψ is a 
plausible consequence of Φ. 

The consequence relation in an abstract logic determines a 
formal logical syntax. Logical syntax is not the same as the 
syntax of a logical language. The syntax or, more exactly, 
linguistic syntax of a logical language is defined/given by the 
rules of well-formed formulas construction. 

Definition 3.8. A consequence relation ╟ [in a calculus C = 
(A, H, T) ] is defined by the inference system H in the 
following way: for any system of formulas Φ and formula ψ, 
we have Φ╟ ψ if ψ∈ H(Φ), i.e., it is possible to deduce ψ 
from the formulas in Φ using the rules from H  [Φ╟C ψ if ψ∈ 
H(A ∪ Φ ), i.e., it is possible to deduce ψ from the formulas in 
A ∪ Φ using the rules from H ].  

In this case, H is called an operational semantics for the 
consequence relation ╟ .  

An operational semantics for the consequence relation ╟C is 
called an operational semantics for the logical calculus C. The 
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operational semantics for the logical calculus C can consists of 
algorithms of a definite type, e.g., recursive algorithms or 
inductive algorithms [11]. The type of algorithms determines 
the type of operational semantics. For example, all 
conventional logics have a recursive operational semantics. 
Inductive operational semantics allows one to use inductive 
Turing machines for logical inference.  

Definition 3.9. A inference relation├ [in a calculus C = (A, 
H, T) ] is defined by the inference system H in the following 
way: for any system of formulas Φ and formula ψ, we have 
Φ├ ψ if ψ∈ H*(Φ)  [Φ├C ψ if ψ∈ H*(A ∪ Φ ) ].  

Usually, logic is built from a logical calculus by adding 
truth (functional) and/or model (representational) semantics. 
The classical truth semantics is a mapping of all well-formed 
formulas of a logical language L into the set {True, False} or 
{T, F} or {1, 0}. It is always supposed all axioms, i.e., 
elements from the set A, are true. The truth semantics of a 
fuzzy logic is a mapping of all well-formed formulas of a 
logical language L into the set [0, 1]. The truth semantics of an 
intuitionistic logic is a mapping of all well-formed formulas of 
a logical language L into the set {True, False, Unknown}. 

In this context, the first Gödel incompleteness theorem has 
the following form. 

Theorem 3.1. The truth semantics of a formal system, 
which contains the formal arithmetic, cannot have (be defined 
by) an equivalent recursive operational semantics. 

A logical calculus with an inductive operational semantics is 
more powerful than a logical calculus with a recursive 
operational semantics and the same system of axioms. For 
instance, the main result from (Burgin, 2003) implies the 
following result. 

Theorem 3.2. The formal arithmetic with the truth 
semantics of can also have (be defined by) an equivalent 
inductive operational semantics. 

Usually each step of logical inference or deduction involves 
only a finite number of formulas. Thus, it is more reasonable 
to consider only finitely based abstract logics. 

Definition 3.10. A subset R of the direct product Pfin(X) × X 
is called a finitely based abstract logic or logical structure. 

Lemma 3.8. It is possible to represent any finitely based 
inference relation R in X as a union of n-ary relations in X, i.e., 
R ≅ ∪n=1

∞ Rn where ({x1 , x2 , … , xk }, z) ∈ R if and only if (x1 
, x2 , … , xk , z) ∈ Rk+1 for all k = 0, 1, 2, … , n , … . 

In logic, inference relations have additional properties. For 
instance, Kraus, et al, write, “Reflexivity (i.e., p → p) seems to 
be satisfied universally by any kind of reasoning based on 
notion of consequence” (Kraus, et al, 1990). However there 
are logics in which this is not true. 

Example 3.6. Let us consider a prediction logic/calculus 
PV. Its goal is to deduce future from the past and/or present. In 
this context, knowing that some proposition/predicate p has 
been true even for a long time, we cannot assert that p will be 
true tomorrow. 

The most notable example of such a situation is given by the 
famous model of a true empirical proposition that is attributed 

to Aristotle: 
All swans are white. 

Europeans had believed in this until they came to Australia 
where they found black swans and disproved this statement. 

Many scientific laws have found themselves in a similar 
situation. For instance, Newton’s laws were considered as 
absolute truth for centuries. However, relativity theory and 
quantum mechanics demonstrated limitations of these laws. A 
similar story happened to the famous Church-Turing Thesis, 
which one of the cornerstones of the contemporary computer 
science. For a long time, this Thesis was considered as 
absolute truth. Only recently with the advent of superrecursive 
algorithms, it was refuted ([11]. 

