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Abstract—Block Vandermonde matrices, considered in this
paper, are constructed from a full set of solvents of a correspond-
ing matrix polynomial. These block Vandermonde matrices are
encountered especially in control engineering. Some properties
of these matrices, and iterative algorithms to compute the
determinant and the inverse of a block Vandermonde matrix
are given. A parallelization of these algorithms is also presented.
The proposed algorithms are validated by a comparison using
algorithmic complexity.

Index Terms—Block Vandermonde matrix, Solvents, Matrix
polynomial, Matrix inverse, Determinant, parallelization

I. I NTRODUCTION

The Vandermonde matrix is ubiquitous in mathematics and
engineering. Its uses include polynomial interpolation, coding
theory, and signal processing, where the matrix for a discrete
Fourier transform is a Vandermonde matrix.

Literature on Vandermonde matrix goes back to 1967, and
even before, where many papers deal with the study of its
properties, its inverse and its determinant [1]–[5]

Vandermonde matrix may be encountered in many domains
as in computer science for the design of cross layer protocols
with recovering from errors and packet loss impairments [6],
and in [7] the quasi-cyclic (QC) protograph low-density parity-
check (LDPC) codes are based on Vandermonde matrices.

The importance of the Vandermonde matrix in control
theory has been emphasized in [8]–[10]. Generally, the inverse
of the usual Vandermonde matrix as well as the inverse
of the generalized Vandermonde matrix is based on using
interpolation polynomials.

In [11], an explicit algorithm for the inverse of a Vander-
monde matrix was given, based on the Lagrange interpolation
and the generalization of the Yang-Hui triangle theory.

The authors of [12] give a new representation for a simple
Vandermonde matrix (where all eigenvalues are simple) and a
confluent (generalized) Vandermonde matrix and then compute
its inverse easily to be used afterwards into resolving Stein
equations.

The inversion of the Vandermonde matrix has received much
attention for its role in the solution of some problems of
numerical analysis and control theory. The work presented in
[13] deals with the problem of getting an explicit formula for
the generic element of the inverse to result in two algorithms
in O(n2) andO(n3).

In [14], the numerical properties of the well-known fast
Parker-Traub and Bjorck-Pereyra algorithms, which both use
the special structure of a Vandermonde matrix to rapidly
compute the entries of its inverse, are compared. The results of
numerical experiments suggest that the Parker-Traub algorithm
allows one not only fastO(n2) inversion of a Vandermonde
matrix, but it also gives more accuracy.

One of the first papers where the term block vandermonde
matrix is used, to my knowledge, is [15] but it is in [16] and
[17] that the concept is fully studied; the Block Vandermonde
matrix (BVM) is defined and its properties are explored. A
method, based on the Gaussian elimination, to compute the
determinant is also proposed.

In [18], the author gives a method to determine the biggest
integer n = v(q, t) for which there existt × t matrices
{A1...An} with the highest powerq such that the BVM
V = [Ai−1

j j ≤ n; i ≤ n] is invertible.
Methods to compute the inverse of a block vandermonde

matrix have not been studied but the inversion of block
matrices (or partitioned matrices) is very well studied!

The method to compute the inverse of a2× 2 block matrix
is known, under the conditions that at least one of the two
diagonal matrix entries must be non-singular. In [19], this
condition is overcome by using three new types of symbolic
block matrix inversion.

In [20], the properties of block matrices with block banded
inverses are investigated to derive efficient matrix inversion
algorithms for such matrices. In particular, the following is
derived: a recursive algorithm to invert a full matrix whose
inverse is structured as a block tridiagonal matrix and a
recursive algorithm to compute the inverse of a structured
block tridiagonal matrix.

