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Abstract—In 1968 Velicko [30] introduced
the concepts of s-closure and s—interior
operations. We introduce and study
properties of &-derived, 5—border, 5 frontier and
5—exterior Of @ set using the concept of s-open

sets. We also introduce some new classes of
topological spaces in terms of the concept of
s-D-setsand  investigate some of their
fundamental properties. Moreover, we
investigate and study some further properties
of the well-known notions of s-closureand
s—interior Of @ set in a topological space. We
also introduce s-grsspace and study its
characteristics. We also introduce s5-Rr space
and study its characteristics. We introduce
S—irresolute, S—closed, pre—&—open and
pre— & —closed Mappings and investigate

properties and characterizations of these new
types of mappings and also explore further
properties of the well-known notions of
5—continuous aNd s —open Mappings.
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. INTRODUCTION AND PRELIMINARIES

Velicko  [30] introduced the notion of
6 —closure, and & —interior operations.
Throughout this paper, (X,z) (simply X)
always mean topological space on which no
separation axioms are assumed unless explicitly
stated. Let S be a subset of X. The closure
(resp., interior) of S will be denoted by CI(S),

(resp.,Int(S)). A subset Sof X is called a

E-ISSN: 2313-0571

semi-open set [21] if ScCI[Int(S)]. The

complement of a semi-open set is called a semi-
closed set. The intersection of all semi-closed
sets containing A is called the semi-closure of

A and is denoted by sCI( A). The family of all
semi-open sets in a topological space (X, 7)
will be denoted by SO(X, r). A subset M(X)
of a space X called a semi-neighborhood of a

point X € X if there exists a semi-open set S
such that xe S = M(x). In [19] Latif introduced

the notion of semi-convergence of filters and
investigated some characterizations related to
semi-open continuous function. A point xe X is

called the o—cluster point of AcXx if
Al Int[CI(U)]#¢ for every open set U of X
containing X. The set of all §—cluster points of
A is called the &—closure of A, denoted by
Cls(A). A subset Ac X is called 5—closed if

A=Cl,;(A). The complement of a 5—closed set
is called &—open. The collection of all & —open
sets in a topological space (X,z) forms a

topology 75, on X, called the semi-
generalization topology of z, weaker than 7
and the class of all regular open sets in ¢ forms
an open basis for (X,z;). In this paper, we
introduce and study properties of &—derived,
S —border, & frontier and & —exterior of a set
using the concept of &—open and study also

other properties of the well-known notions of
o—closure and  S§—interior. The notion of
O —opensubsets,  @—closed subsets and

6 —closure were introduced by Velicko [30] for
the purpose of studying the important class of
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H —closed spaces in terms of arbitrary
filterbases. A point xeX is called a
0—adherent point of A [7], if Al CI(V)=g¢for

every open set V containing x. The set of all
O—adherent points of A is called the
@—closure of A and is denoted by Cl,(A). A

subset A of X is called @-closed if
A=Cl,(A). Dontchev and Maki

[[7], Lemma 3.9] have shown thatif A and B
are subsets of a space (X,r), then
Cl,(AUB)=Cl,(A)UCI,(B) and
Cl,(Al B)=Cl,(A)I Cl,(B). Note also that the

O—closure of a given set need not be a
6 —closed set. But it is always closed. The
complement of a &@-closed set is called a
O—open set. The @—interior of set A in X,

written Int,(A), consists of those points X of
A such that for some open set U containing X,
CI(U)c A Aset A is 9—open if and only if
A=Int,(A), or equivalently, X-—-A s
6 —closed. The collection of all 9—open sets in
a topological space (X, ) forms a topology 7,
on X, weaker than t. We observe that for any
topological ~space  (X,7), the relation
r,ctscr always holds. We also have
AcCI(A)cCl;(A)cCly(A), for any subset A
of X.

2. BASIC PROPERTIES AND APPLICATIONS OF

DELTA OPEN SETS

Definition1.1. Let A be a subset of a
topological space (X,7). A point X € A is said
to be a S—limitpoint of A if for each
d—open set U containing X, Ul (A-{x})=¢.
The set of all d—limit points of A is called

the d—derived set of A and is denoted by
D, (A).
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Theorem 1.2. For subsets A, B of a space X,
the following statements hold:

(1) D(A)= D,(A), where D(A)is the derived
set of A;

(2) If Ac B, then D;(A)< D;(B);

(3) D,(A)UD;(B)=D,(AUB) and
DB(AI B)QDS(A)I Da(B);

(4) [Ds(D;(A))-A]< D;(A);

(5) D;[ AUD;(A)] <[ AUD;(A)].