Definition 3.11. A formal consequence/inference relation R 
in X is called m-bounded if R ≅ = ∪n=1

m
 Rn . 

Definition 3.12. A formal consequence/inference relation R 
in X is called functionally m-bounded if the range Rg(R ) = 
∪n=1

m Rg(Qn ) where each Qn is an n-ary relation in X for n = 1, 
2, … , m. 

Informally, functional m-boundedness means that to get the 
range of R, we need only m-ary relations and relations of 
smaller arity. The range is important because if R is an 
inference relation in some actual logic, its range consists of all 
theorems of this logic. 

Definition 3.13. A formal consequence/inference relation R 
in X is called m-strict if R ≅ Rm . 

Definition 3.14. A formal consequence/inference relation R 
in X is called functionally m-strict if Rg(R ) = Rg(Qm ) where 
Qm is an m-ary relation. 

Let H be a system of (inference) algorithms/rules in a 
logical language L. 

Lemma 3.9. If the system H is closed with respect to the 
sequential composition of algorithms, then ├ = ╟. 

Theorem 3.3. For any syntactic logical calculus C = (A, H, 
T), we have T = { ϕ ∈ L; A ├C ϕ }. 

It is useful to specify the concept of a logical structure, 
making it closer to concrete logics and logical calculi.  

Let L be an arbitrary language and A and T be subsets of L. 
Definition 3.15. An abstract universal logical calculus U in 

a set X with a base A and inference relation F is a triad U = (A, 
F, T) such that F ⊆ P(X) × X and T = F(A) . 

Let L be a logical language and A and T be subsets of L. 
Definition 3.16. A formal universal logical calculus is an 

abstract universal logical calculus in a logical language L. 
Theorem 3.4. The consequence relation ╟C in C is 

functionally m-bounded in C if and only if for any pair ({x1 , x2 
, … , xk }, x ) from ╟C with k > m there is a set {x1 , x2 , … , xn 
} of element z in L such that ({x1 , x2 , … , xn }, x ) also 
belongs to ╟C and n < m + 1. 

Corollary 3.8. The consequence relation ╟C in C is 
functionally 2-bounded in C if and only if for any pair ({x1 , x2 
, … , xk }, x ) from ╟C there is an element z in L such that (z, x) 
also belongs to ╟C . 

Theorem 3.5. The inference relation ├C  in L with respect 
to C is functionally m-bounded in C if and only if for any pair 
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({x1 , x2 , … , xk }, x ) from ├C  with k > m there is a set {x1 , x2 
, … , xn } of element z in L such that ({x1 , x2 , … , xn }, x ) 
also belongs to ├C  and n < m + 1. 

Corollary 3.9. The inference relation ├C in L with respect 
to C is functionally 2-bounded in C if and only if for any pair 
({x1 , x2 , … , xk }, x ) from ├C there is an element z in L such 
that (z, x) also belongs to ├C . 

IV. LOGICAL VARIETIES AND PREVARIETIES  
According to the theory of logical varieties [3 – 8], there are 

three kinds of logical varieties and prevarieties:  
1. Deductive or syntactic logical varieties and prevarieties. 
2. Functional or semantic logical varieties and prevarieties. 
3. Model or pragmatic logical varieties and prevarieties. 

Informally, a deductive or syntactic logical variety Vd or 
prevariety is a named set (V, F, V), in which V is the union of 
sets Cj of well-formed formulas, each of which is the set of 
theorems of a syntactic logical calculus Cj , and F consists of 
function that glue together some formulas from the sets Cj .  

A functional or semantic logical variety or prevariety Vs is a 
named set (L, t, D), in which L is the set of well-formed 
formulas, D is the value domain, for example, in the classical 
logic, the value domain consists of two value T or 1 for true 
and F or 0 for false, and t is a multivalued function, which 
assigns values from D to the well-formed formulas from L. For 
instance, in the classical logic, t is the truth function.  

Finally, a model or pragmatic logical variety or prevariety 
Vm is a named set (T, r, M), in which T the union of sets Tj of 
well-formed formulas, each of which is the set of theorems of a 
syntactic logical calculus Cj , M is the union (amalgamation) of 
relational structures (models) Mjk and r is an interpretation of 
formulas from the language L in M such that all formulas from 
Tj are true in each Mjk . A topological n-dimensional manifold 
M (cf., for example, [30,31]) is an example of a model logical 
variety, in which the set T consists of axioms that define open 
domains in the Euclidean space Rn and relational structures 
(models) Mjk are components of M, which are homeomorphic 
to open domains in the Euclidean space Rn. 