Parallelization may be a solution to problems where large
size matrices, as BVM, are used. Large scale matrix inversion
has been used in many domains and block-based Gauss-Jordan
(G-J) algorithm as a classical method of large matrix inversion
has become the focus of many researchers. But the large paral-
lel granularity in existing algorithms restricts the performance
of parallel block-based G-J algorithm, especially in the cluster
environment consisting of PCs or workstations. The author of
[21] presents a fine-grained parallel G-J algorithm to settle the
problem presented above.
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Block Vandermonde matrices constructed using matrix
polynomials solvents are very useful in control engineering,
for example in control of multi-variable dynamic systems
described in matrix fractions (see [22]).

In this paper new algorithms to compute the inverse and
the determinant of such block Vandermonde matrices and their
parallelization are given with an implementation using Matlab.

After this introduction, Section 2 deals with definitions,
and methods to compute the inverse and determinant of the
simple Vandermonde matrix. The block Vandermonde matrix
is detailed in section 3, with a recall on matrix polynomials and
solvents. The main results are in Section 4, which consist of an
iterative construction of the BVM, then proposed algorithms to
compute the inverse and the determinant of the matrix. Section
5 is a proposition of a parallel implementation of the two
algorithms. Finally a conclusion finishes the paper.

II. SIMPLE VANDERMONDE MATRICES

In linear algebra, a Vandermonde matrix, named after
Alexandre-Th́eophile Vandermonde [23], is a matrix with the
terms of a geometric progression in each column, i.e., anm×n
matrix

V =




1 1 1 · · · 1
x1 x2 x3 · · · xm

x2
1 x2

2 x2
3 · · · x2

m
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

m




(1)

So for a set ofn distinct values{xii = 1..n} the corre-
sponding Vandermonde square matrix are of two kinds:

Row-Vandermonde matrix of ordern:

Vr =




1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n




(2)

Column-Vandermonde matrix of ordern Transpose of the
previous matrix:

Vc =




1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3
...

...
...

.. .
...

1 xn x2
n · · · xn−1

n




(3)

A. Determinant

The determinant of a square Vandermonde matrix can be
expressed as:

detV (x1, ..., xn) =
∏

1≤i≤j≤n

(xi − xj) (4)

This is called the Vandermonde determinant or Vander-
monde polynomial. If all thexi’s are distinct, then it is non-
zero.

B. Inverse

The inverse of the Vandermonde matrix is, generally, given
in the form of the productU−1L−1 of two triangular matrices
by the display of generating formulas from which the elements
of U−l andL−1 may be directly computed.

The Vandermonde matrixV has the determinant nonsingular
if all values of xi are distinct. It can, therefore, be factored
into a lower triangular matrixL and an upper triangular matrix
U whereV = LU . The factorization is unique if no row or
column interchanges are made and if it is specified that the
diagonal elements ofU are unity.

Another definition of the inverse ofV is a matrix W
satisfyingWV = I. If wi is the ith row of W , thus

wi(x) =

∏
j 6=i

(x− xj)
∏
j 6=i

(xi − xj)
for i = 0, 1, ..., n− 1 (5)

Where W is normalized to getwi(ai) = 1. Hence the
inverse ofV is the matrixW whose rows are the vectors
wi generated by thewi(x) [5].

III. B LOCK VANDERMONDE MATRIX

For a set ofn m × m matrices {A1, A2, ..., An}, the
corresponding block Vandermonde matrix (BVM) of ordert
is defined as follows:

V =




I I I · · · I
A1 A2 A3 · · · An

A2
1 A2

2 A2
3 · · · A2

n
...

...
...

.. .
...

At−1
1 At−1

2 At−1
3 · · · At−1

n




(6)

By analogy to the simple vandermonde matrix, we define
the row-BVM and column-BVM as follows.

So for a set ofn m × m matrices {Aii = 1..n} the
corresponding square BVM are of two kinds:

Row-BVM of ordern:

Vr =




I I I · · · I
A1 A2 A3 · · · An

A2
1 A2

2 A2
3 · · · A2

n
...

...
...

. ..
...

