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I. Introduction  

The concept of fuzzy set operation was first introduced by 
Zadeh [15] and subsequently, several authors including Zadeh 
[15] have discussed various aspects of the theory and 
applications of fuzzy sets. Fuzzy topological spaces were 
introduced by Chakrabarty and Ahsanullah (1992) and Chang 
(1968). Compactness occupies a very important place in fuzzy 
topology and so do some of its other forms including closed 
space, countably compactness and Lindelof space. In [7], Talal 
Al – Hawary introduced the concepts of fuzzy 

W closed sets, fuzzy W open sets and Fuzzy 

W generalized  closed sets as well as fuzzy 

W g continuous  and fuzzy W g irresolute   

functions and investigated their some basic properties. The 
objective of this paper is devoted to introduce and study the 

concepts of W compactness and W closed  spaces in 

the fuzzy setting. We use fuzzy filterbases to characterize 

fuzzy W compactness  and fuzzy W closed  spaces. 

We will also explore several basic properties and 
characterizations of these concepts.  

II. Preliminaries  

Let X  be a nonempty set and  I 0,1 .  A fuzzy set on X  

is a mapping from X  into I . The null fuzzy set X0  is the 

mapping from X  into I  which assumes only the value is 0 

and whole fuzzy sets X1  is a mapping from X into I  which 

takes the values 1 only. The union (resp. intersection) of a 

family  A :  of fuzzy sets of X  is defined to be the 

mapping  Sup A :   (resp.  Inf A :  ). A 

fuzzy set A  of X  is contained in a fuzzy set B  of X   if  

   A x B x  for each .x X  A fuzzy point x  in X  is 

a fuzzy set defined by    x y  for y x  and 

  0 x y   for ,y x  (0,1]  and .y X  A fuzzy 

point x  is said to be quasi coincident  with the fuzzy set 

A denoted by x qA if and only if   1. A x  A fuzzy 

set A  is quasi coincident  (not quasi coincident ) 

with a fuzzy set B  denoted by AqB   AqB if and only if 

there exists a point x X  such that 

   A x B x 1      A x B x 1 .   A family T  of 

fuzzy sets of X  is called a fuzzy topology on X  if 

X,  belong to T  and T  is closed with respect to arbitrary 

union and finite intersection .The members of T  are called 
fuzzy open sets and their complements are fuzzy closed sets. 

For any fuzzy set A  of X,  the closure of A  (denoted by 

 Cl A ) is the intersection of all the fuzzy closed supersets of 

A  and the interior of A  (denoted by  Int A ) is the union 

of all fuzzy open subsets of A.  Throughout this paper X  and 

Y  will mean fuzzy topological spaces. The complement and 

the support of a fuzzy set U are denoted by 
cU and  S U ,  

respectively.  

Definition 2.1. Let A  be a fuzzy subset of a fuzzy topological 

space  , .X  The fuzzy W interior  of A  is the union 

of all fuzzy open subsets of X  whose closures are contained 

in   ,Cl A  and is denoted by  W Int A .  A  is called 

fuzzy W open  if  A W Int A .   The complement of 

a fuzzy W open  subset is called fuzzy W closed.  

Alternatively, a fuzzy subset A  of X  is fuzzy W closed  

if and only if  A W Cl A ,   where 

   W Cl A A : A A ,A isFC set in X .  


    Cl
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early      Int A W Int A Cl A    and 

   A Cl A W Cl A    and hence every fuzzy 

W closed set is a fuzzy closed set, but the converse needs 
not be true.  

Example 2.2. Suppose that  X a,b,c and 

      a b a ,b
T 0,1, , , .     Then the set  a ,b

  is a fuzzy 

closed set but not a fuzzy W closed  set since 

  a ,b
W Cl 1.     

The intersection of two fuzzy W open subsets need not be 

fuzzy W open.  

Example 2.3. Let  X a,b,c,d  and 

          b c a ,b b,c a ,b,c
T 0,1, , , , , .      Then  a ,b

  and 

 a ,c
  are fuzzy W open sets, but      a ,b a ,c a

     is 

not a fuzzy W open  set. The set  a ,b
  is a fuzzy closed 

set but not a fuzzy W closed set since 

  a ,b
W Cl 1.     

