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Abstract: In this paper we define k-monotone property and 

proved the coupled fixed point theorem in ordered non-

Archimedean Intuitionistic fuzzy metric space. Our result is an 

extension of the results of Mohinta S., Samanta T.K. [15]. 
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1. INTRODUCTION 

Fuzzy set theory, a generalization of crisp set theory, 

was first introduced by Zadeh [21] in 1965 to describe 

situations in which data are imprecise or vague or 

uncertain. Kramosil and Michalek [11] introduced the 

concept of fuzzy metric spaces in 1975, which opened an 

avenue for further development of analysis in such 

spaces. Later on it is modified that a few concepts of 

mathematical analysis have been generalized by George 

and Veeramani [9].  

Afterwards, many articles have been published on 

fixed point theorems under different contractive condition 

in fuzzy metric spaces. 

Atanassov [1] introduced and studied the concept 

of intuitionistic fuzzy sets as a generalization of fuzzy 

sets. Coker [3] introduced the concepts of the so called 

“Intuitionistic fuzzy topological spaces”. Park [18], using 

the idea of intuitionistic fuzzy sets, define the notion of 

intuitionistic fuzzy metric spaces with the help of 

continuous t-norm and continuous t-conorms as a 

generalization of fuzzy metric space due to George and 

Veeramani [9]. 

 Bhaskar and Lakshmikantham [3] discussed the 

mixed monotone mappings and gave some coupled fixed 

point theorems which can be used to discuss the existence 

and uniqueness of solution for a periodic boundary value 

problem.  

 Hu[10] studied common coupled fixed point 

theorems for contractive mappings in fuzzy metric space, 

and Park et.al.[18] defined an IFMS and proved a fixed 

point theorem in IFMS. Chandok alt el. [4], Choudhury 

at. Al[5],Cric and Laxmikantam [6], Nguyen at. Al.[16] 

studied and give the results on common coupled fixed 

point theorems in different metric spaces.  Berinde [2] 

Generalized coupled fixed point theorems for mixed 

monotone mappings in partially ordered metric spaces,   

Recently Luong et.al.[12] proved coupled fixed points in 

partially ordered metric spaces . Mohinta and 

Samanta[15] and Park [19] prove the coupled fixed point 

theorem in non-Archimedean intuitionistic fuzzy metric 

space. 

In this paper, we define non-Archimedean 

intuitionistic fuzzy metric space, and prove a coupled 

fixed point theorems for map satisfying the mixed 

monotone property in partially ordered complete non-

Archimedean intuitionistic fuzzy metric space. 

 
2. PRELIMINARIES 

Dentition 2.1[20] A binary operation *[0,1]×[0,1] [0,1] 

is a continuous t-norms if  “ * ” is satisfying conditions: 

(i)    *  is an commutative and associative 

(ii)   * is continuous 

(iii)  a * 1 = a for all a  [0, 1] 

(iv)  a * b ≤ c*d whenever a ≤ c and b ≤ d, and a, b, c, d  

[0, 1]. 

Basic example of t – norm are the Lukasiewicz t – norm 

T1, where  T1 (a, b) = max (a+b-1, 0),  t –norm Tp, where 

Tp (a,b) = ab, and t – norm TM,  where TM (a,b) = min 

{a,b}. 

Definition 2.2[14] A 3-tuple (X, M,*) is said to be non-

Archimedean fuzzy metric space if X is an arbitrary set,* 

is a continuous t-norm and M is a fuzzy set on X
2 (0, ) 

satisfying the following conditions,for all x, y, z X  and 

s, t >0,
  

(F1) M(x, y, t) > 0 

(F 2) M(x, y, t) = 1 if and only if x = y 

(F 3) M(x, y, t) = M(y, x, t) 

(F 4) M(x, y, t) *M(y, z, s) ≤ M(x, z, t + s) 
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(F 5) M(x, y, ·): (0, ∞) → (0, 1] is continuous. 

Then M is called a non-Archimedean fuzzy metric on X. 

Then M(x, y, t) denotes the degree of nearness between x 

and y with respect to t. 