An−1
1 An−1

2 An−1
3 · · · An−1

n




(7)

Column-BVM of ordern Transpose of the previous matrix:

Vc =




I A1 A2
1 · · · An−1

1

I A2 A2
2 · · · An−1

2

I A3 A2
3 · · · An−1

3
...

...
...

.. .
...

I An A2
n · · · An−1

n




(8)

Remark 1:The block Vandermonde matrices, we will be
dealing with, are constructed from solvents of matrix polyno-
mials.
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A. Matrix Polynomials

In this section a recall on matrix polynomials and solvents,
and their properties, will be given.

Definition 1: The following m×m matrix:

A(t) =




a11(t) a12(t) · · · a1m(t)
a21(t) a22(t) · · · a2m(t)

...
...

...
...

am1(t) am2(t) · · · amm(t)


 (9)

is called a polynomial matrix, of orderm, whereaij(t) are
scalar polynomials (of degree≤ r) over the field of complex
numbers.

From a polynomial matrix we can construct a matrix poly-
nomial and vice-versa.

Definition 2: An mth order,rth degree matrix polynomial
(also calledλ-matrix) is given by:

A(t) = Art
r + Ar−1t

r−1 + ... + A1t + A0 (10)

WhereAi arem×m real matrices and t a complex number.
Definition 3: Let X be am×m complex matrix.
A right matrix polynomial is defined by:

AR(X) = ArX
r + Ar−1X

r−1 + ... + A1X + A0 (11)

And a left matrix polynomial is defined by:

AL(X) = XrAr + Xr−1Ar−1 + ... + XA1 + A0 (12)

Definition 4:The complex numberλi is called a latent value
of A(t) if it is a solution of the scalar polynomial equation
det(A(t)) = 0. The non-trivial vectorvi, solution of the
equationA(λi)vi = 0, is called a primary right latent vector
associated to the latent valueλi. Similarly, the non trivial row
vector w, solution of the equationwA(λi) = 0 is called a
primary left latent vector associated withλi [24].

B. Solvents

Definition 5: A right solvent (or a block root)R of a
polynomial matrixA(t) is defined by:

A(R) = ArR
r + Ar−1R

r−1 + ... + A1R + A0 = 0m (13)

And the left solvent of a polynomial matrixA(t) is defined
by:

A(L) = LrAr + Lr−1Ar−1 + ... + LA1 + A0 = 0m (14)

In the following some important facts on solvents:
Theorem 1:If the latent roots ofA(t) are distinct, then

A(X) has a complete set of solvents.
Proof 1: see [16].
Remark 2: A solvent is automatically non-singular. The

determinant is non-null because its eigenvalues are distinct;
the eigenvectors must be linearly independent.

Remark 3:If A(t) hasmr distinct latent roots and the set
of right (left) latent vectors verify the condition that everym
of them are linearly independent (Haar Condition) then there

are exactly

(
mn
r

)
different right (left) solvents [16].

C. Block Vandermonde matrices

As for an eigenvalue system, a block Vandermonde matrix
can be defined for solvents with particular properties [24].

Let a set ofr right solventsRi (m×m matrices) of a corre-
sponding matrix polynomialA(t). A right block Vandermonde
matrix of orderr is a rm× rm matrix defined as:

VR =




I I I · · · I
R1 R2 R3 · · · Rr

R2
1 R2

2 R2
3 · · · R2

r
...

...
...

...
...

Rr−1
1 Rr−1

2 Rr−1
3 · · · Rr−1

r




(15)

And given a set ofr left solventsLi (m×m matrices) of a
polynomial matrixA(t) a left block Vandermonde matrix of
orderr is a defined as:

VL =




I L1 L2
1 · · · Lr−1

1

I L2 L2
2 · · · Lr−1

2

I L3 L2
3 · · · Lr−1

3
...

...
... · · · ...

I Lr L2
r · · · Lr−1

r




(16)

Remark 4: In [26] the general right (left) block Vander-
monde matrix constructed by solvents, where a right (left)
solventRi (Li) with multiplicity mi exists, is given.

