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Abstract—Second order differential equations play essential role in
describing various physical, chemical and biological phenomena. In
this paper, the main attention is devoted to half-linear second order
differential eqaution and its special case which is Sturm-Liouville
linear differential equation. In particular, oscillatory properties of
solutions of these types of equations are investigated. We formulate
Hille-Nehari type criteria that guarantee oscillation or nonoscillation
of linear and half-linear differential equation. Results given in this
paper can be applied in further investigation of oscillatory and
nonoscillatory properties of solutions of both linear and half-linear
second order differential equations.
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I. INTRODUCTION

THE aim of this paper is to investigate oscillatory proper-
ties of the half-linear second-order differential equation

of the form

(r(t)Φ(x′))
′
+ c(t)Φ(x) = 0, (1)

where Φ(x) := |x|p−2x, p > 1, t ∈ I := [T,∞) and r, c are
real-valued continuous functions and r(t) > 0.

Oscillation theory of (1) attracted considerable attention
in the past years and it was shown that solutions of (1)
behave in many aspects like those of the linear Sturm-Liouville
differential equation

(r(t)x′)′ + c(t)x = 0, (2)

which is the special case p = 2 of (1).
The aim of this paper is to present some results of the in-

vestigation oscillatory properties of equation (1) in comparison
with that one of (2).

Note that the term half-linear equations is motivated by the
fact that the solution space of (1) has just one half of the
properties which characterize linearity, namely homogeneity,
but not additivity.

Half-linear equations are closely related to the partial dif-
ferential equations with the so called p-Laplacian. In fact,
(HL) is sometimes called the differential equation with the
one-dimensional p-Laplacian.

The paper is organized as follows. In Section 2 we present
basic concepts and properties of solutions of (1) and (2).
Section 3 is devoted to the investigation of properties of
solutions of (1) and (2), in particular, we present oscillation
criteria for (1) and (2). Section 4 gives some nonoscillation
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criteria for (1) and (2). Section 5 gives concluding remarks
and comments.

II. PRELIMINARY RESULTS

In this section we define basic concepts concerning the half-
linear differential equation (1), see [2], [5], [8].

Definition 1: Two points t1, t2 ∈ R are said to be conju-
gate relative to (1) if there exists a nontrivial solution x of
this equation such that x(t1) = x(t2) = 0.

Definition 2: Equation (1) is said to be disconjugate on
a closed interval [a, b] if this interval contains no pair of points
conjugate relative to (1) (i.e., every nontrivial solution has at
most one zero in I). In the opposite case, (1) is said to be
conjugate on I (i.e., there exists a nontrivial solution with at
least two zeros in I).
Note that by a zero of a solution x we mean such a t0 ∈ R
that x(t0) = 0.

Proposition 1: Equation (1) is disconjugate on an interval
I = [a, b] if and only if every its nontrivial solution has at
most one zero in [a, b].

The following property of zeros of linearly independent
solutions is one of the most characteristic properties which
justifies the definition of oscillation/nonoscillation of the equa-
tion. It is known as the Sturmian separation theorem and reads
as follows (see [5]).

Proposition 2: Let t1 < t2 be two consecutive zeros of
a nontrivial solution x of (1). Then any other solution of this
equation which is not proportional to x has exactly one zero
on (t1, t2).

Along with (1) consider another equation of the same form

(R(t)Φ(y′))
′
+ C(t)Φ(y) = 0, (3)

where the functions R and C satisfy the same assumptions as
r and c in (1). The next theorem is known as the Sturmian
comparison theorem and reads as follows (see [5]).

Proposition 3: Let t1 < t2 be two consecutive zeros of
a nontrivial solution x of (1) and suppose that

C(t) ≥ c(t), r(t) ≥ R(t) > 0

for t ∈ [t1, t2]. Then any solution of (3) has a zero in (t1, t2)
or it is a multiple of the solution x.

Definition 3: Equation of (1) is said to be nonoscillatory
at ∞, if there exists T0 ∈ R such that (1) is disconjugate on
[T0, T1] for every T1 > T0. In the opposite case, (1) is said
to be oscillatory, i.e., if every nontrivial solution has infinitely
many zeros tending to ∞.

The previous definition says that one solution of (1) is
oscillatory if and only if any other solution of (1) is oscillatory.
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Oscillation of a nontrivial solution of (1) means the existence
of zeros of this solution tending to ∞.

