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Abstract– This research belongs to the field of
functional equations started by J.Aczel in 1969. The
aim of this paper is to present a generalization of the
functional equation F (x, y) + z = F (x + z, y + z)
on the pseudo-analysis. If the function F is unknown,
the mentioned expression is called distributivity equa-
tion and many authors have given the solutions. Here,
in order to generalize this equation, we introduce
the pseudo-operations: called pseudo-addition ⊕,
pseudo- difference 	 and pseudo-multiplication �.
Then, we transform the mentioned equation in another
equation in which the common addition + has been
replaced by the pseudo-addition ⊕. We study the new
equation: F (x, y)⊕ z = F (x⊕ z, y ⊕ z) and we are
able to find the solutions. Really, we give the class of
all solutions, depending on two arbitrary functions.

Keywords– Pseudo-operations, distributivity property,
functional equations

I. INTRODUCTION

The setting of this paper is the pseudo-analysis,
introduced by Pap and his colligues [18, 16, 19].

Many authors have applied the pseudo-analysis
in different setting: generalized derivatives, Laplace
transform, functional equations, partial differential
equations, fluid dynamics, theory of the pseudo-
integration. In the bibliography we recall only the
most important papers [20, 21, 22, 23, 24, 25, 28, 33,
34, 6, 7, 9, 10, 11, 13, 26, 27].
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Here we present only the application to the func-
tional equations. This research continues a study on
Functional Equations stared in 2002 with the contri-
bution of P.Benvenuti and M.Divari [8].

Here, we shall introduce generalized opera-
tions, called pseudo-addition, pseudo-difference and
pseudo-multiplication: ⊕,	 and �. Through these
operations we shall study the equality:

F (x, y)⊕ z = F (x⊕ z, y ⊕ z). (1)

In classical setting, when the pseudo-addition⊕ is the
common addition +, the (1) is

F (x, y) + z = F (x+ z, y + z), (2)

and it has different meanings.
If the function F is assigned, the equality (2)

is the distributivity property of the common addition
with respect to F , (see [14, 37]).

If the function F is unknown, the (2) is a func-
tional equation [1] and it was been studied by many
authors in different setting.

In general information theory without probability
(see[12, 15]), the equation (2) has been called com-
patibility equation, because it is linked to the inde-
pendence property among crisp sets [3]. I n this case,
this equation (2) was solved by Benvenuti and oth-
ers authors, (see [2, 4]). Later, we have introduced
a generalization of independence property by using
the pseudo-analysis [29, 31]. Then in [30] we have
considered the measure of the union of two disjoint
sets and in this setting the equation (1) appears as an
equation which represent the independent property in
pseudo-analysis.

The aim of this paper is to look for the solutions
of the equation (1). Really, it is possible to find the
class of solutions Fp,q, depending on two arbitrary
functions p and q.

The paper is organized in the following way. In
Sect.2 we recall some preliminaries about the pseudo-
operartions; in Sect.3 we present our previuos results
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about Funtional Equations. We shall solve the given
functional equation (2) in Sect.4 and some properties
of solutions are given in Sect. 5. Sect.6 is devoted to
the conclusion.

II. PRELIMINAIRES

Pseudo-operations
Here, we recall the pseudo-operations which we

shall use (see [5, 16, 17]).

A. Pseudo-addition
The pseudo-addition ⊕ is a mapping

⊕ : [0,M ]2 −→ [0,M ], M ∈ (0,+∞)

such that

(G1) a ≤ a′, b ≤ b′ =⇒ a⊕ b ≤ a′ ⊕ b′;

(G2) a⊕ b = b⊕ a;

(G3) (a⊕ b)⊕ c = a⊕ (b⊕ c);

(G4) a⊕ 0 = a;

(G5) (an −→ bn, a −→ b) =⇒ an ⊕ bn −→ a⊕ b.

B. Pseudo-difference
Moreover, following [35, 36], we can define a

pseudo-difference 	:
Let a pseudo-addition ⊕ assigned.
The pseudo-difference 	 : [0,∞[2→ [0,∞] is

given by

a	 b = inf{t ∈ [0,∞] b⊕ t ≥ a}. (3)

We observe that

a	 b = 0 whenever a ≤ b.

First of all, we recognize that

Proposition n.1
The pseudo-operations seen above⊕,	

satisfy the following properties:

(D1) b = a ⊕ (b	 a), a < b;

(D2) a = b ⊕ (a	 b) a > b;

(D3) a	 b = (a⊕ c)	 (b⊕ c) ∀ c ∈ [0,∞).

ut
C. Pseudo-multiplication
Following [5], we can define the pseudo-

multiplication.
Let a pseudo-addition ⊕ assigned on [0,M ] and

let F ∈]0,∞]. The ⊕-fitting pseudo-multiplication is
a mapping � : [0,M ]×]0,∞] −→ [0,∞], such that:

(M1) a ≤ a′, b ≤ b′ =⇒ a� b ≤ a′ � b′;

(M2) (a⊕ b)� c = (a� c)⊕ (b� c);

(M3) a� 0 = 0� a = 0;

(M4) (supn an)� (supm bm) = supn,m(an � bm).

III. FUNCTIONAL EQUATIONS

For the first time, in 1966, Aczel studied and
solved the famous Cauchy equation [1]:

F (x+ y) = F (x) + F (y); (4)

and later he considered and showed the solutions of
the so called remaining Cauchy equations:

(−) F (x+ y) = F (x) · F (y);

(−) F (x · y) = F (x) + F (y);

(−) F (x · y) = F (x) · F (y).

