Connectedness in Soft Minimal Structure

S. S. Thakur

Department of Applied Mathematics Jabalpur Engineering College , Jabalpur Jabalpur, India samajh_singh@rediffmail.com Alpa Singh Rajput
Department of Applied Mathematics
Jabalpur Engineering College, Jabalpur
Jabalpur, India
alpasinghrajput09@gmail.com

Shailja Shukla
Department of CSE
Jabalpur Engineering College
Jabalpur, India
Shailja270@gmail.com

Abstract—In the present paper we introduces the concept of soft connectedness in soft m-structure and studied some of their properties and characterizations.

Index Terms—Soft m-structure, Soft m-connectedness and Soft m-connectedness between soft sets.

I. INTRODUCTION

The concept of soft set is fundamentally important in almost every scientific field. Soft set theory is a new mathematical tool for dealing with uncertainties and is a set associated with parameters and has been applied in several directions. Since in 1999 Molodtsov [19] originated the idea of soft sets. In 2002, Maji et. al [15], gave first practical application of soft sets in decision making problems. Many researchers have contributed toward the algebraic structures of soft set theory ([1], [23]). In 2011 Shabir and Naz [21] initiated the study of soft topological spaces. In the recent past many soft topological concepts such as soft mappings ([12], [25], [9], [10], [13]). Soft regular-open sets[6], soft semi-open sets[17],soft preopen sets [2], soft α -open sets [3],soft β -open sets [4],soft b-open sets [5], soft connectedness [11], [20], soft semi-connectedness [8], [17], soft preconnectedness [24] etc. play an important part in soft topological spaces. In the present paper we introduces the concept of soft connectedness in soft m-structure and studied some of their properties and characterizations.

II. PRELIMINARIES

Since we shall require the following known definitions, notations and some properties, we recall them in this section. Let U is an initial universe set , E be a set of parameters , P(U) denote the power set of U and $A\subseteq E.$

Definition 2.1: [19] A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P(U)$. In other words,a soft set over U is a parameterized family of subsets of the universe U. For all $e \in A$, F (e) may be considered as the set of e-approximate elements of the soft set (F, A).

Definition 2.2: [16] For two soft sets (F, A) and (G, B) over a common universe U ,we say that (F, A) is a soft subset of (G, B), denoted by $(F, A) \subseteq (G, B)$, if

- (a) $A \subseteq B$ and
- (b) F (e) \subseteq G (e) for all $e \in E$.

Definition 2.3: [16] Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal denoted by (F, A) = (G, B) If $(F, A) \subseteq (G, B)$ and $(G, B) \subseteq (F, A)$.

Definition 2.4: [7] The complement of a soft set (F, A), denoted by $(F, A)^c$, is defined by $(F, A)^c = (F^c, A)$, where $F^c : A \to P(U)$ is a mapping given by $F^c(e) = U - F(e)$, for all $e \in E$.

Definition 2.5: [16] Let a soft set (F, A) over U.

- (a) Null soft set denoted by ϕ if for all $e \in A$, $F(e) = \phi$.
- (b) Absolute soft set denoted by \widetilde{U} , if for each $e \in A$, F(e) = U.

Clearly, $\widetilde{U}^c = \phi$ and $\phi^c = \widetilde{U}$.

Definition 2.6: [7] Union of two sets (F , A) and (G , B) over the common universe U is the soft (H , C), where $C = A \cup B$, and for all $e \in C$,

$$H(e) = \begin{cases} F(e), & if e \in A - B \\ G(e), & if e \in B - A \\ H(e), & if e \in A \cap B \end{cases}$$

Definition 2.7: [7] Intersection of two soft sets (F, A) and (G, B) over a common universe U, is the soft set (H, C) where $C = A \cap B$ and H (e) = F (e) \cap G (e) for each $e \in E$.

Let X and Y be an initial universe sets and E and K be the non empty sets of parameters, S(X, E) denotes the family of all soft sets over X and S(Y, K) denotes the family of all soft sets over Y.

Definition 2.8: [12] Let S(X,E) and S(Y,K) be families of soft sets. Let u: $X \to Y$ and p: $E \to K$ be mappings. Then a mapping f_{pu} : $S(X, E) \to S(Y, K)$ is defined as:

(i)Let (F, A) be a soft set in S(X, E). The image of (F, A) under f_{pu} , written as f_{pu} $(F, A) = (f_{pu}(F), p(A))$, is a soft set in S(Y,K) such that

$$f_{pu}(F)(k) = \begin{cases} \bigcup_{e \in p^{-1}(k) \cap A} u(F(e)), & p^{-1}(k) \cap A \neq \phi \\ \phi, & p^{-1}(k) \cap A = \phi \end{cases}$$

For all $k \in K$.

(ii) Let (G, B) be a soft set in S(Y, K). The inverse image of (G, B) under f_{pu} , written as

$$f_{pu}^{-1}(G)(e) = \begin{cases} u^{-1}G(p(e)), & p(e) \in B\\ \phi, & otherwise \end{cases}$$

For all $e \in E$.

32

Definition 2.9: [18]Let $f_{pu}: S(X, E) \to S(Y, K)$ be a mapping and $u: X \to Y$ and $p: E \to K$ be mappings. Then f_{pu} is soft onto, if $u: X \to Y$ and $p: E \to K$ are onto and f_{pu} is soft one-one, if $u: X \to Y$ and $p: E \to K$ are one-one.

ISSN: 2313-0571

Definition 2.10: [21] A subfamily τ of S(X , E) is called a soft topology on X if:

- 1) $\widetilde{\phi}$, \widetilde{X} belong to τ .
- 2) The union of any number of soft sets in τ belongs to τ .
- 3) The intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X. The members of τ are called soft open sets in X and their complements called soft closed sets in X.

Definition 2.11: If (X, τ, E) is soft topological space and a soft set (F, E) over X.

- (a) The soft closure of (F, E) is denoted by Cl(F,E), is defined as the intersection of all soft closed super sets of (F,E) [21].
- (b) The soft interior of (F, E) is denoted by Int(F,E), is defined as the soft union of all soft open subsets of (F, E) [25].

Definition 2.12: [25] The soft set $(F,E) \in S(X,E)$ is called a soft point if there exist $x \in X$ and $e \in E$ such that $F(e) = \{x\}$ and $F(e') = \phi$ for each $e' \in E - \{e\}$, and the soft point (F,E) is denoted by x_e .

