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Abstract— The development of mathematics brought 

mathematicians to infinite structures. This process started with 

transcendent real numbers and infinite sequences going through 

infinite series to transfinite numbers to nonstandard numbers to 

hypernumbers. From mathematics, infinity came to physics 

where physicists have been trying to get rid of infinity inventing a 

variety of techniques for doing this. In contrast to this, 

mathematicians as well as some physicists suggested ways to 

work with infinity introducing new mathematical structures such 

distributions and extrafunctions. The goal of this paper is to 

extend mathematical tools for treating infinity by considering 

hyperspaces and developing their theory. 

Keywords—vector space, hypervector, hyperspace, series, 

sequence, summation  

I. INTRODUCTION  

The basic structures of the standard calculus and functional 
analysis are constructed using infinite operations with numbers 
and functions such as convergence of sequences and 
summation of series [1, 2]. The calculus and functional 
analysis have many applications beyond mathematics. For 
instance, summation of series is widely applied in physics (cf., 
for example, [3 – 5]. However, the classical summation 
methods provide sums not for all series of real or complex 
numbers. That is why mathematicians developed various 
techniques for extending the domain of summable series [6 – 
8]. Examples are Cesàro, Abel or Borel summation, each of 
which extends the classical technique of series summability. 

Similar problems of divergence emerged in applications of 
integration in theoretical physics [9, 3]. Although 
renormalization techniques allowed elimination of some 
divergencies of integrals and series, these methods did not give 
adequate solutions of these problems (cf., for example, [10]). 
Nonstandard analysis also was not very helpful in this respect 
[11]. 

Nevertheless, neither of the known generalized techniques 
allows summability of arbitrary series of real (complex) 
numbers. Only the extension of real (complex) numbers to real 
(complex) hypernumbers establishes universal summability of 
real (complex) numbers [12]. A similar construction of 
extrafunctions extended the scope and applications of 
distributions [13]. These constructions found utilization in 
different areas including probability theory and its applications 
[14] as well as integration theory in general and the theory of 
the Feynman integral in particular [15]. 

At the same time, the extension of numbers to 
hypernumbers does not provide summability of arbitrary series 
and convergence of arbitrary sequences of real (complex) 
hypernumbers. To achieve this, we need to make one more 
extension to the numerical hyperspaces over the space of real 
(complex) hypernumbers [16, 17].  

Nevertheless, even this extension does provide sufficient 
tools for infinite operations such series summation for 
sequences of functions. That is why in this paper, we develop a 
theory of general hyperspaces. The structure and properties of 
general hyperspaces used for rigorous determination of 
irregular operations with hypernumbers and extrafunctions, as 
well as their application to the problems of summation of 
hypernumbers is studied and integration of extrafunctions 
based on hypermeasures [18] is considered. 

II. CONSTRUCTING HYPERSPACES  

Let us consider a real normed vector space V with a norm 

|||| and take the  set  V  = { (un)n ; un  V}  of all V-
sequences, i.e., sequences of elements from V, where a 

sequence u = (un)n of elements from V is represented by a 

mapping fa :   V and  is the ordered set {1, 2, 3, … , m, … 
} of all natural numbers. In what follows, we use two notations 

for sequences u = (un)n and u = {un; n = 1, 2, 3, … , m, … }. 

Definition  1. For arbitrary sequences u = (un)n and v = 

(vn)n from V, the relation 

u  v  means that limn ||un - vn || = 0 

Lemma 1. The relation    is an equivalence relation in V.  

Lemma 2. If in the sequences (un)n and (vn)n , almost 
all elements are the same, then these sequences are equivalent, 

i.e., (un)n  (vn)n . 

Definition 2. Classes of equivalent with respect to  

sequences from V are called hypervectors and the set of all 

hypervectors (equivalence classes) is denoted by V is called a 
hyperspace over the vector space V. 

From this perspective, each hypervector has the form 

HvF(un)n = {(vn)n  V; (bn)n  (un)n } 

It is also possible to treat hypervectors not as classes but as 

names of these classes. In this case, HvF(un)n is a name of the 

class {(vn)n  V; (vn)n  (un)n } of sequences. 
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Definition 2 defines the natural projection p: V  V 

where p((un)n ) = HvF(un)n . 

Example 1. When V is the one-dimensional space R of all 

real numbers, then V is the space R of all real hypernumbers 
[12]. 