Lemma 2.1. Let (X, M, *) non-Archimedean fuzzy metric 

space, then M is a continuous function on  X
2
 × (0, ∞). 

Remark 2.1.Since * is continuous, if follows from (F4) 

that the limit of the sequence in fuzzy metric space is 

uniquely determined. 

Let (X, M, *) be a fuzzy metric space with the following 

condition: 

(F6) lim t   M (x, y, t) = 1 for all x, y  X 

Remark 2.2. In the above definition 2.2, the triangular 

inequality (F4) is replaced by 

M (x, z, max {t, s}) ≥ M(x, y, t) * M (y, z, s)   
                         for all x, y, z X and  s, t >0 

More equivalently M (x, z, t) ≥ M(x, y, t)* M(y, z, t)   

                            for all x, y, z X , s, t >0       (NA) 

Then the triple (X, M,*) is called a non-Archimedean 

fuzzy metric space.  

It is easy to check that the triangular inequality (NA) 

implies (F4), that is, every non-Archimedean fuzzy metric 

space is itself a fuzzy metric space.    

Definition 2.3[20] A binary operation ⟡:[0,1]×[0,1] 

[0,1]  is a continuous t-co norms if  “⟡” is satisfying 

conditions: 

(i) ⟡  is commutative and associative; 

(ii) ⟡ is continuous; 

(iii) a ⟡ 0 = a for all a  [0, 1] 

(iv) a ⟡ b ≤ c ⟡ d whenever a ≤ c and b ≤ d, and a, b, c, d 

 [0, 1]. 

Note. The concepts of triangular norms (t-norms) and 

triangular conorms (t-conorms) are known as the 

axiomatic skeletons that we use for characterizing fuzzy 

intersections and unions, respectively. These concepts 

were originally introduced by Menger [13] in his study of 

statistical metric spaces. 

 

Definition-2.4[ 17]: A  5-tuple (X, M, N, *, ⟡) is said to 

be non Archimedean intuitionistic fuzzy metric space if X 

is an arbitrary set, * is a continuous t-norm, ⟡ is a 

continuous t-conorm and M, N are fuzzy sets on X
2
 × (0, 

∞) satisfying the following conditions: for all x, y, z  X, 

s, t > 0, 

(IFM-1) M(x, y, t) + N(x, y, t) ≤ 1 

(IFM-2) M(x, y, t) > 0 

(IFM-3) M(x, y, t) = 1 if and only if x = y 

(IFM-4) M(x, y, t) = M(y, x, t) 

(IFM-5) M (x, z, max{t, s}) ≥ M(x, y, t) * M (y, z, s)     

                                               for all x, y, z X , s, t >0 

(IFM-6) M(x, y, .) : (0, ∞) → (0, 1] is continuous 

(IFM-7) N(x, y, t) > 0 

(IFM-8) N(x, y, t) = 0 if and only if x = y 

(IFM-9) N(x, y, t) = N(y, x, t) 

(IFM-10)  N (x, z, min{t, s})   N(x, y, t) ◊ N (y, z, s)      
                                               for all x, y, z X , s, t >0 

 (IFM-11) N(x, y,.): (0,∞) → (0, 1] is continuous 

Then (M, N) is called an non Archimedean intuitionistic 
fuzzy metric  on X , the function  M(x, y, t) and N(x, y, t) 

denote the degree of nearness and the degree of non 

nearness between x and y with respect to „t‟ respectively. 

Remark 2.3: In the above definition the triangular 

inequality (IFM5) and  ( IFM10) are  equivalent to 

         M (x, z, t) ≥ M(x, y, t)* M(y, z, t)   

and   N (x, z, t)  N(x, y, t)◊ N(y, z, t)   

                                      for all x, y, z X , s, t >0        (NA) 

Then the triple (X, M, N, *, ⟡) is called a non-
Archimedean Intuitionistic fuzzy metric space.  

 

Remark 2.4. It is easy to check that the triangular 

inequality (NA) implies, that every non-Archimedean 

Intuitionistic fuzzy metric space is intuitionistic fuzzy 

metric space. 