Definition 2.13: [14] Let (X,τ,E) be a soft topological space, and (A,E),(B,E) be two soft sets over X. The soft sets (A,E) and (B,E) are said to soft separated , if $(A,E) \cap Cl(B,E) = \phi$ and $Cl(A,E) \cap (B,E) = \phi$.

Definition 2.14: [14] Let (X,τ,E) be a soft topological space, and If there exist two non-empty soft separated sets (A,E),(B,E) such that $(A,E) \cup (B,E) = \tilde{X}$,then (A,E) and (B,E) are said to be soft disconnection for soft topological space (X,τ,E) . (X,τ,E) is said to be soft disconnected if (X,τ,E) has a soft disconnection.Otherwise, (X,τ,E) is said to be soft connected.

Definition 2.15: [17] Let (X,τ,E) be soft topological space .Two nonempty soft sub sets (F,A) and (F,B) of S(X,E) are called soft semiseparated iff $scl(F,A) \cap (F,B) = (F,A) \cap scl(F,B) = \phi$.

Definition 2.16: [17] Let (X, τ, E) be a soft topological space. If there does not exist a soft semiseparation of X, then it is said to be soft s-connected.

Definition 2.17: [24] Let (X, τ, E) be soft topological space .Two nonempty soft sub sets (F,A) and (F,B) of S(X,E) are called soft preseparated iff $Pcl(F,A) \cap (F,B) = (F,A) \cap Pcl(F,B) = \phi$.

Definition 2.18: [24] Let (X, τ, E) be a soft topological space. If there does not exist a soft preseparation of X, then it is said to be soft P-connected.

Definition 2.19: A soft set (A, E) of a soft topological space(X, τ, E) is called :

- (a) Soft regular open (A, E) = Int(Cl(A, E)) [6];
- (b) Soft α -open if $(A, E) \subset Int(Cl(Int(A, E)))$ [3];
- (c) Soft semiopen if $(A, E) \subset Cl(Int(A, E))$ [17];
- (d) Soft preopen if $(A, E) \subset Int(Cl(A, E))$ [2];
- (e) Soft b-open if $(A, E) \subset Int(Cl(A, E)) \cup Cl(Int (A, E))$ [5].
- (f) Soft β -open if $(A, E) \subset Cl(Int(Cl(A, E)))$ [4]

The family of all soft regular open (resp. soft α -open, soft semi open , soft pre open , soft β -open , soft b-open) sets of X will be denoted by SRO(X,E) (resp. $S\alpha$ O(X,E), SSO(X,E) , SPO(X,E) , S β O(X, E) , SbO(X, E)).

Definition 2.20: Let (A,E) be a soft subset of a soft topological space (X,τ,E) . Then:

- (a) The intersection of all soft semi open sets containing (A, E) is called semi closure of (A,E). It is denoted by scl(A,E) [17].
- (b) The intersection of all soft pre open sets containing (A, E) is called preclosure of (A,E). It is denoted by pcl(A,E)[2].
- (c) The intersection of all soft α open sets containing (A,E) is called α -closure of (A,E). It is denoted by $\alpha \operatorname{cl}((A,E))[3]$.
- (d) The intersection of all soft b-open sets containing (A,E) is called b-closure of (A,E). It is denoted by bcl(A,E)[5].
- (e) The intersection of all soft β -open sets containing (A,E) is called β -closure of (A,E). It is denoted by $\beta cl(A,E)[4]$.

Definition 2.21: A soft mapping $f_{pu}: (X,\tau,E) \rightarrow (X,\sigma,K)$ is said be:

- (a) Soft continuous if f_{pu}^{-1} (U, K) $\in \tau$ for every soft set (U, K) $\in \sigma$ [25] .
- (b) Soft α -continuous if f_{pu}^{-1} (U, K) \in S α O (X, E) for every soft set (U, K) \in σ [3].
- (c) Soft semi continuous if f_{pu}^{-1} (U, K) \in SSO (X, E) for every soft set (U, K) \in σ [17].
- (d) Soft pre continuous if f_{pu}^{-1} (U, K) \in SPO (X, E) for every soft set (U, K) \in σ [2].
- (e) Soft b-continuous if f_{pu}^{-1} (U, K) \in SbO (X, E) for every soft set (U, K) \in σ [5].
- (f) Soft β -continuous if f_{pu}^{-1} (U, K) \in S β O(X, E) for every soft set (U, K) \in σ [4].

Definition 2.22: A soft mapping $f_{pu}:(X,\tau,E)\to (X,\sigma,K)$ is said be :

- (a) Soft open if $f_{pu}(U, E) \in \sigma$ for every soft set $(U, E) \in \tau$ [26].
- (b) Soft α -open if f_{pu} (U, E) \in S α O(Y, K) for every soft set (U, E) \in τ [3].
- (c) Soft semi open if $f_{pu}(U, E) \in SSO(Y, K)$ for every soft set $(U, E) \in \tau$ [17].
- (d) Soft pre open if $f_{pu}(U, E) \in SPO(Y, K)$ for every soft set $(U, E) \in \tau$ [2].
- (e) Soft b-open if $f_{pu}(U, E) \in SbO(Y, K)$ for every soft set $(U, E) \in \tau$ [5].
- (f) Soft β -open if $f_{pu}(U, E) \in S\beta$ O(Y, K) for every soft set $(U, E) \in \tau$ [4].

Definition 2.23: [22] A soft subfamily $m_{(X,E)}$ of S(X,E) over X is called a soft minimal structure (briefly soft m-structure) on X if $\phi \in m_{(X,E)}$ and $\tilde{X} \in m_{(X,E)}$.

Each member of $m_{(X,E)}$ is called a soft m-open set and complement of a soft m-open set is called a soft m-closed set.

Remark 2.24: [22] Let (X,τ,E) be a soft topological space. Then the families τ , SO(X,E), SPO(X,E), SO(X,E), SO(X,E), SO(X,E), SO(X,E), are all soft m-structures on X.

Definition 2.25: [22] Let X be a nonempty set, E be set of parameters and $m_{(X,E)}$ be a soft m-structure over X .The soft $m_{(X,E)}$ -closure and the soft $m_{(X,E)}$ -interior of a soft set (A,E) over X are defined as follows:

- (1) $m_{(X,E)}$ -Cl(A,E) = \cap {(F,E) : (A,E) \subset (F,E) ,(F,E) $^c \in m_{(X,E)}$ }
- (2) $m_{(X,E)}$ -Int(A,E) = \cup {(F,E) : (F,E) \subset (A,E) ,(F,E) \in $m_{(X,E)}$ }.