In classical topology, the interior of a set is a subset of the set 

itself. But this is not the case for fuzzy W open sets. Next 

we show that  A W Int A   and  W Int A A   

need not be true. 
Example 2.4.  Consider the space in Example 2.3. 
Then

         c c a,b a ,b
W Int 0 , W Int 1.            

Next, we state the result as proved in [7] that arbitrary unions 

of fuzzy W open  subsets are fuzzy W open.  

Theorem 2.5.   If   X,   is a fuzzy topological space, then 

arbitrary unions of fuzzy W open  subsets are fuzzy 

W open . 

Corollary 2.6. The arbitrary intersection of fuzzy 

W closed  subsets are fuzzy W closed,  while finite 

unions of fuzzy W closed  subsets need not be fuzzy 

W closed.  

Corollary 2.7. If A  is a fuzzy W dense  subset of X,  

  W Cl A 1 ,   then  W Int A 1.   

Definition 2.8. A collection  of fuzzy subsets of a fuzzy 

topological space  , X is said o form a fuzzy filterbases if 

and only if for every finite  subcollection   of  ,  

XA 0 .


  

Definition 2.9. A collection  of fuzzy sets in a fuzzy 

topological space   , X  is said to be a cover of a fuzzy set 

U  of X  if and only if     XA x 1 ,


  for every 

 x S U .  

Definition 2.10. A fuzzy cover of a fuzzy set  U in a fuzzy 

topological space   , X  is said to have a finite subcover  if 

and only if  there exists a finite subcollection   of   such 

that     A x U x ,


  for every  x S U .  

 
III. Fuzzy W – Compact Spaces  

Definition 3.1. A fuzzy topological space  , X  is  said to 

be fuzzy W compact if and only if for every family   of 

fuzzy W open  sets such that  XA
A 1


  there is a 

finite subfamily    such that  XA
A 1 .


  

Definition 3.2. A fuzzy set U  in a fuzzy topological space 

 , X  is said to be fuzzy W compact  relative to X  if 

and only if for every family   of  fuzzy W open  sets 

such that  
A

A S U


  there is a finite subfamily 

   such that  
A

A U x


  for every  x S U .  

Theorem 3.3. A fuzzy topological space  , X  is fuzzy 

W compact if and only if for every collection 

 jA : j J  of  fuzzy W closed  sets of  X  having the 

finite intersection property, j Xj J
A 0 .


  

Proof.  Let  jA : j J  be a collection of fuzzy 

W closed  sets with the finite intersection property. 

Suppose that j Xj J
A 0 .


  Then 

c
Xj J

A 1 .


   Since 

 c
jA : j J  is a collection of fuzzy W open  sets cover of 

X,  then from the W compactness  of X  it follows that 

there exists a finite subset F J  such that 
c
j Xj F

A 1 .


   

Then j Xj F
A 0


  which gives a contradiction and 

therefore j Xj J
A 0 .


   

Conversely, Let  jA : j J  be a collection of fuzzy 

W open  sets cover of X.  Suppose that for every finite 

subset F J,  we have j Xj F
A 1 .


  Then 
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c
j Xj F

A 0 .


  Hence  c
jA : j J  satisfies the finite 

intersection property. Then from the hypothesis, we have 
c
j Xj J

A 0


  which implies j Xj J
A 1


 and this 

contradicts the fact that  jA : j J  is a fuzzy 

W open open cover of X.  Thus X  is fuzzy 

W compact.   

Now, we give some results of fuzzy W compactness in 

terms of fuzzy filterbases 

Theorem 3.4. A fuzzy topological space  , X  is fuzzy 

W compact  if and only if  every filterbases   in  X,  

  XG
W Cl G 0 .


   

Proof. Let   be a fuzzy W open  set cover of  X  and   

has no finite subcover. Then for every finite subcollection    

of  ,  there exists x X  such that  A x 1  for every 

A ,  Then  cA x 0,   so that  c
XA

A x 0 .