Example 2. When V is the space C of all complex numbers 

as vectors over R, then V is the space C of all complex 
hypernumbers [17]. 

Example 3. When V is the space F of real functions, then 

V is the space F of all real extrafunctions [12]. It is necessary 
to note that the theory of extrafunctions is a far-reaching 
development of the theory of distributions [13]. 

According to Definition 2, any sequence u = (un)n with 
elements from V determines (and represents) a hypervector χ = 

HvF(un)n where u  χ.   

Definition 3. The sequence u is called a defining sequence 
or representing sequence or representation of the hypervector χ 

= HvF(un)n .  

Definition 2 implies that any two hypernumbers HvF(un)n 

and HvF(vn)n are equal if and only if their defining sequences 

(un)n and (vn)n are equivalent.  

Note that by Lemma 2, any hypervector χ in V does not 
depend on a finite number of elements from its representation, 
i.e., we have the following result. 

Lemma 3. If χ = HvF(un)n and almost all elements in 

sequences (un)n and (vn)n are the same (equal), then χ = 

HvF(vn)n . 

Definition 4. A sequence u = (un)n is called bounded if 

there is a positive real number c such that ||un|| < c for all n .  

Bounded vector sequences define bounded hypervectors. 

Definition 5. A hypervector χ is called bounded if it has a 
bounded defining sequence.  

Lemma 4. If a hypervector χ is bounded, then each of its 
defining sequences is bounded. 

III. PROPERTIES OF HYPERSPACES  

Let us obtain some properties of hyperspaces. 

Taking a subset P of a vector space V, it is possible to 

define its -extension P as follows 

P = {χ  V ; there is a sequence (un)n with all elements 

from P and χ = HvF(un)n } 

Let us consider some properties of -extensions. 

Proposition 1. If P  V, then p(P) = P . 

-extensions preserve inclusion of sets, i.e., we have the 
following result. 

Proposition 2. If Q  P  V, then Q  P  V . 

Let us consider set-theoretical operations with -
extensions. 

Proposition 3. If Q, P  V, then Q  P  (Q  P) . 

The following example shows that in a general case, the 
inclusion in Proposition 3 is proper. 

Example 4. Let us take Q = {0} and P = {1}  R, which is 

considered as a one-dimensional vector space, then Q contains 

only one element and P contains only one element while (Q  

P) contains infinitely many elements. For instance, the 
sequence u = (0, 1, 0, 1, 0, 1, 0, 1, …) defines the hypervector 

that does not belong either to Q or to P . Consequently, we 

have Q  P  (Q  P) . 

Proposition 4. If Q, P  V, then (Q  P)  Q  P . 

The following example shows that in a general case, the 
inclusion in Proposition 4 is proper. 

Example 5. Let us take Q = {1/2n ; n = 2, 3, 4, 5, …} and P 

= {1/3n ; n = 2, 3, 4, 5, …}  C, then Q  P is empty and 

consequently, (Q  P) is empty. At the same time, Q 
contains the hypervector Hv{1/2n ; n = 2, 3, 4, 5, …} = 0 and 

P contains the hypervector Hv{1/3n ; n = 2, 3, 4, 5, …} = 0. 

We see that Q  P is not empty containing the hypervector 0 

= Hv(0, 0, … , 0) and consequently, (Q  P)  Q  P . 

In some cases, sets P and V coincide demonstrating that 

-extensions do not always preserve the strict inclusion 
relations of sets. 

Theorem 1. If P is a dense subset of V, then there is a one-

to-one correspondence between the set P and the set V of all 
hypervectors, i.e., these sets are equipotent. 

Example 6. The set Q of all rational numbers is a proper 
subset of the one-dimensional vector space R of all real 

numbers. However, by Theorem 1, Q = R . 

Taking different norms in the space V, it is possible to build 

different hyperspaces V , which coincide only in some cases. 
It is possible to ask a question whether there is the largest 
hyperspace over V. It exists and to build it, we need further 
development of the theory. 

Definition  6. Two sequences u = (un)n and v = (vn)n 

from V are cofinitely equivalent if almost all elements in u and 
v are the same (equal). 

It is possible to consider the factoring Vcofin of the set V by 
this equivalence. At the same time, any norm in a vector space 
defines a metric [2, 19]. So, we can take the space V with some 

metric d and build the hyperspace Vd . This hyperspace has 
the following property. 

Proposition 5. If the metric d in the vector space V defines 

the discrete topology in V, then Vd = Vcofin . 