Remark 2.26: [22] Let (X,τ,E) be a soft topological space and (A,E) be a soft set over X. If $m_{(X,E)} = \tau$ (respectively SO(X,E), SPO(X,E), S α O(X,E), S β O(X,E), SbO(X,E), SRO(X,E)), then we have:

- (1) $m_{(X,E)}$ -Cl(A,E) = Cl(A,E) (resp. SCl(A,E), PCl(A,E), α Cl(A,E), β Cl(A,E), bCl(A,E), β Cl(A,E)),
- (2) $m_{(X,E)}$ -Int(A,E)= Int(A,E) (resp. SInt(A,E), PInt(A,E), α Int(A,E), β Int(A,E), bInt(A,E), S_{θ} Int(A,E)).

Theorem 2.27: [22] Let S(X,E) be a family of soft sets and $m_{(X,E)}$ a soft minimal structure on X.

For soft sets (A,E) and (B,E) of X, the following holds:

- (a) (i): $m_{(X,E)}$ -Int $(A,E)^c = (m_{(X,E)} Cl(A,E))^c$ and (ii): $m_{(X,E)}$ -Cl $(A,E)^c = (m_{(X,E)} Int(A,E))^c$
- (b) If $(A, E)^c \in m_{(X,E)}$, then $m_{(X,E)}$ -Cl(A,E) = (A,E) and if (A,E) $\in m_{(X,E)}$, then $m_{(X,E)}$ -Int(A,E) = (A,E).
- (c) $m_{(X,E)}\text{-Cl}(\phi) = \phi$, $m_{(X,E)}\text{-Cl}(\tilde{X}) = \tilde{X}$, $m_{(X,E)}\text{-Int}(\phi) = \phi$, $m_{(X,E)}\text{-Int}(\tilde{X}) = \tilde{X}$.
- (d) If $(A,E) \subset (B,E)$, then $m_{(X,E)}$ -Cl $(A,E) \subset m_{(X,E)}$ -Cl(B,E), $m_{(X,E)}$ -Int $(A,E) \subset m_{(X,E)}$ -Int(B,E).
- (e) (A,E) $\subset m_{(X,E)}\text{-Cl(A,E)}$ and $m_{(X,E)}\text{-Int(A,E)}\subset (A.E)$
- (f) $m_{(X,E)}$ -Cl $(m_{(X,E)}$ -Cl(A,E)) = $m_{(X,E)}$ -Cl(A,E) and $m_{(X,E)}$ -Int $(m_{(X,E)}$ -Int(A,E)) = $m_{(X,E)}$ -Int(A,E)

III. CONNECTEDNESS IN SOFT MINIMAL STRUCTURE

Definition 3.1: Let X be a nonempty set, E be set of parameters and $m_{(X,E)}$ be a soft m-structure over X with property B .In $(X,m_{(X,E)})$ two nonempty soft sets (A,E) and (B,E) over X are called soft m-separated iff $m_{(X,E)}$ -Cl(A,E) \cap $(B,E) = (A,E) \cap m_{(X,E)}$ -Cl $(B,E) = \phi$.

Remark 3.2: Let (X,τ,E) be a soft topological space over X. If, $m_{(X,E)} = \tau$ (respt. SSO(X,E),SPO(X,E),SbO(X,E)) and $m_{(X,E)}$ -Cl(A,E) = Cl(A,E) (resp. SCl(A,E) ,PCl(A,E) , bCl(A,E)) we get the definition of soft separated (resp. soft semiseparated , soft preseparated , soft b-separated)sets.

Definition 3.3: Let $m_{(X,E)}$ be a soft m-structure over X with property B.Then $(X,m_{(X,E)})$ is said to be soft m-connected, if there does not exist two nonempty soft m-separated sets (A,E) and (B,E) over X,such that $(A,E) \cup (B,E) = \tilde{X}$. Otherwise it is soft m-disconnected. In this case, the pair (A,E) and (B,E) is called the soft m-disconnection over X.

Remark 3.4: Let (X,τ,E) be a soft topological space over X. If we replace soft m-separation by soft separated (resp.

soft semiseparated, soft preseparated, soft b-separated)sets we get the definition soft connectedness (resp. soft semi connectedness, soft pre connectedness, soft b-connectedness).

Theorem 3.5: Let $(X, m_{(X,E)})$ be a soft m-structure over X with property B. Then the following conditions are equivalent .

- (1) $(X, m_{(X,E)})$ has a soft m-disconnection.
- (2) There exist two disjoint soft m-closed sets (A,E) ,(B,E) $\in m_{(X,E)}$ such that (A,E) \cup (B,E) = \tilde{X} .
- (3) There exist two disjoint soft m-open sets (A,E) ,(B,E) $\in m_{(X,E)}$ such that (A,E) \cup (B,E) = \tilde{X} .
- (4) $(X, m_{(X,E)})$ has a proper soft m-open and soft m-closed set over X.

Proof: (1) \rightarrow (2) : Let $(X, m_{(X,E)})$ have a soft m-disconnection (A,E) and (B,E) ,Then (A,E) \cap (B,E) = ϕ and $m_{(X,E)}$ -Cl(A,E) = $m_{(X,E)}$ -Cl(A,E) \cap ((A,E) \cup (B,E)) = $(m_{(X,E)}$ -Cl(A,E) \cap (A,E)) \cup ($m_{(X,E)}$ -Cl(A,E) \cap (B,E)) = (A,E).

Therefore, (A,E) is soft m-closed set over X. Similar, we can see that (B,E) is also a soft m-closed set over X.

- (2) o (3): Let $(X, m_{(X,E)})$ has a soft m-disconnection (A,E) and (B,E) such that (A,E) and (B,E) are soft m-closed. Then $(A,E)^c$ and $(B,E)^c$ are soft m-open sets in $m_{(X,E)}$. Then it is easy to see $(A,E)^c \cap (B,E)^c = \phi$ and $(A,E)^c \cup (B,E)^c = \tilde{X}$.
- $(3) \rightarrow (4)$: Let $(X,m_{(X,E)})$ have a soft m-disconnection (A,E) and (B,E) such that (A,E) and (B,E) are soft m-open over X.Then (A,E) and (B,E) are also soft closed in $(X,m_{(X,E)})$.
- $(4) \rightarrow (1)$: Let $(X, m_{(X,E)})$ has a proper soft m-open and soft m-closed set (F,E) over X. Put $(H,E) = (F,E)^c$. Then (H,E) and (F,E) are non-empty soft m-closed set in $(X, m_{(X,E)})$. $(H,E) \cap (F,E) = \phi$ and $(H,E) \cup (F,E) = \tilde{X}$. Therefore, (H,E) and (F,E) is a soft m-disconnection of $(X, m_{(X,E)})$.