 

Definition 2.5[18] Let (X, M, N, *, ⟡)   be a non-

Archimedean Intuitionistic fuzzy metric space. 

(a) A sequence {xn}in  X is called an Cauchy sequence, 

if for each    (0,1) and t>0 there exists n0 N   such 

that  

 lim n ∞ M(xn, xn+p, t)=1  and lim n ∞ N(xn, xn+p, t) =0    

for all p=0,1,2….. 

(b) A sequence {xn}  in a non-Archimedean Intuitionistic 

fuzzy metric space ( X, M, N, *, ⟡)  is said to be 

convergent to x X  

       limn ∞ M(xn, x, t)=1 , limn ∞ N(xn, x, t)= 0 for all    

       t>0. 

(c) A non-Archimedean Intuitionistic fuzzy metric space 

(X, M, N, *, ⟡) is called complete if every Cauchy 

sequence is convergent in X.  

Definition 2.6. [15] A partially ordered set is a set P and a 

binary relation ≼, denoted by (X, ≼) such that for all a, b, 

c  P, 

(a) a ≼ a(reflexivity), 

(b) a≼ b and b≼ c implies a≼  c(transitivity),≼ 
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(c) a≼  b and b≼ a implies a = b(anti-symmetry). 

 

Definition 2.7[15]: Let (X, ≼ )  be a partially ordered set 
and  F: X X X .The mapping  F is said to have  k-
monotone property if   

x0≼x1 , y0≽y1  F(x0, y0 )  ≼  F(x1, y1 )   

& F(y0, x0 )  ≼  F(y1, x1 )  for all x0,x1,y0 ,y1  X 

 

Definition 2.8.[15]. Let (X, ≼ )  be a partially ordered set 
and  F: X X X .The mapping  F is said to have mixed 

monotone property if F(x, y) is monotone non-decreasing 

in first coordinate and is monotone non-increasing in 

second coordinate . i.e. for any x,y  X ,  

x0 ≼ x1   F(x0, y) ≼  F(x1, y )   

&  y0  ≼ y1  F(x, y0 )  ≽  F(x, y1 ) for all x0,x1,y0 ,y1  X 

 

Remark 2.5.  Thus mixed monotone property is particular 

case of k-monotone property. 

 

Example 2.1. Let X=[2, 64]  on the set X, we consider 

following relation   x≼ y  x y ,Where  ≼ is a usual 

ordering, ( X, ≼) a partial order set  .                                                                                                                                                                   

We define F: X X X. as  F(x,y) = x+[1/y] ,Where [k] 

represents greatest integer just less than or equal to k. 

One can verify that F( x,y)  follows k-monotone property. 

 

Definition 2.9 [19].  An element (x,y) X X X is called 

a coupled fixed point of the mapping F: X X X if  

 F(x, y)=x & F(y, x)=y  . 

 

3. MAIN RESULTS 

 

Theorem 3.1: Let (X, ≼) be a partially ordered set and 

(X, M, N, *, ⟡) is a complete Non-Archimedean 

Intuitionistic fuzzy metric space. Let F: X X X be a 

continuous mapping having k-monotone property on X. 

Assume that for every  (0, 1)  with 

M , , , ,

M , , , , , , , ,
1 max

2 M , , , ,M , , ,

F x y F u v t

F x y x t M x F u v t

F x y u t u F u v t

 

N , , , ,

N , , , , , , , ,
1 min

2 N , , , , N , , ,

F x y F u v t

F x y x t N x F u v t

F x y u t u F u v t

  (I) 

for all x,y,u,v  X   with  x≽u and y≼ v . 

If there exists x0 , y0 ,x1,y1  X, such that  x0≼x1 , y0 ≽ y1 , 

where x1=F(x0, y0) & y1 = F(y0,x0) then there exists   x, y, 

 X  such that  F(x, y) = x & F(y, x)=y. 