The following methods of oscillation theory are used in
this paper: the variational principle and the Riccati technique.
Basic properties of these methods are as follows.

A. Variational principle

The investigation of nonoscillation of (2) using the varia-
tional principle is based on the following statement.

Proposition 4: Equation (2) is nonoscillatory if and only
if there exists T ∈ R such that

F(y;T,∞) =

∫ ∞
T

[r(t)y′2 − c(t)y2] dt > 0

for every nontrivial solution y such that y(T ) = 0 and y(t) ≡ 0
on [T1,∞) for some T1 > T .

Similar nonoscillation criterion holds for equation (1):
Proposition 5: Equation (1) is nonoscillatory if and only

if there exists T ∈ R such that

F(y;T,∞) =

∫ ∞
T

[r(t)|y′|p − c(t)|y|p] dt > 0

for every nontrivial solution y such that y(T ) = 0 and y(t) ≡ 0
on [T1,∞) for some T1 > T .

On the other hand, to prove that (1), (2), respectively, is
oscillatory, one needs to construct a nontrivial function y for
which F(y;T,∞) ≤ 0.

B. Riccati technique

Let x be a solution of (2) such that x(t) 6= 0 in an interval
I . Then w(t) = r(t)x′

x is a solution of the associated Riccati
differential equation

w′ + c(t) +
w2

r(t)
= 0. (4)

Nonoscillation of (2) via the Riccati technique is proved
using the following statement.

Proposition 6: Equation (2) is nonoscillatory if and only
if there exists T0 ∈ R and a (continuously differentiable)
function w : [T0,∞)→ R such that

w′ + c(t) +
w2

r(t)
≤ 0 for t ∈ [T0,∞) .

Now we introduce the half-linear version of the Riccati type
equation associated with equation (1).

Let x be a solution of (1) such that x(t) 6= 0 in an interval
I . Then

w(t) =
r(t)Φ(x′(t))

Φ(x(t))

is a solution of the Riccati type differential equation of the
form

w′ + c(t) + (p− 1) r1−q(t)|w|q = 0, (5)

where q is the conjugate number of p, i.e., 1
p + 1

q = 1.
Base on the Riccati substitution, the following holds.
Proposition 7: Equation (1) is nonoscillatory if and only

if there exists T0 ∈ R and a (continuously differentiable)
function w : [T0,∞)→ R such that

w′ + c(t) + (p− 1) r1−q(t)|w|q ≤ 0 for t ∈ [T0,∞) .

III. OSCILLATION CRITERIA

In this section we present oscillation criteria for equations
(2) and (1), respectively.

A. Oscillation criteria for Sturm-Liouville equation

Hille-Nehari type oscillation criteria are criteria formulated
in terms of the asymptotic behavior of the functions∫ t

r−1(s) ds

∫ ∞
t

c(s) ds (6)

or ∫ ∞
t

r−1(s) ds

∫ t

c(s) ds

depending on the convergence/divergence of the integrals
appearing in these formulas. Note that if both integrals∫∞

r−1(t) dt = ∞,
∫∞

c(t) dt = ∞, equation (2) is oscil-
latory by the Leighton-Wintner oscillation criterion, see [12].
For the case (6), the Hille-Nehari criterion reads as follows
(see, e.g. [1, Chap. 2]).

Theorem 1: Suppose that∫ ∞
r−1(t) dt =∞ (7)

and the integral
∫∞

c(t) dt is convergent. Equation (2) is
oscillatory provided one of the following conditions holds:
(i) c(t) ≥ 0 for large t and

lim sup
t→∞

(∫ t

r−1(s) ds

)(∫ ∞
t

c(s) ds

)
> 1, (8)

(ii)

lim inf
t→∞

(∫ t

r−1(s) ds

)(∫ ∞
t

c(s) ds

)
>

1

4
. (9)

PROOF. (i) We prove this statement using the variational
principle, i.e., we find, for every T ∈ R, a function y ∈
W 1,2(T,∞) with a compact support in (T,∞) such that the
functional F(y;T,∞) ≤ 0. To this end, let T ∈ R be arbitrary,
T < t0 < t1 < t2 < t3, and let

y(t) =



0 T ≤ t ≤ t0,∫ t

t0
r−1(s) ds

(∫ t1
t0
r−1(s) ds

)−1

t0 ≤ t ≤ t1,
1 t1 ≤ t ≤ t2,∫ t3
t
r−1(s) ds

(∫ t3
t2
r−1(s) ds

)−1

t2 ≤ t ≤ t3,
0 t3 ≤ t <∞.