Remark 3.6: Let (X,τ,E) be a soft topological space over X ,if $m_{(X,E)} = \tau$ (respt. SSO(X,E),SPO(X,E),SbO(X,E))Then the following conditions are equivalent :

- (1) (X,τ,E) has a soft disconnection(respt. soft semi disconnection, soft pre disconnection, soft b-disconnection).
- (2) There exist two disjoint soft closed(respt. soft semi-closed,soft pre-closed,soft b-closed) sets (A,E) ,(B,E) such that (A,E) \cup (B,E) = \tilde{X} .
- (3) There exist two disjoint soft open(respt. soft semi-open,soft pre-open,soft b-open) sets (A,E), (B,E) such that $(A,E) \cup (B,E) = \tilde{X}$.
- (4) (X,τ,E) has a proper soft open(respt. soft semi-open,soft pre-open,soft b-open) and soft closed (respt. soft semi-closed,soft pre-closed,soft b-closed)set over X.

Theorem 3.7: Let $(X,m_{(X,E)})$ be a soft m-structure over X with property **B**. Then the following conditions are equivalent : (1) $(X,m_{(X,E)})$ is a soft m-connected.

- (2) There exist two disjoint soft m-closed sets (A,E) ,(B,E) $\in m_{(X,E)}$ such that (A,E) \cup (B,E) = \tilde{X} .
- (3) There exist two disjoint soft m-open sets (A,E) ,(B,E) $\in m_{(X,E)}$ such that (A,E) \cup (B,E) = \tilde{X} .
- (4) $(X,m_{(X,E)})$ at most has two soft m-closed and soft mopen sets over X, that is ϕ and \tilde{X} .

Remark 3.8: Let (X,τ,E) be a soft topological space over X ,if $m_{(X,E)} = \tau$ (respt. SSO(X,E),SPO(X,E),SbO(X,E)),Then the following conditions are equivalent :

- (1) (X,τ,E) is a soft connected(respt. soft semi connected, soft pre connected, soft b-connected).
- (2) There exist two disjoint soft closed(respt. soft semi-closed,soft pre-closed,soft b-closed) sets (A,E) ,(B,E) such that (A,E) \cup (B,E) = \tilde{X} .
- (3) There exist two disjoint soft open(respt. soft semi-open,soft pre-open,soft b-open) sets (A,E), (B,E) such that $(A,E) \cup (B,E) = \tilde{X}$.
- (4) (X,τ,E) has a proper soft open(respt. soft semi-open,soft pre-open,soft b-open) and soft closed (respt. soft semi-closed,soft pre-closed,soft b-closed)set over X.

Definition 3.9: Let $(X,m_{(X,E)})$ be a soft m-structure over X with property B, Y \subset X in $(X,m_{(X,E)})$.The soft space $(Y,m_{(Y,E)})$ is called a soft m-subspace of $(X,m_{(X,E)})$ if, $m_{(Y,E)} = \{(A,E) \cap \tilde{Y} : (A,E) \in m_{(X,E)}\}.$

Lemma 3.10: Let $(X,m_{(X,E)})$ be a soft m-structure over X with property B, $(Y,m_{(Y,E)})$ be soft m-subspace of $(X,m_{(X,E)})$. If (A,E) and (B,E) are soft sets in $(Y,m_{(Y,E)})$, then (A,E) and (B,E) are a soft m-separation of $(Y,m_{(Y,E)})$ if and only if (A,E) and (B,E) are a soft m-separation of $(X,m_{(X,E)})$.

Proof: We have , $m_{(Y,E)}$ -Cl(A,E) \cap (B,E) = $(m_{(X,E)}$ -Cl(A,E) \cap \tilde{Y}) \cap (B,E) = $m_{(X,E)}$ -Cl(A,E) \cap (B,E).

Similar, we have

 $m_{(Y,E)}\text{-Cl}(B,E)\cap (A,E)=m_{(X,E)}\text{-Cl}(B,E)\cap (A,E).$ Therefore, the lemma holds.

Lemma 3.11: Let $(X,m_{(X,E)})$ be a soft m-structure over X with property B, $\tilde{Y} \subset \tilde{X}.(Y,m_{(Y,E)})$ be soft m-subspace of $(X,m_{(X,E)}).(Y,m_{(Y,E)})$ is soft m-connected. If (A,E) and (B,E) are a soft m-separation of $(X,m_{(X,E)})$,such that $\tilde{Y} \subset (A,E) \cup (B,E)$, then $\tilde{Y} \subset (A,E)$ or $\tilde{Y} \subset (B,E)$.

Proof: We have , $\tilde{Y} \subset (A,E) \cup (B,E)$,we have $\tilde{Y} = (\tilde{Y} \cap (A,E)) \cup (\tilde{Y} \cap (B,E))$. By lemma 3.10 , $\tilde{Y} \cap (A,E)$ and $\tilde{Y} \cap (B,E)$ are a soft m-separation of $(Y,m_{(Y,E)})$. Since, $(Y,m_{(Y,E)})$ is soft m-connected , we have $\tilde{Y} \cap (A,E) = \phi$ or $\tilde{Y} \cap (B,E) = \phi$. Therefore, $\tilde{Y} \subset (A,E)$ or $\tilde{Y} \subset (B,E)$.

Lemma 3.12: Let $\{(X_{\alpha}, m_{(X_{\alpha}, E)}): \alpha \in J \}$ be a soft family non-empty soft m-connected subspaces of soft topological space $(X, m_{(X, E)})$. If $\bigcap_{\alpha \in J} \neq \phi$, then $(\bigcup_{\alpha \in J} X_{\alpha}, m_{(\bigcup_{\alpha \in J} X_{\alpha}, E)})$ is a soft m-connected subspace of $(X, m_{(X, E)})$.