  

Thus  cA : A  forms a filterbases in X.  Since   is 

fuzzy W open  set cover of  X,  then 

   XA
A x 1


  for every x X  and hence  

      c c
XA A

W Cl A x A x 0 ,
 

     which 

is a contradiction. Then every fuzzy  W open  set cover of  

X  has a finite subcover and hence X  is W compact.  

Conversely, suppose there exists a filterbases  such that 

    XG
W Cl G x 0 ,


   so that  

    
c

XG
W Cl G x 1


  
   for every x X  and 

hence     c
W Cl G : G     is a fuzzy 

W open  set cover of X.  Since X  is fuzzy 

W compact,  then   has a finite subcover. Then there 

exists a finite subset     such that  

    
c

XG
W Cl G x 1


   and hence 

  c
XG

G x 1 ,


  so that XG
G 0


  which is a 

contradiction  since   is a finite subset of filterbases .  

Therefore   XG
W Cl G 0


   for every filterbases .  

Theorem 3.5.  A fuzzy set U  in a fuzzy topological space 

 , X  is fuzzy W compact relative to X if and only if 

for every filterbases   such that every finite set of members 

of   is quasi coincident with U,  and 

   XG
W Cl G U 0 .


    

Proof. Let U  not be fuzzy W compact relative to X.  

Then there exists a fuzzy W open  cover of U  such that 

U  has no finite subcover .   Then      
A

A x U x


  

for some  x S U ,  so that     c c

A
A x U x 0


   

and hence  cA : A    forms a filterbases and 

 c

A
A qU.

  By hypothesis 

  c
XA

W Cl A U 0


   and hence 

 c
XA

A U 0 .


  Then for some  x S U ,  

  c
XA

A x 0 ,


  that is    XA
A x 1 ,


  which 

is a contradiction. Hence U  is a fuzzy W compact  

relative to X,  

Conversely, suppose that there exists a filterbases  such that 

every finite set of members of   is quasi coincident  

with U  and     XG
W Cl G U 0 .


   Then 

for  x S U ,      XG
W Cl G x 0


   and hence 

    
c

XG
W Cl G x 1


   for every  x S U .   

Thus     c
W Cl G : G      is fuzzy W open  

cover of  U.  Since U  is fuzzy W compact  relative to 

X,  then there exists a finite subcover, say 

      c c

1 nW Cl G ,..., W Cl G ,  such 

that       
n c

j
j 1

W Cl G x U x


 
  

 
  for every 

 x S U .  Hence       
n

c
j

j 1

W Cl G x U x


 
  

 
  for 

every  x S U ,  so that   
n

j

j 1

W Cl G q U,


  which 

is a contradiction. Therefore for every filterbases   such that 
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every finite set of members of   is quasi coincident  

with U,    XG
W Cl G U 0 .


    

The following theorem proves that hereditary property for 

fuzzy W compact spaces. 

Theorem 3.6. Every fuzzy W closed  subset of a fuzzy 

W compact space  , X  is fuzzy W compact  

relative to X.   

Proof. Let   be a fuzzy filterbases in X  such that  

 : Uq G G holds for every finite subcollection   of 

  and a fuzzy W closed set U.  Consider  * U .    

For any finite subcollection *  of *,  if U *,  then 

*
X0 .   If U *  and since 

  *: , Uq G G U  then 
*

X0 .   Hence 
*  is a 

fuzzy filterbases in X.  Since X  is fuzzy W compact,  

then  * XG
W Cl G 0 ,


   so that 

  G
W Cl G U


   

     XG
W Cl G W Cl U 0 .


     

Hence by Theorem 3.5, we have U  is fuzzy 

W compact relative to X.  

 
IV. Fuzzy W – Closed Spaces 

 

Definition 4.1. A fuzzy topological space  , X  is said to 

be fuzzy W closed  space if and only if for every family 

  of fuzzy W open  sets such that  

   XA
A x 1


  there is finite subfamily    such 

that     XA
W Cl A x 1 ,


   for every x X.  

Theorem 4.2.  A fuzzy topological space  , X  is fuzzy 

W closed  if and only if for every fuzzy 

W open filterbases   in X,    XG
W Cl G 0 .