By a direct computation, using the fact that c(t) ≥ 0 for large
t, we obtain

F(y;T,∞) ≤
(∫ t1

t0

r−1(s) ds

)−1(∫ t3

t2

r−1(s) ds

)−1

−
∫ t2

t1

c(s) ds

=

(∫ t1

t0

r−1(s) ds

)−1
[

1 +

(∫ t1

t0

r−1(s) ds

)−1(∫ t3

t2

r−1(s) ds

)−1
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−
∫ t1

t0

r−1(s) ds

(∫ t2

t1

c(s) ds

)]
.

Now, by (8), there exists ε > 0 such that the last term in the
brackets is less than −1 − ε for t1 and t2 sufficiently large,
and (7) implies that the middle term is less than ε if t3 is
sufficiently large. Hence F(y;T,∞) ≤ 0 for t1, t2, t3 chosen
in this way.

(ii) This part of the proof is based on the Riccati technique.
Suppose, by contradiction, that (2) is nonoscillatory and w
is a solution of the associated Riccati equation (4). Then,
according to [8, Chap. XI], the solution w can be expressed
in the form

w(t) =

∫ ∞
t

c(s) ds+

∫ ∞
t

w2(s)

r(s)
ds.

Multiplying the last equation by
∫ t
r−1(s) ds, we have(∫ t

r−1(s) ds

)
w(t) =

(∫ t

r−1(s) ds

)(∫ ∞
t

c(s) ds

)
+

(∫ t

r−1(s) ds

)(∫ ∞
t

w2(s)

r(s)
ds

)
.

Suppose first that lim inft→∞

(∫ t
r−1(s) ds

)
w(t) = λ exists

finite. Then, using (9), there exists ε > 0 such that(∫ t

r−1(s) ds

)
w(t) ≥ 1

4
+ ε+

(∫ t

r−1(s) ds

)

×
∫ ∞
t

[(∫ s

r−1(τ) dτ

)2

w2(s) · r−1(s)(∫ s
r−1(τ) dτ

)2
]
ds

for large t, and hence, letting t→∞ in the last inequality,

λ ≥ 1

4
+ ε+ λ2,

i.e., −
(
λ− 1

2

)2 ≥ ε, which is a contradiction.
If

lim inf
t→∞

(∫ t

r−1(s) ds

)
w(t) =∞, (10)

denote

m(t) = inf
t≤s

(∫ s

T

r−1(τ) dτ

)
w(s).

Then m is nondecreasing and using (9) there exists ε > 0
such that(∫ t

r−1(s) ds

)
w(t) ≥ 1

4
+ ε+

(∫ t

r−1(s) ds

)
×
∫ ∞
t

m2(t) · r−1(s)(∫ s
r−1(τ) dτ

)2 ds,
which means(∫ t

r−1(s) ds

)
w(t) ≥ 1

4
+ ε+m2(t).

Since m is nondecreasing, we have for s > t

m(s) ≥ 1

4
+ ε+m2(t),

thus,
m(t) ≥ 1

4
+ ε+m2(t),

which is a contradiction with (10). �

Now we modify the previous result to the situation when
(2) is viewed as a perturbation of the linear Sturm-Liouville
differential equation

(r(t)x′)
′
+ c̃(t)x = 0. (11)

If (11) is nonoscillatory and h is its principal solution (see
[5]), then the transformation x = h(t)y transforms (2) into
the equation(

r(t)h2(t)y′
)′

+ (c(t)− c̃(t))h2(t)y = 0,

where
∫ ∞

r−1(t)h−2(t) dt =∞.

Applying this transformation, Theorem 1 can be reformu-
lated as follows, we present the result for the part (ii) (see
[11]), the part (i) can be reformulated analogicaly.

Theorem 2: Suppose that
∫ ∞ dt

r(t)h2(t)
= ∞ and the

integral ∫ ∞
(c(t)− c̃(t))h2(t) dt

is convergent. If

lim inf
t→∞

(∫ t 1

r(s)h2(s)
ds

)(∫ ∞
t

(c(s)− c̃(s))h2(s) ds

)
>

1

4
,

then (2) is oscillatory.