Theorem 2:If V (R1, ..., Rk−1) is nonsingular andRk is
not a weak solvent ofA(t) constructed fromk − 1 solvents,
then V (R1, Vk) is nonsingular and then anA(t) constructed
from k solvents exist.

Proof 2: see [16]
Remark 5:W is called a weak solvent ofA(t) if A(W ) is

singular.
Theorem 3:If A(t) has distinct latent roots, then there exists

a complete set of right solvents ofA(X), R1, · · · , Rm, and
for any such set of solvents,V (R1, · · · , Rm) is nonsingular.

Proof 3: see [16]

D. Non-singularity

Theorem 4:A block Vandermonde matrix as defined in
equations 15 and 16 are non-singular matrices if and only
if the set of r solvents{R1...Rr} with multiplicities {m1...
mr} is a complete set.

Proof 4: see [16], [26]
Definition 6: If we let σ[A(t)] denote the set of all latent

roots of A(t) and σ[Ri] the set of eigenvalues of the right
solventRi, then a complete set of right solvents is obtained
if we can findr right solvents such that [24]:





r⋃
i=1

σ(Ri) = σ(A(t))

σ(Ri) ∩ σ(Rj = ∅
(17)

And the block vandermonde matrix thus constructed is non-
singular.
Just as for the right solvents, the existence of a left block root
depends on the existence of a set ofm linearly independent
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left latent vectors. A complete set of left block roots (covering
totally the latent structure ofA(t)) is obtained if we can find
r left block roots where each block root involves a distinct set
of m latent roots ofA(t). This in turn requires that for each
such a distinct set, we can find a corresponding set of linearly
left latent vectors. The following definition summarizes that:

Definition 7:The set of left solvents ofA(t), which satisfies
the following properties [24]:





r =
∑k

i=1 mi,

σ[A(t)] =
k⋃

i=1

σ[Li]
(18)

and a nonsingular block vandermonde matrix, is called the
complete set of the left solvents ofA(t).

Remark 6:A complete set of right or left solvents will then
describe completely the latent structure ofA(t).

IV. M AIN RESULTS

The following sections constitute the author’s contribution.

A. Iterative Construction of BVM

Let V1 = Im, whereIm is them×m identity matrix.
Then BVM of order 2 constructed from two solvents is as

follows:

V2 =
(

V1 Im

R1 R2

)
(19)

If we define the following matrices:
B1 = Im; C1 = R1 andD1 = R2

Then a BVM of order3 (three solvents) is as follows:

V3 =
(

V2 B2

C2 D2

)
(20)

Where

B2 =
(

Im

R3

)
;

C2 =
(

R2
1 R2

2

)
;

D2 = R2
3

The following theorem ia a deduction from previous results:
Theorem 5:A BVM of order r, constructed fromr solvents,

is as follows

Vr =
(

Vr−1 Br−1

Cr−1 Dr−1

)
(21)

Where

Br−1 =




Im

Rr

R2
r
...

Rr−2
r




; Dr−1 = Rr−1
r

andCr−1 =
(

Rr−1
1 Rr−1

2 · · · Rr−1
r−1

)
Proof 5: It is straight forward from the block partitioning

of the BVM Vr as given in equation 15.

Vr =




I · · · I | I
R1 · · · Rr−1 | Rr

...
...

... | ...
Rr−2

1 · · · Rr−2
r−1 | Rr−2

r

−− −− −− | −−
Rr−1

1 · · · Rr−1
r−1 | Rr−1

r




Remark 7:The previous and the following results are mainly
given on a row-BVM constructed from right solvents.The same
procedures can be applied to a column-BVM constructed from
left solvents.