Here we are mostly interested in syntactic logical varieties 
and prevarieties. Basic building blocks for syntactic logical 
varieties and prevarieties are logical syntactic calculi. 

Let K be some class of syntactic logical calculi with a 
logical language L, R be a set of inference rules, and F be a 
class of partial mappings from L to L.  

Definition 4.1.  A triad M = (A, H, M), where A and M are 
sets of expressions that belong to L, A consists of axioms of 
M, M consists of theorems of M, and H is a set of inference 
rules of M, which belong to the set R, is called:  

(1) a projective syntactic (K,F)-quasi-prevariety if there 
exists a collection of logical calculi  Ci = (Ai , Hi , Ti ) from K 
and a system of mappings fi : Ai → L and gi : Mi → L (i ∈ I) 
from F in which Ai consists of axioms and Mi consists of some 
(not necessarily all) theorems of the logical calculus Ci, such 
that the equalities A = ∪i∈I fi(Ai), H = ∪i∈I Hi and M = ∪i∈I 

gi(Mi) are valid; it is possible that Ci = Cj for some i ≠ j.  

(2) a syntactic K-quasi-prevariety if it is a projective 
syntactic (K,F)- quasi-prevariety where all mappings fi  and gi 
that define M are inclusions, i.e., A = ∪i∈I Ai and M = ∪i∈I Mi . 

Projective syntactic (K, F)-quasi-prevarieties are used for 
building syntactic (K,F)-quasivarieties as additionally 
logically organized structures. 

Definition 4.2. A projective syntactic (K, F)-quasi-
prevariety M = (A, H, M) is called: 

(1) a projective syntactic (K, F)-quasivariety with the depth 

k if for any i1 , i2 , i3 , … , ik from I either the intersections ∩j=1
 

k
fij(Aij) and ∩j=1

k
gij(Tij) are empty or there exists a calculus C = 

(A, H, T) from K and  projections f: A → ∩j=1
k
fij(Aij) and g: N  

→ ∩j=1
k
gij(Mij) from F where N ⊆ T;   

(2) a syntactic K-quasivariety with the depth k if it is a 
projective syntactic (K, F)-quasivariety with depth k in which 
all mappings fi  and gi that define M are bijections on the sets 
Ai and Mi , correspondingly. 

(3)  a (full) projective syntactic (K, F)-quasivariety if for 
any k > 0, it is a projective syntactic (K, F)-quasivariety with 
the depth k; 

(4)  a (full) syntactic K-quasivariety if for any k > 0, it is a 
K-quasivariety with the depth k.  

Projective syntactic (K, F)-quasi-prevarieties are also used 
for building syntactic (K,F)-prevarieties as logically structures 
with higher organization. 

Definition 4.3. A projective syntactic (K, F)-quasi-
prevariety M = (A, H, M) is called: 

(1) a projective syntactic (K, F)-prevariety if Mi = Ti for all 
i ∈ I; 

(2) a syntactic K-prevariety if it is a syntactic (K, F)-quasi-
prevariety in which Mi = Ti for all i ∈ I. 

We see that the collection of mappings fi and gi combines 
different calculi Ci  into an amalgamated system M called a 
prevariety or quasi-prevariety. In particular, mappings fi and gi 
allow one to establish a correspondence between axioms of 
different calculi. For instance, the Euclidean geometry and 
hyperbolic geometries have first four Euclid’s axioms in 
common. 

A fragmentation of a set of formulas in order to make a 
logical prevariety or quasi-prevariety allows separation of 
contradictory formulas making each calculus consistent and 
restricting interference of contradictory formulas. 

Definition 4.4. A projective syntactic (K, F)-quasi-
prevariety M = (A, H, M) is called: 

(1) a projective syntactic (K, F)-variety with the depth k if it 
is a projective syntactic (K, F)-quasi-prevariety in which Mi = 
Ti for all i ∈ I; 

(2) a syntactic K-variety with the depth k if it is a projective 
syntactic (K, F)-quasivariety with depth k in which Mi = Ti for 
all i ∈ I; 

(3) a (full) projective syntactic (K, F)-variety if for any k > 
0, it is a projective syntactic (K, F)-variety with the depth k; 

(4)  a (full) syntactic K-variety if for any k > 0,  it  is  a K-
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variety with the depth k.  