Proof: Let $Y = (\bigcup_{\alpha \in J} X_{\alpha})$. Choose a soft point $x_e \in \tilde{Y}.$ Let (C,E) and (D,E) be a soft m-disconnection of $(\bigcup_{\alpha \in J} X_{\alpha}, m_{(\bigcup_{\alpha \in J} X_{\alpha}, E)})$. Then, $x_e \in (C,E)$ and $x_e \in (D,E)$, we assume that $x_e \in (C,E).$ For each $\alpha \in J.$ Since, $\{(X_\alpha, m_{(X_\alpha,E)}) \text{ is soft m-connected,it follows from lemma 3.11 that } (X_\alpha) \subset (C,E) \text{ or } (X_\alpha) \subset (D,E).$ Therefore, we have $\tilde{Y} \subset (C,E)$ since $x_e \in (C,E)$ and then $(D,E) = \phi$, which is a contradiction. Thus $(\bigcup_{\alpha \in J} X_\alpha, m_{(\bigcup_{\alpha \in J} X_\alpha, E)})$ is a soft m-connected subspace of $(X, m_{(X,E)})$.

Theorem 3.13: Let $\{(X_{\alpha}, m_{(X_{\alpha}, E)}) : \alpha \in J \}$ be a soft family non-empty soft m-connected subspaces of soft topological space $(X, m_{(X, E)})$. If $X_{\alpha} \cap X_{\beta} \neq \phi$ for $\alpha, \beta \in J$, then

 $(\cup_{\alpha\in J}X_\alpha, m_{(\cup_{\alpha\in J}X_\alpha,E)})$ is a soft m-connected subspace of $(\mathbf{X,}m_{(X,E)}).$

Proof: Let $\alpha_o \in J$. For $\beta \in J$, Put $A_\beta = X_{\alpha_o} \cup X_\beta$ By lemma 3.12, $\{(A_\beta, m_{(X_\beta, E)} \text{ is soft m-connected.Then,} \{\{(A_\beta, m_{(X_\beta, E)} : \beta \in J\} \text{ is a family soft m-connected subspace of } (X, m_{(X, E)}), \text{and } \bigcap_{\beta \in J} A_\beta = X_{\alpha_o} \neq \phi$. Obvious, $(\bigcup_{\alpha \in J} X_\alpha = (\bigcup_{\beta \in J} A_\beta. \text{It follows from lemma 3.12} \text{ that } (\cup_{\alpha \in J} X_\alpha, m_{(\cup_{\alpha \in J} X_\alpha, E)}) \text{ is a soft m-connected subspace of } (X, m_{(X, E)}).$

Theorem 3.14: Let $(X,m_{(X,E)})$ be a soft m-structure over X with property B, $\tilde{Y} \subset \tilde{X}.(Y,m_{(Y,E)})$ be soft m-subspace of $(X,m_{(X,E)})$. If $\tilde{Y} \subset \tilde{A} \subset m_{(X,E)}$ -Cl(F,E), then $(A,m_{(A,E)})$ is a soft connected m-subspace of $(X,m_{(X,E)})$. In particular, $m_{(X,E)}$ -Cl(F,E) is a soft connected m-subspace of $(X,m_{(X,E)})$.

Proof: Let (C,E) and (D,E) be a soft m-disconnection of (A, $m_{(A,E)}$) . By lemma 3.11 , we have $\tilde{A}\subset (C,E)$ or $\tilde{A}\subset (D,E)$. We assume that , $\tilde{A}\subset (C,E)$ By lemma 3.10, we have, $m_{(X,E)}\text{-Cl}(C,E)\cap (D,E)=\phi$,and hence, $\tilde{A}\cap (D,E)=\phi$,which is a contradiction.

Theorem 3.15: Let $f_{pu}: (\mathbf{X}, m_{(X,E)}) \to (\mathbf{Y}, m_{(Y,K)})$ be soft continuous mapping ,where $m_{(X,E)}$ and $m_{(Y,K)}$ are soft minimal structure over X and Y respectively, If $(\mathbf{X}, m_{(X,E)})$ is soft m-connected ,then the soft image of $(\mathbf{X}, m_{(X,E)})$ is also soft m-connected.

Proof: Let $f_{pu}: (\mathbf{X}, m_{(X,E)}) \to (\mathbf{Y}, m_{(Y,K)})$ be soft continuous mapping. Contrarily, Suppose that $(\mathbf{Y}, m_{(Y,K)})$ is soft m-disconnected and pair (\mathbf{A}, \mathbf{K}) and (\mathbf{B}, \mathbf{K}) is a soft m-disconnection of $(\mathbf{Y}, m_{(Y,K)})$. Since $f_{pu}: (\mathbf{X}, m_{(X,E)}) \to (\mathbf{Y}, m_{(Y,K)})$ is soft continuous, therefore $f_{pu}^{-1}(\mathbf{A}, \mathbf{K}) \in m_{(X,E)}, f_{pu}^{-1}(\mathbf{B}, \mathbf{K}) \in m_{(X,E)}$. Clearly the pair $f_{pu}^{-1}(\mathbf{A}, \mathbf{K})$ and $f_{pu}^{-1}(\mathbf{B}, \mathbf{K})$ is a soft m-disconnection of $(\mathbf{X}, m_{(X,E)})$, a contradiction. Hence, $(\mathbf{Y}, m_{(Y,K)})$ is soft m-connected. This is completes the proof.

Remark 3.16: Let (X,τ,E) and (Y,ϑ,K) be two soft topological space over X and Y respectively, if $m_{(X,E)} = \tau$, $m_{(Y,K)} = \vartheta$. $f_{pu}: (X,\tau,E) \to (Y,\vartheta,K)$ is soft continuous mapping. If (X,τ,E) is soft connected(respt. soft semi connected, soft pre connected, soft b-connected), then the soft image of (X,τ,E) is also soft connected (respt. soft semi connected, soft pre connected), soft b-connected).

Definition 3.17: Let $m_{(X,E)}$ be a soft m-structure over X, A soft set (F,E) in $(X,m_{(X,E)})$ is soft m-connected, if it is soft m-connected as a soft m-subspace.

Remark 3.18: Let (X,τ,E) be a soft topological space over X. A soft set (F,E) in (X,τ,E) is soft connected (respt. soft semi-connected,soft pre-connected and soft b-connected), if it is soft connected(respt. soft semi-connected,soft pre-connected and soft b-connected) as a soft subspace.

Theorem 3.19: Let $m_{(X,E)}$ be a soft m-structure over X , the pair (F_1,\mathbb{E}) and (F_2,\mathbb{E}) of soft sets be a soft m-disconnection in $(X,m_{(X,E)})$ and (F_3,\mathbb{E}) be a soft m-connected of $(X,m_{(X,E)})$. Then (F_3,\mathbb{E}) is contained in (F_1,\mathbb{E}) or (F_2,\mathbb{E}) .