   

Proof. Let   be a  fuzzy W open set cover of X and let 

for every finite subfamily   of ,   

    XA
W Cl A x 1 ,


   for some x X.  Then  

    
c

XA
W Cl A x 0


   for some x X.  Thus 

   c
W Cl A : A     forms a fuzzy 

W open filterbases in X.  Since   is a fuzzy 

W open set cover of X,  then  
c

XA
A 0


 which 

implies   
c

XA
W Cl W Cl A 0 ,


    which is a 

contradiction. Then every fuzzy W open set   cover of 

X  has a finite subfamily   such that 

    XA
W Cl A x 1


   for every x X.  Hence X  

is fuzzy W closed.  
Conversely, suppose there exists a fuzzy  

W open filterbases   in X  such that  

  XG
W Cl G 0 ,


   so that 

    
c

XG
W Cl A x 1


   for every x X and 

hence    c
W Cl G : G     is a  fuzzy 

W open set cover of X.  Since X  is fuzzy 

W closed, then   has a finite subfamily   such that 

    
c

XG
W Cl W Cl A x 1


    for every 

x X,  and hence    
cc

XG
W Cl W Cl G 0 .


    

Thus XG
G 0


  which is a contradiction, since all the 

G  are members of filterbases. 

Definition 4.3.  A fuzzy set U  in a fuzzy topological  space 

 , X  is said to be fuzzy  W closed  relative to X  if 

and only if for every family   of  fuzzy W open  sets 

such that 
A

A U,


  there is a finite subfamily     

such that      
A

W Cl A x U x


   for every 

 x S U .  

Theorem 4.4. A fuzzy subset U  in a  fuzzy topological  

space  , X  is fuzzy  W closed relative to X  if and 

only if every fuzzy W open filterbases    in X,  

   XG
W Cl G U 0 ,


   there exists a finite 

subfamily    of   such that  G
G qU.


   

Proof. Let U  be a fuzzy W closed relative to X, suppose 

  is a fuzzy W open filterbases in X  such that for every 

finite subfamily   of ,   G
G qU,

  but  
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   XG
W Cl G U 0 .


   Then for every 

 x S U ,       XG
W Cl G x 0


    and hence  

    
c

XG
W Cl G x 1


   for every  x S U .  

Then    c
W Cl G : G     is a fuzzy W open  

set cover of U  and hence there exists a finite subfamily  

    such that   
c

G
W Cl W Cl G U,


    so 

that     
c

c

G
W Cl W Cl G


    

   c

G
W Int W Cl G U


    and hence 

c

G
G U .


   Then   G

G qU


  which is a 

contradiction.  

Conversely,  let U  not be a fuzzy W closed  set relative 

to X,  then there exists a fuzzy W open  set    cover of 

U  such that every finite subfamily ,   

     
A

W Cl A x U x


   for some  x S U  

and hence       
c c

A
W Cl A x U x 0


    for 

some  x S U .   Thus 

   c
W Cl A : A    forms a fuzzy 

W open filterbases in X.  Let there exists a finite 

subfamily    c
W Cl A : A   such that 

   c

A
W Cl A qU.


   Then 

 
A

U W Cl A .


   So there exists a finite subfamily 

   such that  
A

W Cl A U


  which is a 

contradiction. Then for each finite subfamily 

   c
W Cl A : A     of ,  we have 

   c

A
W Cl A qU.


  Hence by the given condition 

   c

XA
W Cl W Cl A U 0 ,


    so there exists 

 x S U  such that 

    
c

XA
W Cl W Cl A x 0 .


    Then 

     
cc

A
W Cl W Cl A x



 
   

 
  

     XA
W Int W Cl A x 1 ,


    and hence 

   XA
A x 1


  which contradicts the fact that   is a 

fuzzy W open  set cover of U.  Therefore U  is fuzzy 

W closed relative to X.  
 

Conclusion 
 

In this paper, we have introduced the concepts of fuzzy 

W compactness  and fuzzy W closed  spaces and 

have investigated their several properties by making use of 
fuzzy filter bases. We can extend this concept to introduce the 
notions of fuzzy W-generalized compactness and fuzzy W-
generalized closed spaces and may also investigate several 
characterizations of these new notions via fuzzy filter bases.  
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