We see that the collection of the intersections ∩j=1
k
 fij(Aij) 

and ∩j=1
k
gij(Tij) makes a unified system called a variety out of 

separate logical calculi  Ci . In particular, mappings fi and gi 
allow one to establish a correspondence between theorems of 
different calculi. 

The main goal of syntactic logical varieties, quasivarieties 
and prevarieties is in presenting sets of formulas as a 
structured logical system using logical calculi, which have 
means for inference and other logical operations. Semantically, 
it allows one to describe a domain of interest, e.g., a database, 
knowledge of an individual or the text of a novel, by a 
syntactic logical variety dividing the domain in parts that allow 
representation by calculi. 

A fragmentation of a set of formulas in order to make a 
logical variety allows separation of contradictory formulas 
making each calculus consistent and restricting interference of 
contradictory formulas. 

In comparison with varieties and prevarieties, logical 
quasivarieties and quasi-prevarieties are not necessarily closed 
under logical inference. This trait allows better flexibility in 
knowledge representation and management. 

Definition 4.5. In the logical quasivariety, prevariety or 
variety M, which is built from the calculi Cj , these calculi 
used in the formation of M are called components of M.  

An example of a logical variety is a distributed database or 
knowledge base, each component of which consists of 
consistent knowledge/data. Then components of this 
knowledge/database are naturally represented by components 
of a logical variety. Besides, in one knowledge base different 
object domains may be represented. In these domains some 
object may have properties that contradict properties of an 
object from another domain. As an example let us consider a 
knowledge base containing mathematical information. 
Suppose that this information concerns some large 
mathematical field like topology or even its part – set-
theoretical topology. Mathematical logics are frequently 
considered to be the basis of mathematics while logical calculi 
are viewed as precise models and formalizations of real 
mathematical theories. But the theory of fields does not 
coincide with elementary (logical) theory of fields that is a 
deductive calculus.  

Indeed, in the theory of fields, such mathematical objects as 
fields of different characteristics are studied. In any fields of 
characteristic p, where p is a prime number, the formula ∀x ( 
px = 0) is valid, while in fields of characteristic 0, another 
formula ∀x∀n  (nx = 0) is true. Thus, if theory of fields with 
its subtheories, such as the theory of fields of characteristic p 
and theory of fields of characteristic 0, is represented as a 
single calculus, then both these formulae produce a 
contradiction. At the same time, a relevant logical variety in 
which subtheories are represented by its components provides 
means for consistent representation of the theory of fields. 

Inference in a logical variety M is restricted to inference in 
its components because at each step of inference, it is 

permissible to use only rules from one set Hi applying these 
rules only to elements from the set Ti . This allows one to 
better model non-monotonicity of human thinking.  

Indeed, the main difference between monotonic and non-
monotonic reasoning arises from the different kinds of 
knowledge used in the process of inference. For instance, in 
the case of non-monotonic reasoning an inference rule of the 
following type can be used: "A is true if B cannot be proved", 
i.e. to prove A the system relies on its ignorance of B. The 
statement B is not included in the system of initial axioms. 
That is why by the given above rule of inference, the statement 
A becomes true in the intellectual system. However, it is 
possible that B becomes proved at some stage of the inference. 
So in this situation, the intellectual system must invalidate A 
and even more - to revise each piece of knowledge depending 
on A. In this way the monotonic property of the consequence 
relation is violated. Usually, the statement A is excluded and 
the knowledge/belief revision takes place. Logical varieties 
allow not to eliminate knowledge/beliefs in the process of 
revision but to build a new component from which all 
knowledge/beliefs that contradict B are eliminated. In such a 
way, all previously obtained knowledge/beliefs are preserved. 

Although any logical calculus is a logical variety, this 
particular case does not give anything new in logic because 
logical calculi already exist in logic. A non-trivial example of 
logical varieties is given by many-sorted logics [32, 33]. In 
these logics, the variables range over different domains. 
Consequently, logical variables are "typed" as variables in 
many computer programming languages. Many-sorted logics 
allow one not to work with the domain of discourse as a 
homogeneous collection of objects, but to partition this 
domain into several parts with various functions and relations 
connecting them. In this case, these parts being formalized 
form a model variety, while the system of logics that describe 
these parts forms a syntactic variety.  