If h is a nonprincipal solution (see [5]), it can be shown
that (2) is oscillatory provided one of the following conditions
holds:

(i) c(t) ≥ c̃(t) for large t and

lim sup
t→∞

(∫ ∞
t

1

r(s)h2(s)
ds

)(∫ t

(c(s)− c̃(s))h2(s) ds

)
> 1

(ii)

lim inf
t→∞

(∫ ∞
t

1

r(s)h2(s)
ds

)(∫ t

(c(s)− c̃(s))h2(s) ds

)
>

1

4
.

B. Oscillation criteria for half-linear equation

Now, we turn out attention to Hille-Nehari type oscillation
criteria for the half-linear differential equation (1).

A direct modification of the proof of Theorem 1 shows that
the criteria given in that theorem can be extended to (1) as
follows, see [5, Sec 3.1.1].

Theorem 3: Suppose that
∫∞

r1−q(t) dt = ∞ and the
integral

∫∞
c(t) dt is convergent. Equation (1) is oscillatory

provided one of the following conditions holds:

(i) c(t) ≥ 0 for large t and

lim sup
t→∞

(∫ t

r1−q(s) ds

)p−1(∫ ∞
t

c(s) ds

)
> 1,
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(ii)

lim inf
t→∞

(∫ t

r1−q(s) ds

)p−1(∫ ∞
t

c(s) ds

)

>
1

p

(
p− 1

p

)p−1

.

Note that in the modification of the part (ii) of the proof of
Theorem 3, one needs to use the fact that

|λ|q − λ =
1

p

(
p− 1

p

)p−1

≥ 0 for every t ∈ R.

Similarly as in the linear case, we we will regard (1) as
a perturbation of nonoscillatory equation

(r(t)Φ(x′))
′
+ c̃(t)Φ(x) = 0. (12)

The following theorem is proved in [4].

Theorem 4: Let
∫∞

r1−q(t) dt =∞,∫ ∞
c(t) dt converges and

∫ ∞
t

c(s) ds ≥ 0 for large t.

Further suppose that equation (12) is nonoscillatory and pos-
sesses a positive solution satisfying
(i) The derivative h′(t) > 0 for large t,

(ii) It holds ∫ ∞
r(t) (h′(t))

p
dt =∞,

(iii) There exists a finite limit

lim
t→∞

r(t)h(t)Φ(h′(t)) =: L > 0.

Denote by

G(t) =

∫ t ds

r(s)h2(s)(h′(s))p−2

and suppose that the integral∫ ∞
(c(t)− c̃(t))hp(t) dt = lim

b→∞

∫ b

(c(t)− c̃(t))hp(t) dt

is convergent. If

lim inf
t→∞

G(t)

∫ ∞
t

(c(s)− c̃(s))hp(s) ds >
1

2q
(13)

then equation (1) is oscillatory.

Note that the function h is essentially the so-called principal
solution of (12), in particular, from (13) follows that

G(t) =

∫ t ds

r(s)h2(s)|h′(s)|p−2
−→∞ as t→∞.

If the function h is the nonprincipal solution of (12) then
we have the following oscillation criterion for (1). The proof
of this criterion can be found in [6].

Theorem 5: Let x̃, h be the positive principal and nonprin-
cipal solutions of (nonoscillatory) equation (12), respectively,
and suppose that

lim
t→∞

hp(t)[wh(t)− w̃(t)] =∞,

where wh = rΦ(h′)
Φ(h) , w̃ = rΦ(x̃′)

Φ(x̃) . If

lim inf
t→∞

1

hp(t)[wh(t)− w̃(t)]

∫ t

T

[c(s)− c̃(s)]hp(s) ds > 1

(14)
for some T ∈ R sufficiently large, then (1) is oscillatory.
Moreover, if c(t) ≥ c̃(t) for large t, lim inf in (14) can be
replaced by lim sup .

IV. NONOSCILLATION CRITERIA

In this part we present Hille-Nehari type nonoscillation
criteria for equations (1) and (2), respectively. Let us start
with the linear case.

