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Abstract—The concept of a Hardy-Roger contraction self-

mapping and its fixed point results have many applications in the 

various branches in mathematics. However, these results can not be 

applied in the global optimization problems. This is the motivation 

for improving the idea of a Hardy-Rogers contraction self-mapping to 

the sense of nonself-mappings since the best proximity point result 

for such mappings has some relation with the global optimization 

problems. The main aim of this paper is to define the new generalized 

Hardy-Rogers nonself-contraction mappings and prove the best 

proximity point result for such mappings.  

 

Keywords— -best proximity points, Hardy-Rogers contraction 

mappings, partially ordered metric spaces.  

I. INTRODUCTION 

ISTORICALLY, the idea of a complete metric space is 

interesting and it has important applications in the 

classical analysis, especially in the existence and uniqueness 

theories on one hand while on the other hand the Banach 

contraction mapping principle (BCP) by Banach [1]. This 

principle is one of the pivotal results of analysis. It is widely 

considered as the source of metric fixed point theory.  

 

Theorem 1.1. ([1]). Let  ,X d  be a complete metric space 

and a mapping  :T X X  be a Banach contraction 

mapping, that is, there exists  0,1k   such that 

   , ,d Tx Ty kd x y  for all ,x y X . Then T  has 

unique a fixed point. 

 

A generalization of the above principle has been heavily 

investigated in many branches of research. Several researchers 

extended this principle to many ways. In 1973, Hardy and 

Rogers [4] generalized the idea of a Banach contraction 

mapping and established a fixed point theorem as follows: 

 

Theorem 1.2. Let  ,X d  be a metric space and T  be a self-
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mapping on X  satisfying the following condition for all 

,x y X : 

     , , ,d Tx Ty ad x Tx bd y Ty    

      ,, ,  ,cd x Ty ed y Tx fd x y   (1.1) 

where , , , ,  a b c e f  are nonnegative real numbers. Suppose 

that :  a b c e f      . Then the following assertions 

hold. 

(a) If X  is complete and  1  , then T  has a unique 

fixed point.  

(b) If (1.1) is modified to the condition ,x y X  implies 

     , , ,d Tx Ty ad x Tx bd y Ty   

     , ,  ,cd x Ty ed y Tx fd x y     

and in this case we assume X  is compact, T  is 

continuous and  1  , then T  has a unique fixed point. 

 

On the other hand, many researchers investigated the fixed 

point problem in case of nonself-mapings, called the best 

proximity point problem, which is first introduced by Fan [3]. 

Here, we give the idea of the best proximity point. 

 

Definition 1.3. Let ,A B  be two nonempty subsets of a metric 

space  ,X d . A point x A  is said to be a best proximity 

point of a given mapping :T A B  if  

   , ,d x Tx d A B , 

where  ,d A B  inf  { , :d a b a A  and }b B . 

 

The aim of this paper is to generalize the fixed point 

theorem for Hardy-Rogers contraction mappings to the  -

best proximity point theorem. First, we introduce the new 

contraction mapping which is called a generalized Hardy-

Rogers  ,F  -proximal contraction mapping and then we 

establish the best proximity point theorem for such mappings 

in partially ordered metric spaces. 

II. PRELIMINARIES 

First of all, we give some notations for using in this paper as 

follows:  

A generalized Hardy-Rogers type with  -best 

proximity point result 

Aphinat Ninsri and Wutiphol Sintunavarat 
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  ,X d  denotes a metric space, 

  denotes a partial order on X , 

 ,A B X , 

 the set 0A  and 0B  are defined by 

   0 :{ , ,A a A d a b d A B    for some }b B ,  

   0 :{ , ,B b B d a b d A B    for some }a A . 

 

In 2012, Basha [2] introduced some definition as follows: 

 

Definition 2.1 ([2]). Let ,A B  be nonempty subsets of a 

metric space  ,X d  and  be a partial order on X . A 

mapping :T A B  is called proximally increasing if for 

all 1 2 1 2, , ,x x y y A ,  

   

   

1 2

1 1 1 2

2 2

,

, , , .

, ,

x x

d y Tx d A B y y

d y Tx d A B




 


 

 

 

Definition 2.2 ([2]). Let ,A B  be nonempty subsets of a 

metric space  ,X d  and  be a partial order on X . A 

mapping :T A B  is called proximally increasing on 0A  

if for all 1 2 1 2 0, , ,x x y y A ,  

   

   

1 2

1 1 1 2

2 2

,

, , , .

, ,

x x

d y Tx d A B y y

d y Tx d A B




 


 

 

 

We denote  by the set of all functions 

   
3

: 0, 0,F     satisfying the following conditions:  

(F1) max   , , ,a b F a b c  for all  , , 0,a b c  , 

(F2)  0,0,0 0F  , 

(F3) F  is continuous. 