Proof. (1) It suffices to observe that every
d—open set is an open set.

(2) Obvious.

(3) D;(A)UD,(B)=D,(AUB) is a
modification of the standard proof for D, where
open sets are replaced by O&—open sets.

D;(Al B)<= D;(A)1 D,(B) follows by (2).

(4) If xe[D,(D,(A)-A] and U is a
d—open set  containing X, then
Ul [D;(A)—{x}]=¢. Let yeU I [D;(A)—{x}].
Then, since yeD;(A) and yeU, so
Ul [A-{y}]=¢. Let zeUI[A-{y}]. Then,

z#X for zeA and XxgA. Hence,
Ul [ A—{x}]=¢. Therefore, xe D;(A).

(5) Let xe D[ AUD,(A)]. If xe A, the result
is obvious. So, let XE[DB(AU DS(A))—A],then,
for S—open set U containing X,
U I [AUD,(A)-{x}]=¢. Thus,
UI[A={x}]=¢ or Ul [D,(A)—{x}]=¢. Now,
it follows similarly from (4) that
Ul [A-{x}]#¢.  Hence, xe D, (A).
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Therefore, in any case,
D,[ AUD,(A)|=[ AUD,(A)].

Theorem 1.3. For any subset A of a space X,
Cl;(A)=AUD,(A).

Proof. Since D;(A)=Cl,(A),
AUD;(A)cCl;(A). On the other hand, let
xeCl;(A). If xe A, then the proof is complete.

If xe A, each 3—open set U containing X
intersects A at a point distinct from X; so
xeD,(A). Thus, Cl,(A)c[ AUD;(A)], which
completes the proof.

Corollary 1.4. A subset A is 6—closed if and

only if it contains the set of its d—limit it
points.

Definition1.5. A point Xe X is said to be a

d—interior point of A if there exists a
d—open set U containing X such that U c A

The set of all d—interior points of A is said
to be d—interiorof A and is denoted by
Int, (A).

Theorem 1.6. For subsets A, B of a space X,
the following statements are true:

(1) Int;(A) is the largest 5 —openset contained
in A;

(2) A is 5—open ifand only if A=Int,(A);
(3) ot [t (A)] =t (A);

(4) int,(A) =[ A-D,(x - A)];

(5) [ X~ Int, (A)] =Cl, (X~ A);

(6) [ X ~C,(A)] = Int, (X - A);

(7) Ac B, then Int;(A)c Int;(B).

E-ISSN: 2313-0571

Volume 8, 2021

(8) Int;(A)UInt;(B)< Int;(AUB);
(9) Int;(Al B)=Int,(A)l Int;(B);

Proof. (4) If  xe[A-D;(X-A)], then
x ¢ D;(X —A) and so there exists a d—open set
U containing X such that U1 (X —A)=¢. Then,
xeUcA and hence xelnt (A), that is,
[A-D;(X —A)]< Int;(A). On the other hand, if
x e Int;(A),then x¢D;(X —A) since Int;(A) is
5—open and [Int(A)l (X-A)]=¢. Hence,
Int,(A)=[ A—=D,(X - A)].

(5) X —Int,(A)=X -[A-D,(X -A)|=
(X =A)UD;(X —A)=Cl (X - A)

Definition1.7. Bd;(A)=A-Int;(A)is said to
be the 5 —border of A.

Theorem 1.8. For a subset A of a space X, the
following statements hold:

(1) Bd(A)<=Bd;(A) where Bd(A) denotes the
border of A;

(2) A=Int,(A)UBd,(A);
(3) Int;(A)l Bd,(A)=4;

(4) A is a 8-open set if and only if
Bd;(A)=¢;

(5) B, [ Int; (A)]=0;

(6) Int,[ Bd;(A)]=0;

(7) Bd,[ Bd;(A) ]=Bd; (A);
(8) Bd,(A)= Al [CI,(X —A)];

(9) Bda(A): Ds(x _A)'
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Proof. (6)  If  xelnt,[Bd,(A)],  then
xeBd;(A). On the other hand, since
Bd;(A)< A, xeInt,[ Bd,(A) < Int,(A). Hence,
xeInt;(A)I Bd;(A), which contradicts (3).
Thus, Int[ Bd;(A)]=¢.