 

Proof: Let x0, x1, y0, y1 X be such that x0≼x1 , y0 ≽ y1  

.where x1=F(x0, y0) & y1 = F(y0,x0) 

We construct sequences {xn}  &  {yn} in  X  as follows  

xn+1=F(xn, yn) & yn+1 = F(yn, xn)   for all n≥0 

we shall show that  xn≼xn+1    and  yn ≽ yn+1   for all n≥0 

Since x0≼x1   , y0 ≽ y1   , therefore by k-monotone property  

x1=F(x0, y0) ≼ F(x1,y1)=x2   

and               y1=F(y0, x0)  ≽ F(y1,x1)=y2 

i. e.  x1≼x2   , y1 ≽ y2  ,  

again applying the same property we have 

x2=F(x1, y1) ≼ F(x2,y2)=x3   

and              y2=F(y1, x1)  ≽ F(y2,x2)=y3 

Continue in this manner we shall have, 

x0≼x1≼x2........................ ≼xn≼xn+1≼………..     
and    y0≽y1≽y2........................ ≽yn≽yn+1   ≽……….      
Since xn-1≼ xn   and  yn-1≽ yn  ,  from (1) we have, 

n, n n-1 n-1

n, n n, n, n-1 n-1

n, n n-1 n-1 n-1 n-1

M F x ,y ,F x ,y ,t

M F x ,y ,x ,t ,M x ,F x ,y ,t ,ε
1- max

2 M F x ,y ,x ,t ,M x ,F x ,y ,t

 

                 

n+1 n, n, n

n+1 n-1 n-1 n

M x ,x ,t ,M x ,x ,t ,ε
=1- max

2 M x ,x ,t ,M x ,x ,t
 

                 

n+1 n,

n+1 n-1 n-1 n

M x ,x ,t ,1,ε
=1- max

2 M x ,x ,t ,M x ,x ,t
 

                  =1 1
2

 

i.e.       
n+1 n,M x ,x ,t >1-ε  

and n, n n-1 n-1N F x ,y ,F x ,y ,t  

 

             

n, n n,

n, n-1 n-1

n, n n-1

n-1 n-1 n-1

N F x ,y ,x ,t ,

N x ,F x ,y ,t ,ε
1- min

2 N F x ,y ,x ,t ,

N x ,F x ,y ,t

 

               

n+1 n, n, n

n+1 n-1 n-1 n

N x ,x ,t ,N x ,x ,t ,ε
=1- min

2 N x ,x ,t ,N x ,x ,t
 

n+1 n, n+1 n-1 n-1 n

ε
=1- min N x ,x ,t ,0,N x ,x ,t ,N x ,x ,t

2
 

=1 1
2
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i.e.     
n+1 n,N x ,x ,t <1-ε  

Similarly we can show that M(xn+1,xn+2,t) > 1-   

So for all  >0, there exists n0 N  such that for all m > n 
> n0  and t >0  we have 

M(xn,xm,t)   ≥ M(xn,xn+1,t)* M(xn+1,xn+2,t)*.. M(xm-1,xm,t) 

M(xn,xm,t)   ≥(1- )*(1- )*(1- )*…………….*(1- ) 

 M(yn+1,yn+2,t) > 1-  

And    

N(xn,xm,t)  N(xn,xn+1,t)◊ N(xn+1,xn+2,t)◊… ◊N(xm-1,xm,t) 

N(xn,xm,t)   (1- )◊(1- )◊(1- )◊…………….◊(1- ) 

N(yn+1,yn+2,t)   < 1-  

This shows that the sequence {xn} is  a Cauchy sequence  

in X and since X  is complete non-Archimedean 

Intuitionistic fuzzy metric space , it converges to a point  

x X   

 i.e.   lim n  xn = x   

Again , since yn-1 ≽yn    ,xn-1≼xn  ,
 , from (1) we have, 

n-1 n-1 n, nM F y ,x ,F y ,x ,t

 

                   

n-1 n-1 n-1

n-1 n, n

n-1 n-1 n,

n, n, n

M F y ,x ,y ,t ,

M y ,F y ,x ,t ,
1- max

2 M F y ,x ,y ,t ,

M y ,F y ,x ,t

 

