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Abstract—The  aim of this paper is to study some properties of 
filters in Michálek's fuzzy topological spaces, which are quite 
different of the classic properties of fuzzy topology. That continues a 
previous paper of this author. 
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I. INTRODUCTION  
    The first notion of fuzzy topological spaces has been 
defined by C.L. Chang, in 1968 [1]. This definition is the 
natural translation to fuzzy sets of the ordinary notion of 
topological spaces. J.Michálek defined and studied another 
concept of fuzzy topological space [2] which is quite different 
of the classic Chang's definition. We have studied in [3] some 
properties of these new spaces, as C.K. Wong proposed in his 
review [4] of Michálek's paper. Now, we will study filters in 
Michálek's fuzzy topological spaces. 
 
     First, we give some previous definitions: 

 

Definition 1.[2]  Let X be a non-empty set, let P (X) be the 
system of all subsets of the set X, and IX is the system of all 
fuzzy sets in X. A pair 〈 X,u 〉  is called fuzzy topological 

space supposing that u is a mapping from P (X) to IX 
satisfying the following three axioms: 

1. if  A⊂X, then u A(x)=1  for all x∈A, 

2. if A⊂X contains at most one element, then u A(x)= Aχ  (x), 

where Aχ is the characteristic function of the set A, 

3. if A1⊂X, A2⊂X, then u(A1∪A2)(x)=max{uA1(x),uA2(x)} 
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Definition 2. ([1]) Let X and Y be two sets and let  ϕ  be a 
map from X to Y. Let μ be a fuzzy set in Y, then the inverse 
image of μ, written as ϕ ⁻ ¹(μ), is defined by 
ϕ ⁻ ¹(μ)(x)=μ(ϕ (x)) for all x in X. Conversely, if  υ is a fuzzy 
set in X, the image of ν, written as ϕ (υ) is a fuzzy set in Y  

given by ( )( )yϕ ν =  

}1 1( ) / ( ) ,{ ( Ø)sup x x y if yν ϕ ϕ− −∈ ≠  

or 0, otherwise. 

Definition 3. ([3]) Let 〈 X,u 〉 , 〈 Y,v 〉 be two Michálek's 
fuzzy topological spaces and let ϕ   be a map from X to Y. 
We say that  ϕ  is compatible with u and v if, for all 

B∈ P (Y), we have that u(ϕ ⁻ ¹(B))= ϕ ⁻ ¹(v(B)). 

Definition 4. ([2]) Let A⊂X, Ac = X-A, then the fuzzy set 

oA
µ where oA

µ (x)=1-uAc(x) is called the fuzzy interior set of 

the set A. 

Definition 5. ([2]) A subset U⊂X is called to be a fuzzy 
neighborhood of an element a∈X if u(a)(x)≤ oU

µ (x) for every 

x∈X. 

  Lemma 1. ([2]) A set U⊂X is a fuzzy neighborhood of an 
element a∈X if and only if  uUc(a)=0. 

 Definition 6. ([2]) Let 〈 X,u 〉  be a fuzzy topological 
space, a∈X, we denote Σ(a)={U⊂X∣uUc(a)=0}. 

 

II. MAIN RESULTS 

Proposition 1. Let 〈 X,u 〉  and 〈 Y,v 〉 be two fuzzy 
topological spaces, and ϕ :X→Y be a compatible map with u 
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and v, W⊂Y, a∈X. Then W is a fuzzy neighborhood of ϕ  (a) 
in 〈 Y,v 〉 if and only if ϕ ⁻¹(W) is a fuzzy neighborhood of a 
in 〈 X,u 〉 . 
Proof. u(ϕ ⁻¹ (W))c(a)=uϕ ⁻¹(Wc))(a)= 

ϕ ⁻¹(v(Wc))(a)=v(Wc)(ϕ (a)), and W is a fuzzy neighborhood 
of ϕ  (a), if and only if v(Wc)(ϕ (a))=0 (i.e. 
u(ϕ ⁻¹(W))c(a)=0), and ϕ ⁻¹(W) is a fuzzy neighborhood of a. 

 Corollary. Let 〈 X,u 〉  and 〈 Y,v 〉 be two fuzzy topological 
spaces, and ϕ :X→Y be a compatible map with u and v, then 
ϕ ⁻¹(Σ(ϕ (a))⊂Σ(a) for every a∈X. 

  Definition 7. Let X be a non-empty set. A filter on X is a 
non-empty family F ⊂ P (X) with all members of F non-
empty, and which has the following properties: 

i) Every finite intersection of sets in F belongs to it. 

ii) ii) Every subset of X which contains a set of F  
belongs to F . 