B. Inverse of BVM

From [27] and [19], the inverse of a block partitioned matrix
is given as follows:

If A−1 exists then:
(

A B
C D

)−1

=

(
A−1 + E ∗ S−1

A ∗ F −E ∗BS−1
A

−S−1
A ∗ F S−1

A

)
(22)

whereE = A−1B, F = CA−1 andSA = D − CA−1B.
SA is the Shur complement of matrixA and should be non-

singular.

If D−1 exists then:
(

A B
C D

)−1

=

(
S−1

D −S−1
D ∗ F

−E ∗ S−1
D E ∗ S−1

D ∗ F + D−1

)
(23)

whereE = D−1C, F = BD−1, andSD = A−BD−1C.
SD is the Shur complement of matrixD and should be

non-singular.

Let us compute the inverse of a BVM of orderr as given
in equation 21 by using either equations 22 or 23 both holds!
In our case both diagonal entries are non-singular.

V −1
r =

(
V −1

r−1 + E ∗ S−1
r−1 ∗ F −E ∗ S−1

r−1

−S−1
r−1 ∗ F S−1

r−1

)
(24)

Where Sr−1 is the Shur complement of matrixVr−1 at
iterationr − 1:

Sr−1 = Dr−1 − Cr−1V
−1
r−1Br−1 (25)

E = V −1
r−1 ∗Br−1

F = Cr−1 ∗ V −1
r−1

andDr−1, Cr−1, Br−1 are as given previously.
The same procedure will be used to determine the inverse

of the BVM Vr−1. So the algorithm is an iterative procedure.
1) Algorithm: Let a complete set of solvents{R1, ..., Rr}

and the corresponding BVMVr as given in 15. From the
matrix Vr, all sub-matrices (Bi, Ci, Di and Si) will be first
constructed, then the inverse is computed. The algorithm uses a
function which computes the inverse of the Shur Complement.

Step1: Let INV = Im

Step2:
for i = 2 ∗m to r ∗m with step =m

Bi−1 = V r(1 : i− 2, i− 1 : i);
Ci−1 = V r(i− 1 : i, 1 : i− 2);
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Di−1 = V r(i− 1 : i, i− 1 : i);
Ei−1 = INV ∗Bi−1 ;
Fi−1 = Ci−1 ∗ INV ;
Si−1 = Di−1 − Ci−1 ∗ INV ∗Bi−1;

INV =
(

INV + E ∗ S−1
i−1 ∗ F −E ∗ S−1

i−1

−S−1
i−1 ∗ F S−1

i−1

)
;

endfor
2) Algorithmic Complexity: The number of iterations=

r − 2. The procedure consists of a set of affectations and the
computation of the inverse of S. The size ofS = m × m
and Matlab uses Gaussian elimination method rather than an
inverse algorithm. The Gaussian elimination has a complexity
of O(m3) .

So the overall complexity of our algorithm is:O((r − 2) ∗
m3).

3) Example:Let a matrix polynomial of orderm = 2 and
degreer = 4:

A(t) = I2t
4 + A3t

3 + A2t
2 + A1t + A0

with A3 =
( −1 2

3 −5

)
; A2 =

(
2 5
3 −1

)

andA1 =
( −1 −1

3 −2

)
; A0 =

(
1 1
0 2

)

Then using the ”polyeig ” function of Matlab we obtained
the latent values and vectors ofA(t), and constructed its
solvents. The method to construct solvents from a set of latent
values and vectors are given in [28].

This matrix polynomial presents a full set of solvents as
follows:

R1 =
(

87.40 −181.70
42.21 −87.70

)
; R2 =

(
0.57 −1.11
0.48 −0.37

)
;

R3 =
(

0.96 4.42
−0.60 −1.86

)
; R4 =

( −3.23 −4.50
7.75 10.25

)
;

The associated Vandermonde matrix is as follows:

V4 =




I2 I2 I2 I2

R1 R2 R3 R4

R2
1 R2

2 R2
3 R2

4

R3
1 R3

2 R3
3 R3

4




The code in Matlab to compute the inverse is as follows:
IV=eye(2);
for i=4:2:8

B=V4(1:i-2,i-1:i);
C=V4(i-1:i,1:i-2);
D=V4(i-1:i,i-1:i);
E=IV*B ;
F=C*IV ;
delta=D-C*IV*B;
IV=[IV+E/delta*F -E/delta;