Proof: Contrarily suppose that (F_3, E) is neither contained in (F_1, E) nor in (F_2, E) . Then $(F_3, E) \cap (F_1, E)$, $(F_3, E) \cap (F_2, E)$ are both nonempty soft subsets of (F_3, E) , such that $((F_3, E) \cap (F_1, E)) \cap ((F_3, E) \cap (F_2, E)) = \phi$ and $((F_3, E) \cap (F_1, E)) \cup ((F_3, E) \cap (F_3, E)) = \phi$

 $((F_3,E)\cap (F_2,E))=(F_3,E)$. This gives that pair of $((F_3,E)\cap (F_1,E))$ and $((F_3,E)\cap (F_2,E))$ is a soft m-disconnection of (F_3,E) . This contradiction proves the theorem.

Theorem 3.20: Let $m_{(X,E)}$ be a soft m-structure over X ,(G,E) be a soft m-connected set in $(X,m_{(X,E)})$ and (F,E) be soft set over X such that $(G,E) \subset (F,E) \subset m_{(X,E)}$ -Cl(G,E).Then (F,E) is soft m-connected.

Proof: It is sufficient to that $m_{(X,E)}\text{-Cl}(G,E)$ is soft m-connected .On contrary ,suppose that $m_{(X,E)}\text{-Cl}(G,E)$ is soft m-disconnected .Then there exists a soft m-disconnection ((H,E),(K,E)) of $m_{(X,E)}\text{-Cl}(G,E)$.That is ,there are $((H,E)\cap (G,E)),((K,E)\cap (G,E))$ soft sets in (G,E) such that $((H,E)\cap (G,E))\cap ((K,E)\cap (G,E))=((H,E)\cap (K,E))\cap (G,E)=\phi$,and $((H,E)\cap (G,E))\cup ((K,E)\cap (G,E))=((H,E)\cup (K,E))\cap (G,E)=(G,E)$. This gives that pair $((H,E)\cap (G,E))$ and $((K,E)\cap (G,E))$ is a soft m-disconnection of (G,E) ,a contradiction .This proves that $m_{(X,E)}\text{-Cl}(G,E)$ is soft m-connected. Hence the proof.

Lemma 3.21: Let $m_{(X,E)}$ be a soft m-structure over X with property B and(A,E) and (B,E) be two soft sets over X. In $(X,m_{(X,E)})$ the following statements are equivalent:

- (1) $\phi, X \in m_{(X,E)}$.
- (2) $(X,m_{(X,E)})$ is not the soft union of two disjoint soft sets (A,E) and (B,E) $\in m_{(X,E)}$.
- $(3)(X,m_{(X,E)})$ is not the soft union of two disjoint soft sets $(A,E)^c$ and $(B,E)^c \in m_{(X,E)}$.
- $(4)(\mathbf{X},m_{(X,E)})$ is not the soft union of two nonempty soft m-separated sets.

Remark 3.22: Let (X, τ, E) be soft topological space over X, we put $m_{(X,E)} = \tau$ (respt. SSO(X,E),SPO(X,E),SbO(X,E)) and (A,E) and (B,E) be two soft sets over X .In (X, τ, E) the following statements are equivalent:

- (1) ϕ and X are the only soft clopen(respt. soft semi clopen,soft pre clopen,soft b-clopen) sets in (X, τ, E) .
- (2) (X, τ, E) is not the soft union of two soft disjoint soft open(respt. soft semi open ,soft pre open ,soft b-open) sets .
- (3) (X, τ, E) is not the soft union of two soft disjoint soft closed (respt. soft semi closed ,soft pre closed,soft b-closed)sets.
- (4) (X, τ ,E) is not the soft union of two nonempty soft separated(soft semi separated,soft pre separated,soft b-separated) sets.

Theorem 3.23: Let $m_{(X,E)}$ be a soft m-structure over X with property B .In $(X,m_{(X,E)})$ the following statements are equivalent:

- (1) $(X, m_{(X,E)})$ is soft m-connected space.
- $(2)(X, m_{(X,E)})$ is not the soft union of any two soft m-separated sets.

Proof: (1) \rightarrow (2): Assume (1), Suppose (2) is false,then let (A,E) and (B,E) are two soft m-separated sets such that $\tilde{X}=(A,E)\cup(B,E)$. Since $(X,m_{(X,E)})$ is soft m-connected $m_{(X,E)}$ -Cl(A,E) \cap (B,E)=(A,E) \cap $m_{(X,E)}$ -Cl(B,E) = ϕ . Since (A,E) \subset $m_{(X,E)}$ -Cl(A,E) and (B,E) \subset $m_{(X,E)}$ -Cl(B,E),then (A,E) \cup (B,E) = ϕ . Now $m_{(X,E)}$ -Cl(A,E) \subset (B,E) c =(A,E). Hence, $m_{(X,E)}$ -Cl(A,E) = (A,E). Therefore, $(A,E)^c\in m_{(X,E)}$.By the same way we show that $(B,E)^c\in m_{(X,E)}$ which is a contradiction with remark

Lemma 3.24: 4.3. This shows that (2) is true . Therefore (1) \rightarrow (2).

(2) \rightarrow (1): Assume that (2) is not true .Let $(A, E)^c$ and $(B, E)^c$ are two soft m-disjoint nonempty and $(A, E)^c$ and $(B, E)^c \in m_{(X,E)}$ such that $\tilde{X} = (A, E)^c \cup (B, E)^c$. Then, $m_{(X,E)}$ -Cl $(A, E)^c \cap (B,E)$ =(A,E) $\cap m_{(X,E)}$ -Cl $(B,E)^c = (A,E)^c \cap (B,E)^c = \phi$. This contradicts the hypothesis of (2). This show that (1) is true. Therefore, (2) \rightarrow (1).

Remark 3.25: Let (X, τ, E) be soft topological space over X,we put $m_{(X,E)} = \tau$. Then, the following statements are equivalent:

- (1) (X, τ, E) is soft connected(soft semi connected, soft pre connected, soft b-connected) space.
- (2) (X, τ ,E) is not the soft union of any two soft separated(soft semi separated,soft pre separated, soft b-separated) sets.

Remark 3.26: (1)Let $m_{(X,E)}$ be a soft m-structure over X with property B and (A,E) be soft set over X ,If $\phi \neq$ (A,E) \subset (X, $m_{(X,E)}$) then (A,E) is a soft m-connected set in $m_{(X,E)}$ whenever (X, $m_{(X,E)}$) is a soft m-connected space.