It means that Vcofin is a hyperspace over V. 

Lemma 3 implies the following result. 

Proposition 6. For any metric d in the vector space V, there 

is a natural projection q: Vcofin  Vd . 

Corollary 1. For any normed vector space V, there is a 

natural projection q: Vcofin  V. 
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This shows that Vcofin is the largest hyperspace over V. 

IV. OPERATIONS IN HYPERSPACES  

Operations in F induce corresponding operations in F. 

Let u = (ui)i and v = (v)i be elements from V and 
assume a is a real number. Then we have the following 

operations in V. 

Definition 7. a) Operation of addition in V is defined as u 

+ v = (zi)i where zi = ui + vi for all i; 

b) Operation of subtraction in V is defined as u - v = 

(wi)i where wi = ui - vi for all i; 

c) Operation of multiplication by real numbers is defined in 

V by the formula a  v = (zi)i where zi = avi where for all 

i; 

By the definition of addition, multiplication by real 

numbers and subtraction in the set V, all laws of operations 
with real numbers, such as commutativity of addition, 
associativity of addition, and associativity of multiplication, are 

valid for corresponding operations with sequences from V. 

In particular, we have the following result. 

Proposition 7. V is a real vector space. 

Let us consider bounded sequences in this space. 

Proposition 8. a) The sum and difference of two bounded 
vector sequences are bounded. 

b) Multiplication of a bounded vector sequence by a real 
number gives a bounded vector sequence. 

Proposition 8 implies the following result. 

Corollary 2. Bounded vector sequences form a subspace 

B of the vector space V. 

Relations between the spaces V and V imply the 
following result. 

Proposition 9. Operations of addition and subtraction in V 

induce similar operations in V  with all identities preserved.  

Namely, if χ = HvF(un)n and ς = Hv(vn)n are 

hypervectors, then we have χ + ς = Hv(un + vn)n and χ - ς = 

Hv(un - vn)n . 

Proposition 10. Multiplication by real numbers in V 

induces a similar operation in V  with all identities preserved.  

Namely, if χ = HvF(un)n  is a hypervector and a is a real 

number, then aχ = Hv(aun)n . 

Propositions 9 and 10 imply the following result. 

Theorem 2. V
 is a real vector space. 

A subset P of a vector space V is called balanced [2] if for 

any 0  t  1, we have 

tP  P 

Theorem 3. If P is a balanced subset of a vector space V, 

then the set P is a balanced subset of the vector space V . 

Corollary 3. If Q and P are balanced subsets of a vector 

space V, then (Q  P) , Q  P , Q  P and (Q  P) are 

balanced subsets of the vector space V . 

A subset P of a vector space V is called convex [2] if for 

any 0  t  1, we have 

tP + (1 - t)P  P 

Theorem 4. If P is a convex subset of a vector space V, 

then the set P is a convex subset of the vector space V . 

Corollary 4. If Q and P are convex subsets of a vector 

space V, then (Q  P) and Q  P , are convex subsets of the 

vector space V . 

Now let us look how arithmetical operations transform 
bounded hypervectors. 

Proposition 11. a) The sum and difference of two bounded 
hypervectors are bounded. 

b) Multiplication of a bounded hypervector by a real 
number gives a bounded hypervector. 

Proposition 11 implies the following result. 

Corollary 5. Bounded hypervectors form a subspace B of 

the vector space V . 

Let us consider arithmetical operations with -extensions 
in real vector spaces. There are two such operations – addition 
and multiplication by real numbers [2]. 

Proposition 12. If Q, P  V and both Q and P contain the 

zero vector 0, then Q + P  (Q + P) . 

The following example shows that in a general case, this 
inclusion is proper. 

Example 7. Let us take subsets Q = {0, 2} and P = {0, 1} 

of the one-dimensional vector space R, then neither Q nor P 

contain the element 3 = 1 + 2 from (Q + P) . Consequently, we 

have Q + P  (Q + P) . 

Note that having the zero vectors in both subsets is an 
essential condition in Proposition 12 because otherwise the 
inclusion of set can be invalid. 

Proposition 13. If P  V and a is a real number, then a(P) 

= (aP) . 

An interesting question is whether it is possible to extend 

the norm in V to the norm in V . However, we can show that 

in a general case even if V is a Euclidean space, V
 is not a 

normed space. At the same time, it is possible to prove the 
following result utilizing the concept of a hypernorm [17]. 