For instance, semantics of computer languages employ 
different types (domains) of data, such as the integers and the 
real numbers. Each domain has its own equality, relations, 
identities, and arithmetical operations. The logical language 
that describes the union of these domains will have two sorts 
of variables, real variables and integer variables. The meaning 
of a quantifier would be determined by the type of the variable 
it binds. The corresponding logic will be a logical variety built 
of two calculi. Intersection of these calculi will include such 
formulas as the commutative law  

x + y = y + x 
and the distributive law 

x(y + z ) = xy + xz 
Any big mathematical theory, such as group theory, ring 

theory or topology (theory of topological spaces), forms a 
syntactic logical variety. For instance, topology as the set of all 
consistent formulas in the formal language of topology 
contains many subtheories, such as the theory of Hausdorff 
spaces, the theory of metric spaces, the theory of normed 
spaces, the theory of hypermetric spaces, the theory of 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 4, 2017 

ISSN: 2313-0571 75



 

 

hypernormed spaces [34], the theory of manifolds, and the 
theory of supermanifolds [35].  

The field that is called in mathematics topology contains 
various subtheories [36]. Some of these subtheories contain 
inconsistent axioms and consequently, cannot be represented 
by one consistent logical calculus. For instance, in the theory 
of connected spaces, there is an axiom 

∀X (if X = Y ∪ Z & Y is closed and open, then Y = X) 
At the same time, in spaces of dimension zero, any point has 

a neighborhood, which is closed and open. These axioms are 
inconsistent for Hausdorff spaces. 

A similar situation also exists in other disciplines, for 
example, in archeology. Indeed, archaeological theory has 
been fragmented into a thousand fundamentalisms. By working 
on a broader set of empirical issues than ever before, 
archaeologists are indeed applying and refining a variety of 
perspectives when some of them are incompatible with others 
[37]. 

One more example of naturally formed logical varieties is 
the technique Chunk and Permeate used in artificial 
intelligence and common sense reasoning [38]. This technique 
suggests starting reasoning from inconsistent premises and 
proceeds by separating the assumptions into consistent theories 
(called by the authors chunks). In the context of the theory 
presented in this paper, such chunks are components of the 
logical variety shaped by them. After separation of chunks, 
Brown and Priest suggest to derive appropriate consequences 
utilizing only one component (chunk) at a time. Then those 
consequences are transfered to a different component (chunk) 
for further consequences to be derived. This is exactly the way 
how logical varieties are used to perform and model 
nonmonotonic reasoning [3]. Brown and Priest suggest that 
Newton's original reasoning in taking derivates in the calculus 
was of this form [38]. 

Logical varieties are used for modeling and exploration of 
mental processes because in contrast to pure logic human 
thinking and feelings are full with contradictions and 
inconsistencies [39]. 

An interesting type of logical varieties was developed in 
artificial intelligence and large knowledge bases. As Amir and 
McIlraith write, there is growing interest in building large 
knowledge bases of everyday knowledge about the world, 
comprising tens or hundreds of thousands of assertions [40, 
41]. However working with large knowledge bases, general-
purpose reasoning engines tend to suffer from combinatorial 
explosion when they answer user's queries. A promising 
approach to grappling with this complexity is to structure the 
content into multiple domain- or task-specific partitions. These 
partitions generate a logical variety comprising the knowledge 
base content. For instance, a first-order predicate theory or a 
propositional theory is partitioned into tightly coupled 
subtheories according to the language of the axioms in the 
theory. This partitioning induces a graphical representation 
where a node represents a particular partition or subtheory and 
an arc represents the shared language between subtheories.  

The technology of content partitioning allows reasoning 
engines to improve the efficiency of theorem proving in large 
knowledge bases by identifying and exploiting the implicit 
structure of the knowledge [40-42]. The basic approach is to 
convert a graphical representation of the problem into a tree-
structured representation, where each node in the tree 
represents a tightly-connected subproblem, and the arcs 
represent the loose coupling between subproblems. To 
maximize the effectiveness of partition-based reasoning, the 
coupling between partitions is minimized, information being 
passed between nodes is reduced, and local inference within 
each partition is also minimized.  

Additional advantage of portioning is a possibility to reason 
effectively with multiple knowledge bases that have overlap in 
content [40]. 

The tools and methodology of content partitioning and thus, 
implicitly of logical varieties are applied for the design of 
logical theories describing the domain of robot motion and 
interaction [43]. 

Concepts of logical varieties and prevarieties provide 
further an adequate base for  formalization of local 
mathematics [44 – 47], local logics [48], many-worlds model 
of quantum reality of Everett [49, 50], and pluralistic quantum 
field theory of Smolin, which is related to the many-worlds 
theory [51].  