A. Nonoscillation criteria for Sturm-Liouville equation

In this subsection we formulate nonoscillation criteria for
(2) with

∫∞
r−1(t) dt = ∞. Similar nonoscillation criteria

can be formulated also in the case when
∫∞

r−1(t) dt < ∞,
see [9].

The following theorem is presented and proved in [10].

Theorem 6: Suppose that
∫∞

r−1(t) dt = ∞ and∫∞
c(t) dt <∞. If

lim sup
t→∞

(∫ t

r−1(s) ds

)(∫ ∞
t

c(s) ds

)
<

1

4
, (15)

lim inf
t→∞

(∫ t

r−1(s) ds

)(∫ ∞
t

c(s) ds

)
> −3

4
, (16)

then (2) is nonoscillatory.

PROOF. It is well known from the linear Sturmian theory that
equation (2) is nonoscillatory provided there exists a differen-
tiable function u which satisfies the Riccati-type inequality

u′ + c(t) +
u2

r(t)
≤ 0 (17)

for large t (see [8, Chap. XI]).
We will show that the function

u(t) =
1

4
∫ t
r−1(s) ds

+

∫ ∞
t

c(s) ds

satisfies (17) for large t. To this end, denote

G(t) :=

∫ t

r−1(s) ds, C(t) :=

∫ ∞
t

c(s) ds,

thus,
u(t) =

1

4G(t)
+ C(t).

Then we have

u′ + c(t) +
u2

r(t)
= −r

−1(t)

4Gt(t
− C(t) + C(t)

+
(1 + 4G(t)C(t))

2

16G2(t)r(t)

=
r−1(t)

4G2(t)

[
−1 +

(1 + 4G(t)C(t))
2

4

]
.
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Now, since (15) and (16) hold, there exists δ > 0 such that

−3 + δ

4
< G(t)C(t) <

1 + δ

4
⇐⇒

|1 + 4G(t)C(t)| < 2− δ ⇐⇒ (1 + 4G(t)C(t))
2

4
< 1.

Consequently, we have

u′ + c(t) +
u2

r(t)
≤ 0,

thus, (2) is nonoscillatory. �

Let us now regard equation (2) as a perturbation of another
Sturm-Liouville equation of the same form

(r(t)x′)′ + c̃(t)x = 0,

and let h be its solution. The transformation x = hy transforms
equation (2) into the equation(

r(t)h2(t)y′
)′

+ (c(t)− c̃(t))h2(t)y = 0. (18)

By the substitution

v =
r(t)h2(t)y′

y
,

we obtain the Riccati equation associated with (18) in the form

v′ + (c(t)− c̃(t))h2(t) +
v2

r(t)h2(t)
= 0. (19)

Considering equation (2) and denoting u(t) solution of the
corresponding Riccati type equation

u′ + c(t) +
u2

r(t)
= 0, (20)

the relationship between the solution v(t) of (19) and u(t) of
(20) reads as follows. If x = hy, then x′ = h′y + hy′ and

sustituting x′ into u =
rx′

x
we obtain

u(t) = wh(t) + h−2(t)v(t),

where wh(t) =
r(t)h′(t)

h(t)
. The above mentioned facts we will

use in the outline of the proof of the next statement (see [10]).
Here, the idea of the proof of Theorem 6 is applied to the
transformed equation (18).

Theorem 7: Suppose that
∫∞

r−1(t)h−2(t) dt = ∞ and
the integral ∫ ∞

(c(t)− c̃(t))h2(t) dt

is convergent. If

lim sup
t→∞

(∫ t

r
−1

(s)h
−2

(s) ds

)(∫ ∞
t

(c(s)− c̃(s))h
2
(s) ds

)
<

1

4
, (21)

lim inf
t→∞

(∫ t

r
−1

(s)h
−2

(s) ds

)(∫ ∞
t

(c(s)− c̃(s))h
2
(s) ds

)
> −

3

4
,

(22)

then (2) is nonoscillatory.

OUTLINE OF THE PROOF. Let

v(t) =
1

4
∫ t
r−1(s)h−2(s) ds

+

∫ ∞
t

(c(s)− c̃(s))h2(s) ds

Denoting

G(t) =

∫ t

r−1(s)h−2(s) ds,

C(t) =

∫ ∞
t

(c(s)− c̃(s))h2(s) ds,

we have
v(t) =

1

4G(t)
+ C(t).