We remind that a hypernorm in a vector space X is a 

function υ: X  R
+, which satisfies the following conditions: 

      N1. For any x from L, q(x) = 0 if and only if x = 0. 

N2. q(ax) = ||a||q(x) for any x from L and any element a 
from F. 
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N3 (the triangle inequality or subadditivity). 

              q(x + y)  q(x) + q(y) for any x and y from L 

A vector space L with a hypernorm is called a hypernormed 
vector space or simply, a hypernormed space. 

The real hypernumber q(x) is called the hypernorm of the 
element x from the hypernormed space L.   

Note that norms in vector spaces coincide with those 
hypernorms that take values only in the set of real numbers. 
That is, we have the following result [17]. 

Proposition 14. A hypernorm is a norm in a vector space if 
and only if it takes values in the set of all non-negative real 
numbers. 

Thus, any normed vector space is a hypernormed vector 
space. Besides, any hypernormed vector space is a 
hyperseminormed vector space. 

Theorem 5. V
 is a hypernormed real vector space. 

Taking a hypervector χ = HvF(un)n , we define its 

hypernorm as the hypernumber a  = HvF(|| un ||)n . 

In normed vector spaces, the norm defines a metric [2, 19]. 
In a similar way, the hypernorm defines a hypermetric in 
hypernormed vector spaces [17]. 

We remind that a mapping d: XX  R
+ is called a 

hypermetric (or a hyperdistance function) in a set X if it 
satisfies the following axioms:    

   M1. For any x and y from X, d(x, y) = 0 if and only if x = 
y.  

   M2 (Symmetry). d(x, y) = d(y, x) for all x, y  X.   

   M3 (the triangle inequality or subadditivity).  

                                              d(x, y)  d(x, z) + d(z, y) for all 

x, y, z  X.    

A set X with a hypermetric d is called a hypermetric space. 

The real hypernumber d(x, y) is called the distance between 
x and y in the hypermetric space X.   

Thus, Theorem 5 implies the following result. 

Theorem 6. V
 is a hypermetric space. 

A metric defines a topology in the metric space [2, 19]. In a 
similar way, hypermetric also defines a topology in the 
hypermetric space [17]. Consequently, we have the following 
result. 

Theorem 7. V
 is a topological space. 

Topology in V
 is defined by the system of neighborhoods 

of 0 having the form 

Ua = { χ = HvF(un)n ; || χ || < a} 

where a is a positive real number. 

A subset P of a vector space V is called bounded [2] if for 
any neighborhood Ua of 0, there is  a positive real number t 

such that P  tUa. 

Theorem 8. If P is a bounded subset of a vector space V, 

then the set P is a bounded subset of the vector space V . 

Corollary 6. If Q and P are bounded subsets of a vector 

space V, then (Q  P) , Q  P , Q  P and (Q  P) are 

bounded subsets of the vector space V . 

Theorem 8 and Propositions 11 and 12 imply the following 
result 

Corollary 7. If Q and P are bounded subsets of a vector 

space V, then Q + P , (Q + P) and  (aP) are bounded 

subsets of the vector space V . 

In a topological vector space, any compact set is bounded 

[19]. In contrast to this, in the hyperspace V , even one 
hypervector can be unbounded. For instance, the hypervector 

(hypernumber) χ = HvF(n)n is unbounded in the hyperspace 

R . Thus, for hyperspaces, we need a more general definition 
of boundedness. 

Let us consider an element u in a real vector space U. 

Definition 8. A subset P of the space U is called u–bounded 
if for every neighborhood U of u, there is a real number a such 

that P  aU. 

This definition implies the following result. 

Lemma 5. A subset P of the space U is bounded if and only 
if it is 0-bounded. 

For normed vector spaces, the concepts of boundedness and 
u-boundedness coincide.  

Lemma 6. If U is a normed vector space and u  U, then 
any u–bounded in U subset P is bounded. 

In hyperspaces, this is not true in a general case. 

Proposition 15. A χ-bounded subset P of the space U is 
bounded if and only if the hypervector χ is bounded. 

The following result generalizes Corollary 6. 

Proposition 16. If Q and P are χ-bounded subsets of a 

vector space V, then (Q  P) , Q  P , Q  P and (Q  

P) are χ-bounded subsets of the vector space V . 

Note that the union of a χ-bounded subset and ς-bounded 

subset of the vector space V can be neither χ-bounded nor ς-
bounded. However, Proposition 16 and Corollary 6 imply the 
following result. 