  Remark 1. Let X and Y be two non-empty sets and ϕ be a 

map from X to Y. If F is a filter on X, then  

{C⊂Y / C⊃ ϕ  (F) for some F∈ F } is other filter on Y. We 

will denote this filter as ϕ  ( F ). 

We will define and study convergence of filters on Michálek's 
fuzzy topological spaces. This is interesting, because the 
results are quite different of respective for ordinary topological 
spaces. 

  Definition 8. Let 〈 X, u 〉  be a fuzzy topological space and 

be a filter  F on X. A point a∈X will be a limit of F , 
if F contains the systems of neighborhoods Σ(a) of a. 

  Definition 9. Let 〈 X,u 〉 be a fuzzy topological space and 

F  be a filter on X. A point a∈X will be a cluster point of F , 
if every fuzzy neighborhood of a meets every member of F . 

Remark. Obviously, every limit of a filter is a cluster point of 
it. 

Proposition 2. Let 〈 X,u 〉  and 〈 Y,v 〉 be two fuzzy 
topological spaces, and  ϕ :X→Y be a compatible map with u 

and v. Then, for every point a∈X and every filter F  on X 
convergent to a, we have that ϕ  ( F ) converges toϕ  (a). 

  Proof. For every fuzzy neighborhood W of ϕ  (a), we  have 
(by Proposition 1) that ϕ ⁻¹(W) is a fuzzy neighborhood of a. 

Then, ϕ ⁻¹(W) ∈ F and W∈ϕ ( F ). 

   Proposition 3. Let 〈 X,u 〉  and 〈 Y,v 〉 be two fuzzy 
topological spaces, and ϕ :X→Y be a map such that for every 

point a∈X and every filter  F on X such that F  converges to 
a, is ϕ  ( F ) convergent toϕ  (a).Then, ϕ  is not necessarily 
compatible with u and v. 

Proof. Let X be an infinite set, and u: P  (X)→IX defined by  

u A= Aχ  if A is finite, and u A=c₁ (the constant map of value 

1) if A is infinite. 

Let Y be a set, and v: P (Y)→IY defined by v B= Bχ  for all 

subset B of Y. 

Thus, the respective systems of neighborhoods are: 

If a∈X, Σ(a)={A⊂X ∣ uAc(a)=0}={A⊂X ∣ uA (a)=1}= 

 {A⊂X ∣ A is finite and a∈A}∪{A⊂X ∣ A is infinite}. 

 If b∈Y, Σ (b)={B⊂Y ∣ b∈B}. 

Let a be an arbitrary point of X and  F  be an arbitrary filter 
on X which converges to a (i.e. Σ(a)⊂ F , then {a}∈ F , and 
{ϕ  (a)}∈ ϕ  ( F )).Then Σ (ϕ  (a))⊂ ϕ  ( F ), that is, ϕ  ( F ) 
converges to ϕ  (a). 

But, if B⊂Y, ϕ ⁻¹(vB)= 1( )Bϕ
χ −  and u(ϕ ⁻¹(B)) is 1( )Bϕ

χ −  

only if ϕ ⁻¹(B) is finite, and c₁ in other case. Then, ϕ  is not 
compatible with u and v. 

 Remark. In General Topology, for topological spaces, a point 
is a cluster  point of a filter on X if and only if it lies in the 
closure of all the members of the filter. For Michálek's fuzzy 
topological spaces, the situation is also quite different. 

  Proposition 4. Let 〈 X,u 〉  be a fuzzy topological space, 

a∈X, and F  be a filter on X. Then, if a is cluster point of F , 

that is not equivalent to uF (a)=1 for all F∈ F . 
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 Proof. Let X be an infinite set, and u: P (X)→IX  defined (as 
above)  by  u A=χA if A is finite, and u A=c₁ (the constant map 
of value 1) if A is infinite. Then 〈 X,u 〉 is a fuzzy topological 
space and for every a∈X, Σ(a)={A⊂X∣ uAc(a)=0}={A⊂X ∣ uA 
(a)=1}= {A⊂X∣ A is finite and a∈A}∪{A⊂X∣ A is infinite}. 

So, if F ={X-F∣ F⊂X, and F is finite}, for every a ∈X, 
{a}∈Σ(a) and X-{a}∈ F . 

Then, the  filter F has not cluster points in 〈 X,u 〉 . But, for 

every F∈ F , F is infinite, then F∈ Σ(a), or equivalently, uF 
(a)=1 for every F∈ F . 
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