-inv(delta)*F inv(delta)];
endfor

And the result of the execution as given by Matlab:

IV =




−0.05 −0.10 −0.02 0.12 −0.14 −0.22 0.02 0.03
−0.02 −0.05 −0.01 0.06 −0.07 −0.11 0.01 0.01
0.55 0.72 0.44 0.68 0.34 −0.15 0.12 0.09
0.39 0.64 −0.14 −0.57 0.23 −0.21 −0.11 0.01
0.03 −0.30 −0.59 0.10 −0.59 1.10 −0.02 −0.21
−0.01 0.17 0.28 −0.20 0.15 −0.25 0.01 0.06
0.47 −0.32 0.17 −0.90 0.40 −0.73 −0.12 0.10
−0.37 0.24 −0.13 0.70 −0.31 0.57 0.09 −0.08




We used the ”tic/toc” functions of Matlab to determine
the execution timeT1 of our procedure to be compared to the
time T2 of the ”inv” function of Matlab.

The results are:
T1 = 2.2283e− 005
T2 = 2.4673e− 004
speed = 11.072
Remark 8:The proposed algorithm is 10 times quicker than

the procedure used by Matlab.

C. Determinant

From [27], the determinant of a block partitioned matrix is
as follows:

If A is non-singular:

det

(
A B
C D

)
= detA.det[D − CA−1B] (26)

And if D is non-singular:

det

(
A B
C D

)
= detD.det[A−BD−1C] (27)

Using this equation and the block decompositions given in
the previous sections we deduced the following result.

Let us compute the determinant of a BVM of orderr as
given in equation 21 by using either equations 26 or 28 both
holds!

detVr = detVr−1.detSr−1 (28)

Where Sr−1 is the Shur complement of matrixVr−1 at
iterationr − 1:

Sr−1 = Dr−1 − Cr−1V
−1
r−1Br−1 (29)

whereDr−1, Cr−1 andBr−1 are as given previously.
The same procedure will be used to determine the determi-

nant of the BVMVr−1.
Remark 9:The determinant is, in general, needed with the

inverse. So the inverse ofVr−1 is computed using the previous
algorithm.

1) Algorithm: Let a complete set of solventsR1...Rr and
the corresponding BVMVr as given in equation 15. From
the matrix Vr all sub-matrices (Vi, Bi, Ci, Di and Si) can
be constructed and the determinant computed. The algorithm
uses a function which computes the determinant of the Shur
Complement.

Step1: Let Det = 1
Step2:
for i = 2 ∗m to r ∗m with step =m

Vi−1 = V r(1 : i− 2, 1 : i− 2) ;
Bi−1 = V r(1 : i− 2, i− 1 : i);
Ci−1 = V r(i− 1 : i, 1 : i− 2);
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Di−1 = V r(i− 1 : i, i− 1 : i);
Si−1 = Di−1 − Ci−1 ∗ V −1

i−1 ∗Bi−1;
Det = Det ∗ determinant(Si−1);

endfor
2) Algorithmic complexity:: The number of iterations is

r−2. The procedure consists of a set of affectations, the com-
putation of the inverse of a BVM and of the determinant ofS.
The size ofS = m×m and Matlab uses the triangular factors
of Gaussian elimination method to compute the determinant
and the inverse of a square matrix. The Gaussian elimination
has a complexity ofO(m3). So the overall complexity of our
algorithm is:O((r − 2) ∗m3).

3) Example:The same example than in the previous section
is used to illustrate the determinant ofV4.