Proposition 17. If the hypervectors χ and ς are bounded, 
then the union of a χ-bounded subset and ς-bounded subset of 

the vector space V is bounded. 

A similar result is true for addition of sets in hyperspaces. 

Proposition 18. If Q and P are χ-bounded subsets of a 

vector space V, then Q + P and (Q + P) are 2χ-bounded 

subsets of the vector space V . 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2020.7.5 Volume 7, 2020

ISSN: 2313-0571 40



Note that the sum of a χ-bounded subset and ς-bounded 

subset of the vector space V can be neither χ-bounded nor ς-
bounded. However, Proposition 16 and Corollary 6 imply the 
following result. 

Proposition 19. If the hypervectors χ and ς are bounded, 
then the sum of a χ-bounded subset and ς-bounded subset of 

the vector space V is bounded. 

An important class of vector spaces is formed by 
topological vector spaces. As Rudin writes, the concept of 
topological vector spaces pervades all of functional analysis 

[2]. However, in a general case, V is not a topological vector 
space although it is proved that any hypernormed real vector 
space is a semitopological vector space [17]. This gives us the 
following result. 

Corollary 8. V is a semitopological vector space. 

Note that although V is not a topological vector space in a 

general case, V is a topological space because a hypernorm 
defines a topology in a vector space [17]. 

Many properties of the real vector spaces V and V are 

closely related. In particular, the space V of hypervectors is a 
natural extension of the vector space V as we have the 
following result. 

Theorem 9. The vector space V is isomorphic to the 

subspace V = {χ = HvF(un)n ; un = u  V for all n} of the 

vector space V 

Identifying elements from V with stable sequences, i.e., 
sequences in which all elements are equal to the same element 
from V, we can treat the vector space V as a subset of the set 

V of all hypervectors. 

The norm in V is a restriction of the hypernorm in V. This 
implies the following result. 

Corollary 9. The normed vector space V is (or more 
exactly, is isomorphic to) a normed subspace of the 

hypernormed real vector space V . 

Let us consider –extensions of subsets of the real normed 
vector space V. 

Proposition 20. a) If a subset P of the vector space V is 

closed with respect to addition, then P is also closed with 
respect to addition. 

b) If a subset P of the vector space V is closed with respect 

to subtraction, then P is also closed with respect to 
subtraction. 

c) If a subset P of the vector space V is closed with respect 

to multiplication by real numbers, then P is also closed with 
respect to multiplication by real numbers. 

Proposition 20 implies the following result. 

Theorem 10. If U is a vector subspace of a normed vector 

space V, then U is a vector subspace of V . 

The inclusion relation is preserved by –extensions. 

Proposition 21. For any subspace W of a subspace U of the 

space V, the vector space W is a subspace of U . 

However, the strict inclusion relation is not always 

preserved by –extensions as the following result 
demonstrates. 

Let U be a dense subspace of V. 

Theorem 11. The vector spaces U and V are isomorphic. 

There are natural relations between linear mappings of 
vector spaces and linear mapping of their hyperspaces. 

Proposition 22. A linear mapping of a vector space W into 
a vector space U can be extended to a linear mapping of the 

vector space W into the vector space U . 

There are natural relations between linear functionals in 
vector spaces and linear hyperfunctionals in their hyperspaces. 

We remind that a real hyperfunctional in a real vector space 

L is a mapping F: L  R [17]. 

Proposition 23. A linear functional in a vector space V can 

be extended to a linear hyperfunctional in the vector space V . 

Completeness is an important property of normed vector 
spaces [1, 2]. 

Theorem 12. For any real normed vector space V, the 

vector space V contains a completion of the space V. 

Corollary 10. If U is a Banach space that contains V, then 

there is a linear mapping of U into V  . 

It would be interesting to know whether a proper 
counterpart of the Hahn-Banach theorem is true for 
hyperspaces. 

Completeness properties of hyperspaces allow proving the 
following result. 

Theorem 13. a) Any series s of vectors from the space V 

has the sum in the space V . 

b) If a series s of vectors from the space V has the classical 

sum u in V, then its sum in the space V coincides with u. 

This shows that summation of vector series in hyperspaces 
is a natural extension of the conventional summation of vector 
series. 

Summation in hyperspaces provides the base for integration 
in these spaces. However, to define integrals, it is necessary to 
consider hypermeasures in the sense of [18]. 