Let us study possibilities of syntactic logical varieties and 
prevarieties in representation different formal systems. The 
following result is true for classical syntactic logical varieties, 
i.e., for syntactic logical varieties, in which all components are 
classical logical calculi [5]. 

Theorem 4.1. There is no finite classical syntactic logical 
variety, theorems of which coincide with all true statements of 
a formal system that contains the first order formal arithmetic.  

However, there are possibilities to use infinite classical 
syntactic logical varieties for such representations. To do this, 
we consider special cases of classical syntactic logical 
varieties. 

Definition 4.6. A syntactic logical variety T with calculi Cj 

= (Aj , Hj , Tj)  as its components is called a syntactic logical 
tower if j = 1, 2, 3, … and Cj ⊆ Cj+1 for all j, i.e., Aj ⊆ Aj+1 and 
Hj ⊆ Hj+1 .  

There are different types of syntactic logical towers. 
Definition 4.7. A syntactic logical tower T with calculi Cj = 

(Aj , Hj , Tj)  as its components is called a theorem tower if Aj ⊆ 
Aj+1 and Hj = Hj+1 for all j = 1, 2, 3, …  

Theorem towers of calculi were introduced and utilized for 
representation and exploration of dynamic aspects of formal 
theories [52]. 

Definition 4.8. A syntactic logical tower T with calculi Cj = 
(Aj , Hj , Tj)  as its components is called an inferential tower if 
Aj = Aj+1 and Hj ⊆ Hj+1 for all j = 1, 2, 3, …  

Lemma 4.1. In a syntactic logical tower T, the inclusion Tj 
⊆ Tj+1 is true for all j = 1, 2, 3, … 

Theorem 4.1 implies that a finite syntactic logical tower 
cannot contain all true statements of a formal system that 
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contains the first order formal arithmetic as its theorems. For 
infinite syntactic logical towers, this is not true. 

Theorem 4.2. There is a theorem tower T, theorems of 
which coincide with all true statements of the first order formal 
arithmetic.  

Corollary 4.1. There is a countable classical syntactic 
logical variety M, theorems of which coincide with all true 
statements of the first order formal arithmetic. 

However, properties of recursively axiomatizable formal 
systems [21] show that such a theorem tower T (syntactic 
logical variety M) cannot be recursively constructible.    

Theorem 4.3. There is no recursively constructible theorem 
tower T, theorems of which coincide with all true statements 
of the first order formal arithmetic.  

A similar result is true for inference towers. 
Theorem 4.4. There is no inference tower T with recursive 

inference rules, theorems of which coincide with all true 
statements of the first order formal arithmetic.  

Results from [11] show that for inductive inference rules 
this is not true. Namely, we have the following result. 

Theorem 4.5. There is an inference tower T with inductive 
inference rules, theorems of which coincide with all true 
statements of the first order formal arithmetic.  

However, it is important to have an infinite tower. 
Theorem 4.6. There is no finite inference tower T with 

inductive inference rules, theorems of which coincide with all 
true statements of the first order formal arithmetic. 

These results show differences between logical varieties and 
prevarieties with finite and infinite number of components. 

V. CONCLUSION 
 
Basic properties of fundamental logical systems, such as 

syntactic logical calculi, varieties and prevarieties, have been 
explored. Relations between axiom systems (such as axiomatic 
equivalence), systems of inference rules/algorithms (such as 
algorithmic equivalence), and different calculi ((such as 
logical equivalence) have been described. The inherent 
structure of logical calculus has been explicated and 
formalized as the first step in the development of metalogic. 
This approach allows one to study how logical languages are 
built and what is a general schema of theorem derivation from 
axioms in a logical calculus.  

The second step in the development of metalogic is done by 
the construction and exploration of syntactic logical varieties 
and prevarieties. Here many properties of the special kind of 
syntactic logical varieties called towers are obtained. 

There are several directions for future research. It would be 
interesting to study the inner structure of the set of theorems. 
For instance, it is possible to stratify this set by complexity of 
theorem inference, time of inference or by other relations 
between theorems. Inference complexity can be estimated by 
the length of inference, by the maximal length of formulas 
utilized in the inference procedure or by the complexity of 
algorithms used for inference. 

Another important direction is to study other types of logical 
calculi, varieties and prevarieties that is, model and semantic 
calculi, varieties and prevarieties, from an algorithmic 
perspective. 

Practical applications of logical varieties and prevarieties 
show that they provide efficient tools for program integration 
and interoperability [43]. Thus, it would be useful to utilize 
logical varieties and prevarieties in software engineering and 
database development. 
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