(8) Bd;(A)=A-Int,(A)=A-[ X -Cl(X -A)]=
Al CI (X - A).

(9) Bd, (A)=A—Int,(
D,(X - A).

A)=A-[A-D,(X -A)]=

Definition 1.9. Fr,(A)=ClI,(A)—Int,(A) is said
to be the & frontier of A.

Theorem 1.10. For a subset A of a space X,
the following statements hold:

(1) Fr(A)cFr,(A) where Fr(A)denotes the
frontier of A;

(2) Cly(A)=Int, (&) UF, (A);
(3) nt,(A)1 Fr, (A)=0;

(4) B3, (A) < Fr (A);

(5) Fr, (A)=Bd, (A)UD, (A);

(6) A is a 8-open set if and only if
Frs(A):Ds(A);

(7) Fr, (&) =Cl, (A)1 CI,(X ~A);
(8) Fry(A)=Fr, (X -A);

(9) Fr,(A) is 5—closed;

(10) Fr,[Fr, (A)] = Fry (A);

(11) Fr,[Int,(A) ] = Fr,(A);
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(12) Fr,[Cl,(A) | = Fr,(A);
(13) Int,(A)= A~Fr,(A).

Proof. (2) Int,(A)UFr(A)=
Int, (A)U[CI, (A)—Int;(A)]=CI,(A)

(3) Int, (A)I Fr,(A)=Int,(A)1 [Cl,(A)—Int,(A)]=0¢.
(5) Since Int,(A)UFr(A)=

Int, (A)UBd, (A)UD;(A), Fr,(A)=Bd,(A)UD,(A)
(7) Fry(A)=Cl,(A)=Int, (A)=CI, (A)l Cl(X —A).
9) ClI,[ Fr,(A)]=CI,[CI,(A)I Cl,(X-A)]<
Cl,[Cl;(A) ]I Cl[Cl; (X -A)]

=Cl,(A)I Cly(X
is 8—closed.

—A)=Fr,(A). Hence Fr,(A)

(10) Fr,[ Fr,(A)]=CL[ Fr,(A)]1 Cli[ X —Fr,(A)]<
Cl,[ Fry(A)|=Fr,(A)

(12) Fry [Cls (A)] =Cl; [Cls (A)] —Int; [Cls (A)} =

Cl,(A)—Int;[ Cly(A) ] <[ Cl (A)— Int, (A) ] =Fry (A).

(13) A—Fr,(A)=A—[Cl;(A)-Int,(A)|=Int, (A).

Remark 1.11. Let A and B be subsets of X.
Then Ac B does not imply that -either
Fr,(B)< Fr;(A) or Fr,(A)c Fry(B).

Definition 1.12. Ext;(A)=Int;(X —A) is said to
be a & —exterior of A.

Theorem 1.13. For a subset A of a space X, the
following statements hold:
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(1) Ext;(A)< Ext(A) where Ext(A) denotes the
exterior of A;

(2) Bxt; (A) s 5—opn;

(3) Bxt;(A)=Int; (X~ A)= X ~Cl(A);
(4) Bxt, [ Bxt; (A)] = Int; [CL, (A)];

(5) If AcB, then Ext,(B)c Ext,(A);
(6) Bxt; (AUB)=Bxt; (A) UBX, (B);
(7) Bxt; (A)1 Bxt; (B) < Bxt; (Al B);
(8) Bxt; (X)=¢;

(9) Bxt, (¢)=X;

(10) Ext, (A) = Ext,[ X — Ext;(A)];

(1) Int; (A) = Bxt; [ Bxt; (A)];

(12) X = Int, (A) UBXt; (A) UFr (A);
(13) Ext, (A)UEX, (B) < Ext, (Al B).