When, we replace the common addition and multipli-
cation with the pseudo-operations seen above, we find
other functional equations. In [8], we have studied
and solved the generalized Cauchy equation:

F (x⊕ y) = F (x)⊕ F (y),

Moreover, in [32] we have considered the equations,
called by us pseudo-remaining Cauchy equations

(−) F (x⊕ y) = F (x)� F (y);

(−) F (x� y) = F (x)⊕ F (y);

(−) F (x� y) = F (x)� F (y).

and we were able to give the solutions.

IV. SOLUTIONS OF THE GIVEN
FUNCTIONAL EQUATION

In this paragraph, we come back to our equation
and we are going to present the solution of the func-
tional equation (1).
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Before giving the solutions of the equation (1),
we state first two propositions.

Proposition n.2
Let F : [0,+infty) → [0,+∞) be any function

which satisfies (1), then F is expressed by

Fp,q(x, y) =


x ⊕ q(y 	 x) x < y

y ⊕ p(x	 y) x > y

(5)

with p, q : [0,+∞) → [0,+∞) such that p(0) =
q(0).
Proof: Setting

F (0, t) = q(t) and F (t, 0) = p(t), (6)

then the functions p and q are well defined and

F (0, 0) = q(0) = p(0). (7)

The equation (1) has satisfied for every x, y, z,
putting x = 0 in (5), it is

F (0, y)⊕ z = F (0⊕ z, y ⊕ z);

by (G4) and (6) we get

q(y)⊕ z = F (z, y ⊕ z). (8)

In the same manner, for y = 0 in (1), we get

F (x, 0)⊕ z = F (x⊕ z, 0⊕ z)

and finally, by (G4) and (6),

p(x)⊕ z = F (x⊕ z, z). (9)

Now, we are going to prove the expression (5).
Let x < y. By (D1), (8) and (G2), we have

F (x, y) = F (x, x⊕ (y 	 x)) = x⊕ q(g 	 x).

If x > y, by (D2), (G2), and (9), it is

F (x, y) = F (y ⊕ (x	 y), y) = y ⊕ p(x	 y).

ut
Moreover, we shall prove the viceversa.

Proposition n.3
Let p0 and q0 be two functions p0, q0 :

[0,+∞) → (0,+∞) with p0(0) = q0(0). Then, the
function

F0(x, y) =


x ⊕ q0(y 	 x) x < y

y ⊕ p0(x	 y) x > y

(10)

satisfies the (1), i.e.

F0(x, y)⊕ z = F0(x⊕ z, y ⊕ z), (11)

∀x, y, z ∈ [0,+∞).

Proof: Let x < y, then x⊕ z < y⊕ z, ∀z ∈ [0,∞),
by (G1).

Taking into account (D3) and (G3)

F0(x, y)⊕ z =

= x⊕ q0(y 	 x)⊕ z = (x⊕ z)⊕ q0(y 	 x) =

= (x⊕ z)⊕ q0
[
(y ⊕ z)	 (x⊕ z)

]
=

= F0(x⊕ z, y ⊕ z).

Under the same hypothesys for x > y it is

F0(x, y)⊕ z =

= x⊕ p0(y 	 x)⊕ z = (x⊕ z)⊕ p0(x	 y) =

= (x⊕ z)⊕ p0
[
(x⊕ z)	 (y ⊕ z)

]
=

= F0(x⊕ z, y ⊕ z).

ut

As a conseguence of Propp.n.2 and n.3, we are
ready to give the Main Theorem.

Main Theorem
The unique class of functions Fp,q, depending

on two functions p, q : [0,+∞) → [0,+∞) with
q(0) = p(0) is the solution of the (1) if and only if
it has expressed by

Fp,q(x, y) =


x ⊕ q(y 	 x) x < y

y ⊕ p(x	 y) x > y

(12)

ut

V. PROPERTIES OF SOLUTIONS

In this paragraph we are going to present some
properties of the solutions (12).

Remark. If x = y, by (5) we get that all elements
are idempotent [14, 37]:

F (x, x) = x⊕ q(0) = x⊕ p(0).
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As p(0) = q(0) 6= 0, we have the idempotence, but
with a translation of p(0)=q(0).

We recall from [14, 37] the definition of symmet-
ric function.

A function F is symmetric if

F (x, y) = F (y, x), ∀ (x, y) ∈ D.

Proposition n.4
Every function Fp,q given by (12) is symmetric if

and only if p(x) = q(x),∀ x ∈ [0,∞).
Proof: It is easy to see that x < y, then

Fp,q(x, y) = Fq,p(y, x)⇐⇒

x⊕ q(y 	 x) = x⊕ q(y 	 x)⇐⇒

q(x) = p(y),∀ x ∈ [0,∞).

The same situation appears for x > y. ut

Proposition n.5
Every function Fp,q given by (12) is continuous if

and only if the functions p and q are both continuous.
ut

VI. CONCLUSION

In this paper, in the setting of pseudo-analysis, we
have considered the equality:

F (x, y)⊕ z = F (x⊕ z, y ⊕ z).

If F is unknown, the previous equality is a func-
tional equation.

We have found the unique class of solutions de-
pending on two arbitrary functions p and q :

Fp,q(x, y) =


x ⊕ q(y 	 x) x < y

y ⊕ p(x	 y) x > y

(13)

expressed by the pseudo-operation ⊕ and 	.
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