(2) Let (X, τ, E) be soft topological space over X, we put $m_{(X,E)} = \tau$, If $\phi \neq (A,E) \subset (X, \tau, E)$ then (A,E) is a soft connected (soft semi-connected, soft pre-connected, soft b-connected) set over X whenever (X, τ, E) is a soft connected(soft semi-connected, soft pre-connected, soft b-connected) space.

Theorem 3.27: Let $m_{(X,E)}$ be a soft m-structure over X with property B . In $(X,m_{(X,E)})$, let soft set (A,E) be a soft m-connected set.Let (B,E) and (C,E) are soft m-separated sets.If $(A,E) \subset (B,E) \cup (C,E)$.Then either $(A,E) \subset (B,E)$ or $(A,E) \subset (C,E)$.

Proof: Suppose (A,E) is soft m-connected set and (B,E) ,(C,E) are soft m-separated sets such that (A,E) \subset (B,E) \cup (C,E).Let (A,E) notsubset (B,E) and (A,E) notsubset (C,E). Suppose $(A_1,E) = (B,E) \cap (A,E) \neq \phi$ and $(A_2,E) = (C,E) \cap (A,E) \neq \phi$. Then, (A,E) $= (A_1,E) \cup (A_2,E)$. Since, $(A_1,E) \subset (B,E)$.Hence, $m_{(X,E)}$ -Cl(A_1,E) $\subset m_{(X,E)}$ -Cl(B,E).Since, $m_{(X,E)}$ -Cl(B,E) \cap (C,E) \cap then $m_{(X,E)}$ -Cl(A₁,E) \cap (A₂,E) \cap Since $(A_2,E) \subset (C,E)$.Hence, $m_{(X,E)}$ -Cl(A₂,E) \cap (A₂,E) \cap Since $(A_2,E) \subset (C,E)$.Hence, $(A_1,E) \cap (A_2,E) \cap (A_1,E) \cap (A_1,E) \cap (A_1,E) \cap (A_2,E) \cap (A_1,E) \cap (A_1,E) \cap (A_1,E) \cap (A_2,E) \cap (A_1,E) \cap (A_1,E) \cap (A_1,E) \cap (A_1,E) \cap (A_1,E) \cap (A_2,E)$,therefore, (A,E) is not soft m-connected space. This is a contradiction .Then either (A,E) \subset (B,E) or (A,E) \subset (C,E).

Remark 3.28: Let (X, τ, E) be soft topological space over X,we put $m_{(X,E)} = \tau$ and let (A,E) be a soft connected (respt. soft semi connected,soft pre connected, soft b-connected)set.Let (B,E) and (C,E) are soft separated(respt. soft semi separated,soft pre separated, soft b-separated) sets.If $(A,E) \subset (B,E) \cup (C,E)$. Then either $(A,E) \subset (B,E)$ or $(A,E) \subset (C,E)$.

Theorem 3.29: Let $m_{(X,E)}$ be a soft m-structure over X with property ${\bf B}$. In $({\bf X},m_{(X,E)})$, let soft set (A,E) be a soft m-connected set then $m_{(X,E)}$ -Cl(A,E) is soft m-connected.

Proof: Suppose soft set (A,E) be a soft m-connected set and $m_{(X,E)}$ -Cl(A,E) is not .Then there exist two soft m-separated sets (B,E) and (C,E) such that $m_{(X,E)}$ -Cl(A,E) = (B,E) \cup (C,E)

.But $(A,E) \subset m_{(X,E)}$ -Cl(A,E),then $(A,E) = (B,E) \cup (C,E)$ and since (A,E) is soft m-connected set then by theorem 3.27 either $(A,E) \subset (B,E)$ or $(A,E) \subset (C,E)$.

- (i) If $(A,E) \subset (B,E)$ then $m_{(X,E)}\text{-Cl}(A,E) \subset m_{(X,E)}$ -Cl(B,E). But $m_{(X,E)}\text{-Cl}(B,E) \cap (C,E) = \phi$. Hence, $m_{(X,E)}\text{-Cl}(A,E) \cap (C,E) = \phi$. Since, $(C,E) \subset m_{(X,E)}\text{-Cl}(A,E)$, then $(C,E) = \phi$ this is a contradiction.
- (ii) If (A,E) \subset (C,E) then the same way we can prove that (B,E) = ϕ which is a contradiction .Therefore, $m_{(X,E)}$ -Cl(A,E) is soft m-connected.

Remark 3.30: Let (X, τ, E) be soft topological space over X,we put $m_{(X,E)} = \tau$ let soft set (A,E) be a soft connected (respt. soft semi connected,soft pre connected, soft b-connected)set then $m_{(X,E)}$ -Cl(A,E) is soft connected(respt. soft semi connected,soft pre connected, soft b-connected).

Theorem 3.31: Let $m_{(X,E)}$ be a soft m-structure over X with property B. In $(X,m_{(X,E)})$, let soft set (A,E) be a soft m-connected set and $(A,E) \subset (B,E) \subset m_{(X,E)}$ -Cl(A,E) then (B,E) is soft m-connected.

Proof: If (B,E) is not soft m-connected,then there exist two soft set (C,E) and (D,E) such that $m_{(X,E)}\text{-Cl}(C,E) \cap (D,E) = (C,E) \cap m_{(X,E)}\text{-Cl}(D,E) = \phi$ and (B,E) = (C,E) \cup (D,E) .Since, (A,E) \subset (B,E) ,thus either (A,E) \subset (C,E) or (A,E) \subset (D,E).Suppose (A,E) \subset (C,E) then $m_{(X,E)}\text{-Cl}(A,E) \subset m_{(X,E)}\text{-Cl}(C,E)$,thus $m_{(X,E)}\text{-Cl}(A,E) \subset (D,E) = m_{(X,E)}\text{-Cl}(C,E) \subset (D,E) = \phi$.But (D,E) \subset (B,E) \subset $m_{(X,E)}\text{-Cl}(A,E)$,thus $m_{(X,E)}\text{-Cl}(A,E) \cap (D,E) = (D,E)$. Therefore, (D,E) = ϕ which is a contradiction.Thus, (B,E) is soft m-connected set.

If $(A,E) \subset (B,E)$, then by the same way we can prove that $(C,E) = \phi$. This is a contradiction .Thus (B,E) is soft m-connected.