Proof. (4) Ext;[ Ext;(A)]=Ext;[ X —Cl,(A)]=
Int,[ X —(X =Cl,(A))]=Int;[Cl, (A)]

(10) Ext,[ X —Ext,(A) |=Ext,[ X —Int; (X - A) ]
= Int,[ X =(X = Int, (X = A)) ]
= Int,[ Int; (X — A) ] = Int, (X — A) = Ext, (A).

(12) Int, (A) < Int;[ CL (A) = Int;[ X —Int, (X — A)]
= Int,[ X —Ext; (A) ] = Ext,[ Ext; (A)].

(13)

Ext; (A)UExt;(B) = Int; (X — A)UInt,(X —B)
< Int;[(X -A)U(X -B)]

= Int,[ X (Al B)]=Ext;(Al B).

E-ISSN: 2313-0571

Volume 8, 2021

Definition1.14. Let X be a topological space.
A set Ac X is said to be d—saturated if for
every Xe A it implies that CI,({x})< A The

class of all &—saturated sets in X will be
denoted by B;(X).

Theorem 1.15. Let X be a topological space.
Then B;(X) is a complete Boolean set Algebra.

Proof. We will prove that all the unions and
complements of elements of B;(X) are

members of B;(X). Obviously, only the proof

regarding the complements is not trivial. Let
AeB;(X) and suppose that Cl,({x})z (X —A)

for some xe(X —A). Then there exists ye A
such that yeClI;({x}). It follows that xandy

have no disjoint neighborhoods. Then
X eClS({y}). But this is a contradiction, because

by the definition of B;(X) we have
Cl({y})=A Hence, CI,({x})c(X-A) for
every xe(X-A), which implies
(X=A)eB;(X).

Corrolary 1.16. B;(X) contains every union
and every intersection of 5—closed and &—open
setsin X.

Definition1.17. A space X is said to be
d—Hausdorff if for every x=ye X, there
exist d—open sets U,, V, such that xeU,,
yeV, and U IV, =¢.

Theorem1.18. Let (X,t) be a topological

space. Then the following statements are
equivalent:

(1) X is 8T,

(2) Let xeX.For each y=#X, there exists a
8—open set U such that xeU and y«Cl,(U);
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(3) For each xeX,
I {CI;(U)U e, and xeU} ={x};

(4) The diagonal A={(x,x)|xe X} isa 8—closed
setin XxX.

Proof. (1)=>(2): Let xeX and y# X. Then
there are disjoint d—open sets U and V such
that xeUand yeV. Clearly, V°® is d—closed,
Cl;(U)cV®, yeV°and therefore y¢Cl (V).

(2)=(3). If y=X, there exists a 5—open set
U such that xeUand yeCl(U). So
ye! {Cl(U)U e, and xeU}.

(3)=>(4). We prove that A° is &—open. Let
(x,y)eA.  Then y#Xx and since
I {CI,(U)U e, and xeU}={x} there is some
Uety with xeUand yeCl(U). Since

Ut [ClL(U)] =9, Ux[CL(U)] isa &—open
set such that (x,y)eU x[Cl, (U)] c A"

(4)=(1). If y#Xx, then (xy)¢A and thus there
exist o—open sets Uand V such that
(x,y)eUxVand (UxV)I A=¢. Clearly, for the
d—open sets Uand V we have: xeU,yeV
and Ul V =¢.

Definition1.19. A subset A of a space X is
said to be 8—compact if every cover of X by
d—open sets has a finite subcover.

It is well-known that every closed subset of a
compact space is compact. The next theorem
approximates this result for &—compactness.

Theorem1.20. A &-compact subset of a
& —Hausdorff space is §—closed.

Proof. Let A be a d-compact subset of a
8—Hausdorff space X.We will show that
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(X—A) is 8-open. Let xe(X—A). Then for
each ae A there exist 8—open sets U,, and V,
such that xeU,, and aeV, and U1V, =¢.
The collection {V,lac A} is a 5—open cover of
A. Therefore, there exists a finite subcollection
{Vak|k=1,2,3,...,n} that covers A. Let
U, =1{U,,k=123...n}. Then xeU,,U,is &

open and U, | A=¢. This proves that A is
d—closed.

Theorem1.21. A  §-closed subset of a
& —Hausdorff space is &—compact.