The code in Matlab to compute the determinant is as
follows:

DD=1;
for i=4:2:8

V=V4(1:i-2,1:i-2);
B=V4(1:i-2,i-1:i);
C=V4(i-1:i,1:i-2);
delta=V4(i-1:i,i-1:i)-C/V*B;
DD=DD*det(delta);

end
The right matrix divide is used instead of the function

”inv” as advised by Matlab.
And the result as given by Matlab:
DD = -1.0037e+007
We used the ”tic/toc” functions of Matlab to determine

the execution timeT1 of our procedure to be compared to the
time T2 of the ”det” function of Matlab. The results are:

T1 = 7.2925e-006
T2 = 1.0615e-004
speed =T1/T2= 14.556
The proposed algorithm is 14 times quicker than the proce-

dure used by Matlab.

V. PARALLELIZATION

For both Determinant and Inverse, a parallelization is
possible because of the decomposition step in the proposed
algorithm. Even though the iterative approach is difficult to
optimally parallelize! The above decomposition is useful only
if a parallel execution is possible, otherwise the benefits are
negligible.

There exist two kinds of parallelization of matrix calculus:
data or tasks (calculus) decomposition. Because data decompo-
sition is already performed, so task decomposition is proposed.

A. Parallel inverse of block Vandermonde matrix

From the data decomposition, a master-slave task decom-
position was performed on the sequential algorithm. The
master task will execute the data scattering and gathering, and
sequential instructions and at least three (3) slave tasks will
execute the parallel blocks.

Algorithm:
Step1: Let INV = Im

Step2: for i = 2 ∗m to r ∗m with step=m
Parallel block

Bi−1 = Vr(1 : i− 2, i− 1 : i);
Ci−1 = Vr(i− 1 : i, 1 : i− 2);
Di−1 = Vr(i− 1 : i, i− 1 : i);

End
Parallel block

Ei−1 = INV ∗Bi−1 ;
Fi−1 = Ci−1 ∗ INV ;
Si−1 = Di−1 − Ci−1 ∗ INV ∗Bi−1;

end
iS = S−1

i−1;
Parallel block

INV =
(

INV + E ∗ iS ∗ F −E ∗ iS
−iS ∗ F iS

)

end
end

B. Parallel determinant of block Vandermonde matrix

As for the precedent algorithm, a master-slave task decom-
position has been performed, and the master task will execute
the data scattering and gathering and sequential parts, and
at least four (4) slave tasks will execute the parallel blocks.
Algorithm:

Step1: Let Det=1
Step2: for i = 2 ∗m to r ∗m with step=m
Parallel block

Vi−1 = Vr(1 : i− 2, 1 : i− 2);
Bi−1 = Vr(1 : i− 2, i− 1 : i);
Ci−1 = Vr(i− 1 : i, 1 : i− 2);
Di−1 = Vr(i− 1 : i, i− 1 : i);

End
Si−1 = Di−1 − Ci−1 ∗ V −1

i−1 ∗Bi−1;
Det = Det ∗ determinant(Si−1);

end

C. Algorithmic Complexity

The overall time complexity of the two algorithms is the
same as before:O((r− 2) ∗m3). But the detailed complexity
is slightly better.

An implementation using Matlab has been done. Matlab
(classical) offers parallel execution of a set of instructions
(parallel block) usingparfor . Matlab uses the number of
cores available on the used computer usingmatlabpool.
The execution time, obtained using ”tic/toc” functions
of Matlab, was greater than the sequential execution time,
because of the large amount of data flowing between the cores,
at each iteration.

VI. CONCLUSION

In this paper new results on the computation of the inverse
and the determinant of a block Vandermonde matrix are
given. Efficient algorithms are proposed with their algorithmic
complexities. The parallelization of the algorithms, based on
data and task decomposition, is proposed.

These new computation techniques are very useful in con-
trol theory, where systems are described in matrix fractions
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descriptionand their properties are deduced from solvents.
In this case block Vandermonde matrices constructed from
solvents are needed.

This paper is a part of a project on control methods of
dynamic multi-variable systems and their parallelization.
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