Similarly as in the proof of the previous theorem, using (21)
and (22), we obtain

v′ + (c(t)− c̃(t))h2(t) +
v2

r(t)h2(t)
≤ 0.

This means that (18) is nonoscillatory and hence (2) is
nonoscillatory as well. �

B. Nonoscillation criteria for half-linear equation

Before formulating Hille-Nehari type nonoscillation criteria
for (1), let us recall that the basic facts of the half-linear
oscillation theory can be found in [5]. In particular, the Riccati
type equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0, q =
p

p− 1
(23)

and the associated inequality play the same role as (20) and
(17) in the linear theory. Note that since the function Φ is not
additive, we have no half-linear analogue of the transformation
identity used in the previous section. This is why we need a
different approach which is based on the quadratization of
some nonlinear terms in the Riccati equation and Picone’s
identity ([5]).

Now, we present the main results which are formulated and
proved in [3].

Theorem 8: Suppose that
∫∞

r−1(t) dt = ∞ and∫∞
c(t) dt <∞. If

lim sup
t→∞

(∫ t

r1−q(s) ds

)p−1(∫ ∞
t

c(s) ds

)
<

1

p

(
p− 1

p

)p−1

,

and

lim inf
t→∞

(∫ t

r1−q(s) ds

)p−1(∫ ∞
t

c(s) ds

)
> −2p− 1

p

(
p− 1

p

)p−1

,

then (1) is nonoscillatory.

The next theorem deals with the case
∫∞

r1−q(t) dt <∞.

Theorem 9: Suppose that
∫∞

r−1(t) dt <∞. If

lim sup
t→∞

(∫ ∞
t

r1−q(s) ds

)p−1(∫ t

c(s) ds

)
<

1

p

(
p− 1

p

)p−1

,

and

lim inf
t→∞

(∫ ∞
t

r1−q(s) ds

)p−1(∫ ∞
t

c(s) ds

)
> −2p− 1

p

(
p− 1

p

)p−1

,
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then (1) is nonoscillatory.
The proof of each statement follows the idea introduced in

the proof of Theorem 6. We put

w =

(
p− 1

p

)p(∫ t

r1−q(s) ds

)1−p

+

∫ ∞
t

c(s) ds

in the proof of Theorem 8 and

w = −
(
p− 1

p

)p(∫ ∞
t

r1−q(s) ds

)1−p

+

∫ t

c(s) ds

in the proof of Theorem 9. By a direct computation similar to
that in the proof of Theorem 6 one can show that

w′ + c(t) + (p− 1)r1−q(t)|w|q ≤ 0

and this implies, by [5, Theorem 2.2.1], that (1) is nonoscil-
latory.

Similarly as in linear case, let us now regard equation (1)
as a perturbation of another half-linear equation of the same
form

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0, (24)

and suppose that h is its solution. Then wh =
r(t)Φ(h′)

Φ(h)
solves the Riccati equation

wh
′ + c̃(t) + (p− 1)r1−q(t)|wh|q = 0.

The following theorem is taken from [4]. We present here the
main idea of the proof which consists in the quadratization
of a certain nonlinear function appearing in the bellow given
equation (28).

Theorem 10: Suppose that equation (24) is nonoscillatory
and let h be its solution satisfying h′(t) > 0 for large t. Further
suppose that there exists a finite limit

lim
t→∞

r(t)h(t)Φ(h′(t)) = L > 0

and ∫ ∞ dt

r(t)h2(t)(h′(t))p−2
=∞.

If

lim sup
t→∞

(∫ t ds

r(s)h2(s)(h′(s))p−2

)(∫ ∞
t

(c(s)− c̃(s))h
p
(s) ds

)
<

1

2q
(25)

and

lim inf
t→∞

(∫ t ds

r(s)h2(s)(h′(s))p−2

)(∫ ∞
t

(c(s)− c̃(s))h
p
(s) ds

)
> −

3

2q
,

(26)

then (1) is nonoscillatory.

PROOF. To prove that (1) is nonoscillatory, it suffies to find
a differentiable function w satisfying the inequality

w′ + c̃(t) + (p− 1)r1−q(t)|w|q ≤ 0.

We will show that the function w = wh + h−pv satisfies this
inequality for large t. To this end, denote

R(t) =
1

r(t)h2(t)(h′(t))p−2
.