     

n, n-1 n-1 n+1

n, n, n, n+1

M y ,y ,t ,M y ,y ,t ,
1 max

2 M y ,y ,t ,M y ,y ,t
 

                =
n, n-1 n-1 n+1

n, n+1

M y ,y ,t ,M y ,y ,t ,
1 max

2 1,M y ,y ,t
 

                =1 1
2

 

       M(yn+1, yn, t) >1-     

 similarly we can show that M(yn+1, yn+2, t) >1-    
 

So for all , there exists  n0 N
 
 such that for all m> 

n> n0  and  t>0 we have  

  M(yn, ym,t) ≥ M ( yn,yn+1,t)* M ( 

yn+1,yn+2,t)*………….* M ( ym-1,ym,t) 

M (yn, ym,t)> (1- )*(1-

)*……………….*(1- ) 

And y1= F(y0,x0)  

N(yn, ym,t) ≥ N ( yn,yn+1,t)◊N ( 

yn+1,yn+2,t)◊………….◊N ( ym-1,ym,t) 

N(yn,ym,t)< (1- )◊(1-

)◊……………….◊(1- ) 

This shows that the sequence {yn} is Cauchy sequence in 

X and since X is complete fuzzy metric space it converges 

to a point y X  i.e. limn ∞yn=y  

Since F is given continuous therefore using convergence 

of {xn} and {yn}   we have, F(x,y)=x & F(x,y)=y  . 

Now we shall define a partial order relation over non-

Archimedean fuzzy metric space and prove a coupled 

fixed point theorem using that relation. 

Lemma 3.2: Let ( X, M, N, *, ⟡)   be a a non-

Archimedean Intuitionistic fuzzy metric space with a*b≥ 

max{a+b-1, 0} and a ◊ b  min {a+b-1,0}  with : 

X X [0,∞) R , define the relation  “≼” on X as follows 

x ≼ u , y ≽v M(x, u, t)M(y, v, t)≥1+  (x, y, t)- (u, v, t) 

for all t>0  then “≼” is partial order on X, called the 

partial order induced by . 

Proof: The relation “≼” is a reflexive relation: let  x , y  

X be any element 

Since M(x, x, t)M(y, y, t)=1=1+  (x, y, t)- (u, v, t)  for all  

x ,y  X 

Therefore “≼”is a reflexive relation        (i) 

For any  x, y, u, v  X  suppose that  x ≼u, y ≽v ,x ≽u, y 

≼v  
 
 then we have. 

x ≼u , y ≽v M(x, u, t)M(y, v, t)≥1+  (x, y, t)- (u, v, t)

                  (I) 

and x ≽ u , y ≼ v  

M(u, x, t)M(v, y, t)≥1+  (u, v, t)- (x,y,t)      (II) 

Adding (I) & (II), we get, 

2M(x, u, t) M(y, v, t) ≥2  

Or M(x, u, t) M(y, v, t) ≥1  

           M(x, u, t) M(y, v, t)=1 M(x, u, t)=1 ,M(y, v, t)=1 

i.e.  x=u & y=v 

 Therefore “≼” is antisymmetric relation.      (ii) 

 If  x ≼u , y ≽v , u ≼u , v ≽v 
,  

We have,  

M(x ,u‟, t) M(y, v‟, t)  

    ≥ M(x, u, t)M(y, v, t)*M(u, u‟, t) M(v, v‟, t)
  

    =max[M(x, u, t)M(y, v, t)+ M(u, u', t) M(v, v‟, t)-1,0] 

    =max[1+ (x, y, t)- (u, v, t)+1+ (u, v, t)- (u‟,v‟, t)-1,0] 

    =max[1+ (x, y, t)- (u‟, v‟, t),0] 

    =1+ (x, y, t)- (u‟, v‟, t)  i.e. x ≼u‟ , y ≽v‟ 

And  

N(x, u‟, t) N(y, v‟, t) 

     N(x, u, t)N(y, v, t)◊N(u, u‟, t) N(v, v‟, t)
  

   =max[N(x, u, t)N(y, v, t)+ N(u, u' ,t) N(v, v‟, t)-1,0] 

   =max[1+ (x, y, t)- (u, v, t)+1+ (u, v, t)- (u‟, v‟, t)-1,0] 