Proof. Let X be &-compact and let A be a
8—closed subset of X. Let I" be a &—open
cover of A. Then I" =I'U{X —A} is a 5—open
cover of X. Since X is &-—compact, this

collection T has a finite collection A" that
covers X. But then T" ha a finite subcollection
A=A —{X-A} that covers A as we need.

Definition1.22. Let A be a subset of a
topological space X. Then &—kernel of A,
denoted by Ker,(A)=1 {Oet;|AcO}.

Definition1.23. Let X be a point of a
topological space X. Then d—kernel of X,
denoted by Ker,({x})is defined to be the set

Ker, ({x})=1{Oe1,|xe0}.

Lemma1.24. Let (X,t) be a topological space
and xeX. Then
Ker, (A)={xe X|Cl({x})I A=d}.

Proof. Let xeKer,(A)and Cl ({x})I A=9¢.
Hence x [ X — Ker, ({x})] which is a 8—open

set containing A. This is impossible, since
x € Ker, (A). Consequently, Cl;({x})I A=¢. Let

Cl({x})I A=¢ andxeKer,(A). Then there
exists a d-open set D containing A and
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xgD.Let yeCl({x})] A Hence, D is a
d—open neighborhood of y with x¢D. By this
contradiction, x e Ker,(A) and the claim.

Definition 1.25. A topological space (X,t) is
said to be a 6—R, space if every 5-—open set
contains the 8—closure of each of its singletons.

Lemma1.26. Let (X,t) be a topological space
and xeX. Then yeKer,({x}) if and only if

x e Ker ({y})-

Proof. Suppose that y & Ker,({x}). Then there
exists a d—open set V containing X such that
yeV. Therefore we have xeCl ({y}). The
proof of the converse case can be done similarly.

Lemmal.27. The following statements are
equivalent for any points X and y in a
topological space (X, 1):

(1) Kery({x})=Ker,({y});
(2) Cly({x})=Cl({y})-

Proof. (1)=(2): Suppose that
Ker, ({x}) = Ker;({y}). Then there exists a point
z in X such that zeKer({x}) and
ze Ker,({y}). It follows from z e Ker,({x})
that  {x}1 Cl,({x})=¢.This  implies  that
xeCl,({z}). By zeKer({y}), we have
{y}1 Cl,({z})=¢. Since xeCl({z}) and

Cl,({x})=Cl;({z}). Hence {y}I Cl;({x})=9¢.
Therefore, CI({x})=Cl,({y}).

(2)=(1): Suppose that ClI({x})=Cl({y})-
Then there exists a point zeX such that
2eCl({x}) and z¢Cl({y}).Then, there exists

a 8—open set containing z and therefore X but
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not Y, ie.,

Ker, ({x}) = Ker,({y}).

y & Ker, ({x}). Hence

Theorem 1.28. A topological space (X,t) is a
d—R, space if and only if for every X and y in

X. Cl, ({x})=Cl,({y}) implies
Cl, ({x})1 Cly({y}) =9

Proof. Necessity. Suppose that (X, 1) is 3—R,
and x,ye X such that Cl({x})=Cl({y}). Then
there exists zeCl ({x}) such that zeCl({y})
(or zeCl({y}) such that zeCl({x}). There
exists V et; such that yeV and zeV; hence
xeV. Therefore, we have xgCl({y}). Thus

xe[ X -Cl({y})]ex,, which implies
Cly({x}) =[x -Cl ({y})] and

Cl({x))r Cl({y})) =¢. The proof for
otherwise is similar.

Sufficiency. Let V et, and let xeV. We will
show that CI,({x})cV. Let yeV, ie,
ye(X-V). Then x=Yy and x¢Cl,({y}). This
shows that Cl,({x})=Cl({y}). By assumption,
Cly({x})1 Cl,({y})=¢. Hence yeCl,({x}) and
therefore CI, ({x})<V.