Further, consider the function

v(t) =
1

2q
∫ t
R−1(s) ds

+

∫ ∞
t

(c(s)− c̃(s))hp(s) ds (27)

and denote

C(t) =

∫ ∞
t

(c(s)− c̃(s))hp(s) ds

G(t) =

∫ t

R−1(s) ds.

Substituting for v = hp[w−wh] we obtain (suppressing the
argument t)

v′ = pΦ(h)h′[w − wh] + hp[w′ − wh
′
]

= (c̃− c)hp − pr1−qhp
[

1

p
rq
(
h′

h

)p

− rq−1h
′

h
w +

|w|q

q

]
= (c̃− c)hp − pr1−qhpP

(
Φ−1(wh), w

)
,

where
P (u, v) :=

|u|p

p
− uv +

|v|q

q
.

Thus, we get

v′ + (c− c̃)hp + pr1−qhpP
(
Φ−1(wh), w

)
= 0. (28)

By the second order degree Taylor formula, we have

pr1−qhpP
(
Φ−1(wh), w

)
∼ q

2

1

rh2(h′)p−2
[hp (w − wh)]

2

=
q

2

v2

R
.

This means that equation (28) can be approximately expressed
in the form

v′ + (c(t)− c̃(t))hp(t) +
q

2

v2

R(t)
= 0.

By (27) we obtain

v′ + (c− c̃)hp +
q

2

v2

R
= − R−1

2qG2
− (c− c̃)hp + (c− c̃)hp

+
q

2

1

R

(
1

2qG
+ C

)2

=
R−1

2qG2

[
−1 +

(1 + 2qGC)2

4

]
.

According to (25) and (26), there exists δ > 0 such that

−3 + δ

2q
< G(t)C(t) <

1− δ
2q

⇐⇒ |1+2qG(t)C(t)| < 2−δ

for large t, which means that

(1 + 2qG(t)C(t))
2

4
< 1.

Consequently,

v′ + (c(t)− c̃(t))hp(t) +
q

2

v2

R(t)
≤ 0.

Now, substituting v = hp(w − wh) in the last inequality,
a direct computation gives the inequality

w′ + c(t) + (p− 1)r1−q(t)|w|q ≤ 0,
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thus, (1) is nonoscillatory. �

In contrast to the previous theorem, we do not suppose that
h is a solution of (24). This criterion is formulated and proved
in [7]. The idea of the proof of this statement is the same as
in the previous theorem. Observe that if h is a solution of (24)
satisfying assumptions of Theorem 10, then the bellow given
additional conditions (29) and (30) (with respect to Theorem
10) are satisfied.

Theorem 11: Let h ∈ C1 be a positive function
such that h′(t) > 0 for large t, say t > T ,∫∞

r−1(t)h−2(t)(h′(t))2−p dt <∞, and denote

G(t) :=

∫ ∞
t

ds

r(s)h2(s)(h′(s))p−2
.

Suppose that

lim
t→∞

G(t)r(t)h(t)Φ(h′(t)) =∞ (29)

and
lim

t→∞
G

2
(t)r(t)h

3
(t)(h

′
(t))

p−2 [
(r(t)Φ(h

′
(t)))

′
+ c̃(t)Φ(h(t))

]
= 0. (30)

If

lim sup
t→∞

G(t)

∫ t

T

[c(s)− c̃(s)]hp(s) ds <
1

2q
,

and

lim inf
t→∞

G(t)

∫ t

T

[c(s)− c̃(s)]hp(s) ds > − 3

2q

for some T ∈ R sufficiently large, then (1) is nonoscillatory.

V. CONCLUSION

(Non)oscillation criteria for (1) and (2) presented in this pa-
per were proved using the variational principle and the Riccati
technique. Comparing results using these methods, we conlude
that oscillation criteria proved using the variational prinpciple
contain the oscillation contant which is 4-times larger than the
constant in the same criterion proved by the Riccati technique.
Based on this observation, we conjecture that this property
holds also in other oscillation and nonoscillation criteria for
linear and half-linear equations.

Presented results can be used as a theoretical base in
the investigation of some physical, biological, and chemical
phenomena (for example non-Newtonian fluid theory) which
are described by the partial differential equations with the so
called p-Laplacian and these PDE’s can be reduced under some
assumptions to the half-linear ordinary differential equations.
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