   =max[1+ (x, y, t)- (u‟, v‟, t),0] 

   =1+ (x, y, t)- (u‟, v‟, t)  i.e. x ≼u‟ , y ≽v‟ 

Thus “≼” is transitive relation.   (iii) 

 
Theorem 3.3: Let (X, M, N, *, ⟡)   be a a non-

Archimedean Intuitionistic fuzzy metric space With  

a*b ≥ max{a+b-1,0}  and a◊b min {a+b-1,0} with : 

X×X×[0, ) R, bounded from above “≼”  the partial 

order induced by   if  F:X×X X follows k-monotone 

property over  X and there are  x0 , y0 ,x1,y1  X ,such that  

x0≼x1   , y0 ≽ y1  , where x1=F(x0, y0) & y1 = F(y0,x0) 
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then there exists   x, y,  X  such that  F(x, y) = x & F(y, 

x)=y. 

Proof: Let x0 , y0 ,x1,y1  X ,such that  x0≼x1   , y0 ≽ y1  , 

where x1=F(x0, y0) & y1 = F(y0,x0).we construct sequences 

{xn} & {yn}  in X as follows  

          xn+1= F(xn, yn)  &yn+1= F(yn , xn) for all n ≥ 0. 

we shall show that   xn≼ xn+1  and yn≽yn+1   for all n≥0 

Since x0≼x1   , y0 ≽ y1   , therefore by k-monotone property  

x1=F(x0, y0) ≼ F(x1,y1)=x2  and  y1=F(y0, x0) ≽ F(y1,x1)=y2 

i. e.  x1≼x2   , y1 ≽ y2  ,  

again applying the same property we have 

x2=F(x1, y1) ≼ F(x2,y2)=x3   

and              y2=F(y1, x1)  ≽ F(y2,x2)=y3 

Continue in this manner we shall have, 

x0≼x1≼x2........................ ≼xn≼xn+1≼………..     
and    y0≽y1≽y2........................ ≽yn≽yn+1   ≽……….      

By the definition of “≼” we have , for all t>0  (x0, y0,t) 

≼ (x1, y1,t)  ≼ (x3, y3,t)≼……….. In other words, for all 

t>0, the sequence { (xn ,yn ,t)} is non decreasing in R. 

Since is bounded above, and { (xn , yn , t)}  is 

convergent and hence it is a  Cauchy sequence . So, for all 

>0, there exists n0 N so that for all m>n>n0 and t>0 we 

have, 

│ (xm , ym ,t)- (xn ,yn ,t)│<  

Since xn≼ xm & yn ≽ ym  , we have  

xn≼ xm & yn ≽ ym    M(xn , xm ,t) M(yn , ym ,t)≥1+ (xn , yn 

,t)- (xm , ym ,t)  for all t>0
 

  
  1-[ (xm , ym ,t)  - (xn 

,yn ,t)] >1-  

xn≼ xm & yn ≽ ym    N(xn, xm, t) N(yn, ym, t) 

1+ (xn, yn, t)- (xm ,ym ,t)  for 

all t>0
 

1-[ (xm , ym ,t)  - (xn , yn ,t)] <1-  

 

We claim that {xn} and {yn} are Cauchy sequence in X, if 

not then there exists some 1 , 2 
such that 1 < 2 

  and  

M (xn, xm, t)(1- 1)   &  M (yn, ym, t)(1- 2) 

Then   

           M (xn, xm, t) M (yn, ym, t)( 1- 1) )(1- 2) 

               <   ( 1- 1) )
2
  < ( 1- 1) ) 

And  N (xn,xm,t)(1- 1)   &  N(yn,ym,t)(1- 2) 

Then  N (xn,xm,t) N (yn,ym,t)( 1- 1) ) (1- 2)   

<   ( 1- 1) )
2
  < ( 1- 1) 

) 

Which is a contradiction.                                                                 
This shows that the sequence {xn} & {yn} a Cauchy 

sequence in X, since X  is complete , these converges to 

points x, y
 

 respectively in X consequently, by the 

continuity of F, we have  F(x,y)=x & F(y,x)=y. 
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