 

The set of all zeros of the function  : 0,A    is 

denoted by 

  }: 0{Z x A x     . 

 

The set of all best proximity points of a nonself-mapping 

:T A B  is denoted by 

     : , ,{ }estB T x A d x Tx d A B   . 

 

In 2017, Isik et al. [5] introduced the notion of  -best 

proximity points as follows: 

 

Definition 2.3. Let ,A B  be nonempty subsets of a metric 

space  ,X d  and : [0, )A    be a function. An 

element x A  is called a  -best proximity point of the 

nonself-mapping :T A B  if 

 estx B T Z

  . 

III. MAIN RESULTS 

First, we introduce the new contraction mapping as follows:  

 

Definition 3.1. Let ,A B  be two nonempty subsets of a 

partially order metric space  , ,X d ,  :  0,A    be 

a function and F  . A mapping :T A B  is called a 

generalized Hardy-Rogers ( , )F  -proximal contraction if 

   

   

,

, , ,

, ,

x y

d u Tx d A B

d v Ty d A B




 


 

 

             1, , , , , ,F d u v u v a F d x y x y   

               2 , , ,a F d x u x u    

      3 , , ,a F d y v y v   

      4 , , ,a F d y u y u   

      5 , , ,a F d x v x v   (3.1)  

for all , , ,x y u v A , where  1 2 3 4 5, , , , 0,a a a a a    with 

1 2 3 4 5 1a a a a a     . 

 

Next, we establish a new  -best proximity point theorem 

for generalized Hardy-Rogers  ,F  -proximal contraction 

mappings. 

 

Theorem 3.2. Let ,A B  be two nonempty subsets of a 

partially order complete metric space  , ,X d  and 

:T A B  be a generalized Hardy-Rogers  ,F  -proximal 

contraction mapping with  0 0T A B . Suppose that T  is 

proximally increasing on 0A ,  : 0,A    is lower semi-

continuous and there exist elements 0 1 0,x x A  with 0 1x x  

and    1 0, ,d x Tx d A B . If the following condition 

holds: 
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(F4)      , , ( ), ( ) ,  , ( ), ( )F d a b c e F d a f c g     

  , , ( ), ( )F d f b g e 

 

for all , , , , ,a b c e f g X , then T  has a unique  -best 

proximity point in 0A . 

 

Proof. First of all, we assume that A  is a best proximity 

point of T  and then    , ,d T d A B   . Using (3.1) 

with x y u v     , we obtain 

    

      1 2 3 4 5

0, ,

0, , ,

F

a a a a a F

   

       
 

and so 

    0, , 0F      .           (3.2) 

From (F1), we obtain 

      0, ,F      .        (3.3) 

It follows from (3.2) and (3.3) that   0    and hence 

 estB T Z .               (3.4) 

By assumption of this theorem, there exists 0 1 0,x x A  with 

0 1x x  such that 

   1 0, ,d x Tx d A B .           (3.5) 

Since  1 0 0Tx T A B  , there exists an element 2 0x A  

such that 

   2 1, ,d x Tx d A B .           (3.6) 

As T  is proximally increasing on 0A , we obtain 

1 2x x . 

By similarly process, we can construct a sequence   0nx A  

such that 

1n nx x                   (3.7) 

and 

   1, ,n nd x Tx d A B             (3.8)  

for all  0n  . If there exists  ' 0n    such that 

' ' 1n nx x  , then 

     ' ' ' 1 ', , ,n n n nd x Tx d x Tx d A B  .    (3.9)  

Therefore, 'nx  is a best proximity point of T  and we are 

done. So, we suppose that 1n nx x   for all  0n  . By 

a generalized Hardy-Rogers  ,F  -proximally contractive 

condition, we have 

      

      

      

      

      

      

1 2 1 2

1 1 1

2 1 1

3 1 2 1 2

4 1 1 1 1

5 2 2

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

F d x x x x

a F d x x x x

a F d x x x x

a F d x x x x

a F d x x x x

a F d x x x x

 

 

 

 

 

 

   

 

 

   

   

 











  

for all {0}n  . It follows that 

      

      

      

1 2 1 2

1 2
1 1

3

5
2 2

3

, , ,

, , ,
1

, , ,
1

n n n n

n n n n

n n n n

F d x x x x

a a
F d x x x x

a

a
F d x x x x

a

 

 

 

   

 

 

 
  

 

 
 

 

 (3.10) 

for all {0}n  . From (F4), we obtain 

 

      

      

      

1 2 1 2

2 2

1 1

, , ,

, , ,

, , ,

n n n n

n n n n

n n n n

F d x x x x

F d x x x x

F d x x x x

 