Let us consider some properties of summation related to 
operations with vectors and hypervectors. Sequences and series 

of vectors from the space V belong to the vector space V. So, 
it is possible to perform operations of addition and 
multiplication by real numbers with them. 

Theorem 14. a) If a hypervector χ is the sum of a series s 
of vectors from the space V and ς is the sum of a series r of 
vectors from the space V, then χ + ς is the sum of a series s + r 

in the space V . 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2020.7.5 Volume 7, 2020

ISSN: 2313-0571 41



b) If a hypervector χ is the sum of a series s of vectors from 
the space V and a is a real number, then aχ is the sum of a 

series as in the space V . 

This shows that summation commutes with operations in 
hyperspaces. 

V. CONCLUSION 

We see that hyperspaces make vector spaces complete and 
allowing to assign the sum to any vector series. This provides 
for effective application of these spaces in physics where series 
and their summation play a very important role. The next step 
is to study integration in hyperspaces. The results of integration 
with hypernumbers obtained in [12, 15, 16] show that 
integration in hyperspaces can essentially extend the scope and 
applications of the integration in the initial vector space. 

A broader problem is the development of functional 
analysis in hyperspaces. Specifically, it is important to find 
general counterparts of the basic principles of linear functional 
analysis for hyperspaces [19]. The goal is to bring new tools to 
the theory of operator equations in general and differential 
equations in particular making possible to solve much more 
equations than it is possible by traditional methods including 
distributions. 

One more interesting problem for the future study is 
exploration of the categories of hyperspaces as well as 
additional algebraic structures related to hyperspaces. For 
instance, it is possible to consider linear hyperalgebras, i.e., 

hyperspaces with multiplication, and linear –hyperalgebras, 

i.e., hyperspaces with an additional system  of operations. 

 

 

 

REFERENCES 

[1] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New 
York, 1976  

[2] W. Rudin, Functional Analysis, McGrow-Hill, New York , 1991 

[3] F. Close, The Infinity Puzzle: Quantum Field Theory and the Hunt for 
an Orderly Universe, Basic Books, New York, 2011 

[4] J.C. Collins, Renormalization, Cambridge University Press, Cambridge, 
1984         

[5] K. Knopp, Theory and Application of Infinite Series , Dover, NY, 1940 

[6] G.H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949 

[7] D.E. Loeb and G.-C. Rota,” Formal Power Series of Logarithmic Type,” 
Advances in Math., vol. 75, pp. 1-118, 1989   

[8] G.G. Lorentz, “A contribution to the theory of divergent sequences,” 
Acta Math., vol. 80, pp. 167-190, 1948 

[9] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, 
McGraw-Hill Companies, 1965  

[10] R. P. Feynman, QED, The Strange Theory of Light and Matter, Penguin 
Books, London, 1985 

[11] A. Robinson, Nonstandard Analysis, Studies of Logic and Foundations 
of Mathematics, North-Holland, New York, 1966 

[12] M. Burgin, Hypernumbers and Extrafunctions: Extending the Classical 
Calculus, Springer, New York, 2012 

[13] L. Schwartz, Théorie des Distributions, Vol. I-II,  Hermann,  Paris, 
1950/1951 

[14] M. Burgin and A.C. Krinik, “Hyperexpectations and random variables 
without expectations,” Integration: Mathematical Theory and 
Applications, vol. 3, No. 3, pp. 245-267, 2012        

[15] M. Burgin, “Hyperintegration approach to the Feynman integral,” 
Integration: Mathematical Theory and Applications, vol. 1, No. 1, pp. 
59-104, 2008 

[16] M. Burgin, “Operations with Extrafunctions and Integration in Bundles 
with a Hyperspace Base,” in Functional Analysis and Probability, Nova 
Science Publishers, New York, 2015, pp. 3 - 76  

[17] M. Burgin, Semitopological Vector Spaces: Hypernorms, 
Hyperseminorms and Operators, Apple Academic Press, Toronto, 
Canada, 2017 

[18] M. Burgin, “Hypermeasures in General Spaces,” International Journal of 
Pure and Applied Mathematics, v. 24, No. 3, pp. 299-323, 2005  

[19] N. Dunford and J. Schwartz, Linear Operators, Interscience Publishers, 
New York, 1958 

 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS 
DOI: 10.46300/91019.2020.7.5 Volume 7, 2020

ISSN: 2313-0571 42

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 