Remark 3.32: Let (X, τ, E) be soft topological space over X,we put $m_{(X,E)} = \tau$ let soft set (A,E) be a soft connected (respt. soft semi connected,soft pre connected, soft b-connected)set and $(A,E) \subset (B,E) \subset m_{(X,E)}$ -Cl(A,E) then (B,E) is soft connected(respt. soft semi connected,soft pre connected, soft b-connected).

Theorem 3.33: Let $m_{(X,E)}$ be a soft m-structure over X with property B, $(X,m_{(X,E)})$ is soft m-connected if and only if the only soft sets in $(X,m_{(X,E)})$ that are both soft open and soft closed over X are ϕ and \tilde{X} .

Proof: Let $(X,m_{(X,E)})$ is soft m-connected. Suppose to the contrary that $(F,E) \in m_{(X,E)}$ and $(F,E)^c \in m_{(X,E)}$ over X different from ϕ and \tilde{X} . Clearly, $(F,E)^c \in m_{(X,E)}$ different from ϕ and \tilde{X} . Now we have (F,E), $(F,E)^c$ is a soft m-separation over X. This is contradiction. Thus the only soft closed and open sets over X are ϕ and \tilde{X} . Conversely, let (F,E), (G,E) be a soft separation over X.

Remark 3.34: Let (X,τ,E) be a soft topological space over X and (F,E) be soft set over X . (X,τ,E) is soft connected(soft semi connected, pre connected, b-connected) if and only if there does not exist nonempty soft set (E,E) over X which is both soft open (respt. soft semi open,soft pre open, soft bopen) and soft closed(respt. soft semi closed, soft pre closed, soft b-closed) set over X.

REFERENCES

- U. ACAR, F. KOYUNCU and B. TANAY: Soft sets and soft rings. Comput. Math. Appl. ,59, (2010),pp. 3458–3463.
- [2] M. AKDAG and A. OZKAN: On soft preopen sets and soft pre separation axioms.Gazi University Journal of Science GU J Sci., 27(4), (2014),pp. 1077–1083.
- [3] M. AKDAG and A. OZKAN: On soft α-open sets and soft α-continuous functions. Abstract and Applied Analysis http://dx.doi.org/101155/2014/891341 2014 Article ID 891341 (2014) 7 pages.
- [4] M. AKDAG and A. OZKAN: On soft β-open sets and soft β-continuous functions. The Scientific World Journal 2014 Article ID 843456 (2014) 6 pages.
- [5] M. AKDAG and A. OZKAN: soft b-open sets and soft b-continuous functions. Math. Sci 8:124 DOI 10.1007/s40096-014-0124-7 (2014).
- [6] I. AROCKIARANI and A. AROKIALANCY: Generalized soft gβ-closed sets and soft gsβ-closed sets in soft topological spaces. Int. J. Math. Arch.,4(2), (2013),pp. 1–7.
- [7] M. IRFAN ALI, F. FENG, X. LIU, W. K. MIN and M. SHABIR: On some new operations in soft set theory. Comput. Math. Appl. ,57, (2009),pp. 1547–1553.
- [8] B. CHEN: Soft semi-open sets and related properties in soft topological spaces. Applied Mathematics and Information Sciences ,7(1) ,(2013),pp. 287–294
- [9] D.N.GEORGIOU, A.C.MEGARITIS and V.I.PETROPOULOS: On soft topological spaces. Applied Mathematics and Information Sciences,7, (2013),pp. 1889–1901.
- [10] H.HAZRA, P.MAJUMDAR and S.K.SAMANTA: Soft topology. Fuzzy Inf. Eng., DOI 10, (2012),pp.105–115.
- [11] SABIR HUSSAIN: A note on soft connectedness. Journal of the Egyptian Math ematical Society ,23, (2015) ,pp.6–11.
- [12] A. KHARAL and B. AHMAD: Mappings on soft classes. New Math. Nat. Comput., 7 (3), (2011) ,pp. 471–481.
- [13] A. KANDIL, O. A. E. TANTAWY, S. A. EL-SHEIKH and A. M. ABD EL-LATIF: gammaoperation and decompositions of some forms of soft continuity in soft topological spaces. Annals of Fuzzy Mathematics and Informatics, 7, (2014),pp. 181–196.
- [14] FUCAI LIN: Soft connected space and soft paracompact space. International Journal of Mathematical, Physical, Electrical and Computer Enginnering, 7 (2), (2013), pp. 277–283.
- [15] P.K. MAJI, R. BISWAS and R. ROY: An application of soft sets in decision making problem. Comput. Math. Appl. ,44, (2002),pp. 1077– 1083.
- [16] P.K. MAJI, R. BISWAS and R. ROY: Soft set theory. Comput. Math Appl. ,45, (2003),pp. 555–562.
- [17] J. MAHANTA and P. K. DAS: On soft topological space via semi open and semi closed soft sets. Kyungpook Math. J.,54, (2014),pp. 221–236.
- [18] W. K. MIN:A note on soft topological spaces. Computers and Mathematics with Applications ,62 ,(2011),pp. 3524–3528.
- [19] D. MOLODTSOV: Soft set theory first results. Comput. Math. Appl.,37, (1999),pp. 9–31.
- [20] E. PEYGHAN ,B. SAMADI and A. TAYEBI: On soft connectedness. arXiv:1202.1668v1 [math.GN]8Feb (2012).
- [21] M. SHABIR and M. NAZ: On soft topological spaces. Comput. Math. Appl., 61, (2011), pp. 1786–1799.
- [22] S. S. Thakur and Alpa Singh Rajput, On soft M-continuous mappings, The Journal of Fuzzy Mathematics, 25(2)(2017), 313-326.
- [23] Q. M. SUN, Z. L. ZHANG and J. LIU: In proceedings of rough sets and knowledge technology. Third International Conference. RSKT 2008, (17-19), (2008),pp. 403–409.
- [24] J. SUBHASHININ and C. SEKAR: Soft p-connectedness via soft p-open sets. International Journal of Mathematical Trends and Technology (IJMTT). V6:203-214, ISSN:2231-5373
- [25] I. ZORLUTANA, N. AKDAG and W.K. MIN: Remarks on soft topological spaces. Ann Fuzzy Math. Inf.,3 (2), (2012),pp. 171–185.
- [26] IDRIS ZORLUTUNA and HATICE ÇAKIR: On continuity of soft mappings. Appl. Math. Inf. Sci., 9(1), (2015), pp. 403–409.

37