 

 

   

 

 





     (3.11) 

for all {0}n  . From inequalities (3.4) and (3.5), we 

have 

      

      

      

      

2 2

1 1

1 2
1 1

3

5
2 2

3

, , ,

, , ,

, , ,
1

, , , ,
1

n n n n

n n n n

n n n n

n n n n

F d x x x x

F d x x x x

a a
F d x x x x

a

a
F d x x x x

a

 

 

 

 

 

 

 

 

 
  

 

 
 



 

 (3.12) 

that is, 

      

      

2 2

1 2 3
1 1

3 5

, , ,

1
, , ,

1

n n n n

n n n n

F d x x x x

a a a
F d x x x x

a a

 

 

 

 

   
  

  

 

                     (3.13) 

for all {0}n  . Substituting (3.13) into (3.10), we 

obtain 

      

      

1 2 1 2

1 2 5
1 1

3 5

, , ,

, , ,
1

n n n n

n n n n

F d x x x x

a a a
F d x x x x

a a

 

 

   

 

  
  

  

 

(3.14) 
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for all {0}n  . Similarly, we may exchange 1a  with 

3a  and 5a  with 4a  to get 

      

      

1 2 1 2

2 3 4
1 1

1 4

, , ,

, , , .
1

n n n n

n n n n

F d x x x x

a a a
F d x x x x

a a

 

 

   

 

  
  

  

 

(3.15) 

for all {0}n  . From (3.14) and (3.15), we can 

conclude that 

      

      
1 2 1 2

1 1

, , ,

, , ,

n n n n

n n n n

F d x x x x

F d x x x x

 

  

   

 
     (3.16) 

for all {0}n  , where 

:   min
1 2 5 2 3 4

3 5 1 41
.

1
,

a a a a a a

a a a a

   

   

     
    
    

 

Therefore, 

      

      
1 2 1 2

1

0 1 0 1

, , ,

, , ,

n n n n

n

F d x x x x

F d x x x x

 

  

   


     (3.17) 

for all {0}n  . From (F1), we obtain 

max     1 2 1, ,n n nd x x x    

      1

0 1 0 1, , ,n F d x x x x         (3.18) 

and so 

 

      
1 2

1

0 1 0 1

,

, , ,

n n

n

d x x

F d x x x x  

 


      (3.19) 

for all {0}n  . Next, we will show that  nx  is a 

Cauchy sequence. Let ,m n  such that m n . From 

(3.19) and using triangular inequality, we obtain 

 

     

      

      

      

1 2 3 1

1 1

0 1 0 1

1

0 1 0 1

0 1 0 1

,

, , ,

( ) , , ,

( , , ,

, , ,

)

1

n m

n n n n m m

n n m

n n

n

d x x

d x x d x x d x x

F d x x x x

F d x x x x

F d x x x x
a

    

   


 

   

 





  

  

 






 
 





                       (3.20) 

Taking n   in (3.20), we get ( , ) 0n md x x  . 

Therefore,  nx  is a Cauchy sequence. Since 0A  is 

complete, there exists 0x A  such that nx x , that is,  

 lim , 0n
n

d x x


 .             (3.21) 

Now, we will show that x  is a  -best proximity point ofT . 

From (3.18), we get 

 1lim 0n
n

x 


 .               (3.22) 

From (3.21), (3.22) and the lower-continuity of  , 

  0x  .                 (3.23) 

Since 0x A  and  0 0T A B , there exists 
0x A  such 

that 

 ,( ) ,d x Tx d A B  .            (3.24) 

By (3.1), (3.8) and (3.24), we obtain 

 

      
1 1( ( ) ( ))

.

, , ,

, , ,

n n

n n

F d x x x x

F d x x x x

 

  

 

 


        (3.25) 

Taking limit as n   in (3.25) and using (3.21)-(3.23), 

(F2) and the continuity of F , we get 

 ( ( ) ( ), ,0, 0,0,0 0)F d x x x F     . 

From (F1), it implies that 0( ),d x x   and then x x . By 

(3.24) we get 

   , ,d x Tx d A B . 

That is, x  is a  -best proximity point of T . 

  

IV. CONCLUSIONS AND OPEN PROBLEM 

Building from the ideas of Hardy and Rogers [4], we define 

the new generalized contractive condition for nonself-

mappings. Moreover, we establish new best proximity point 

for such a mapping in partially order metric spaces. Based on 

the fact that this result can be solved the problems for nonself-

mappings, we can apply this result for solving some global 

optimization problems. This is advantage of the main result of 

this paper. 

Finally, we give a question for readers as follows: 

Problem: How to prove the uniqueness of a  -best proximity 

point of T  in Theorem 3.2? 
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