Theorem 1.29. A topological space (X,t) is a
d—R, space if and only if for any points X and

y in X. Ker({x})=Ker,({y}) implies

Ker, ({x}) = Ker; ({y})-

Proof. Suppose that (X,t) is a 8—R; space.
Thus by Lemma 1.27, for any points X and Y in
X if Ker, ({x}) = Ker; ({y}) then
Cly ({x})=Cl; ({})-
Ker, ({x})1 Ker({y})=4¢.
zeKer,({x})! Ker,({y}). By zeKer/({x}) and

Now we prove that

Assume that
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Lemma 1.26, it follows that x e Kerﬁ({z}). Since
x e Ker, ({x}), by Theorem 1.28,
Cly({x})=Cl,({z}).  Similarly, ~we have

cl({y})=Cl({z})=Cl({x})- This is a

contradiction. Therefore, we have
Ker, ({x}) | Ker, ({y}) = ¢

Conversely, let (X,t) be a topological space
such that for any points X and y in X,

Ker, ({x}) = Ker,({y}) implies
Ker, ({x})1 Ker,({y})=¢. If Cl,({x})=Cl,({y}),
then by Lemmal.27, Ker,({x})= Ker({y}).
Hence Ker,({x})I Ker,({y})=¢ which implies
Cl,({x})I Cl,({y})=¢. Because zeKer({x})

x e Ker, ({z}).
Ker, ({x})1 Ker,({y})=¢. By hypothesis, we

have Ker, ({x})=Ker,({z}). Then
zeCl,({x})1 Cl({y}) implies that
Ker, ({x})=Ker,({z})=Ker,({y}). This is a
contradiction. Hence, Cl,({x})I Cl;({y})=¢. By
Theorem 1.28 (X, t) isa 8-R, space.

implies that Therefore

Theorem 1.30. For a topological space (X,1),
the following properties are equivalent:

(1)(X,) isa 5—R, space;

(2) For any A=¢ and Gert,; such that
Al G=¢, there exists FeCy(X,t) such that
Al F#¢ and F cG;

(3) Any Gert,, G=U{F eC,(X,1)|F =G};
(4)Any FeCy(X,1;), F=1{Ger,|F =G};
(5) Forany xe X, Cly({x})< Ker({x}).

Proof. (1)=(2): Let A be a nonempty subset
of X and Gert; such that Al G=¢. There
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exists xe Al G. Since xeGer,;, Cl({x})<G.

Set F=Cl,({x}). Then F is a 3—closed subset
of X suchthat FcG and Al F =¢.

(2)=(3): Let Get,.Then
U{F eC;(X,t)[F=G}<G.Let X be any point
of G. There exists F eC;(X,t) such that xeF

and FcG. Therefore, we have
xeF cU{F eCy(X,1)|F =G} and  hence

G =U{F eC,(X,1)|F =Gj}.
(8)=(4): This is obvious.

(4)=(5):

yeKer ({x}). There exists Ve, such that

Let X be any point of X and

xeV and yeV; hence CI,({x})1 V =¢. By (4)
(1 {GemlcL({y})=G))i v=¢. There exists
Get, such that x¢G and Cl({y})<G.
Therefore  Cl({x})I G=¢ andyeCl ({x}).

Consequently, we obtain Cl, ({x})< Ker, ({x}).

(5)=(1): Let Gert, and xeG. Suppose
y e Ker;({x}). Then xeCl;({y}) and yeG. This
implies that CI,({x})< Ker,({x})=G. Therefore,
(X,t) isa 3-R, space.

Corollary 1.31. For a topological space (X,1),
the following properties are equivalent:

(1)(X,t)isa 3-R, space;
(2) Cl({x})=Ker,({x}) forall xeX.

Proof. (1)=>(2): Suppose that (X,t) is a
3-R, space. By Theorem 1.30,
Cl({x})=Ker,({x}) for each xeX. Let
yeKer,({x}). Then xeCl({y}) and so
Cl,({x})=Cl,({y}). Therefore, yeCl,({x}) and
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hence Ker,({x})=Cl,({x}). This shows that

Cly ({x}) = Ker, ({x}).
(2)=(1): This is obvious by Theorem 1.30.

Theorem 1.32. For a topological space (X, 1),
the following properties are equivalent:

(1)(X,t) isa 8—R, space;

(2) xeCly({y}) if and only if yecCl;({x}), for
any points X and y in X.

Proof. (1)=(2): Assume that X is 5—R,. Let
xeCl;({y}) and D be any &-open set such
that yeD. Now by hypothesis, xeD.
Therefore, every d—open set containing Yy
contains X. Hence yeCl,({x}).

(2)=(1): LetUbea &—open setand xeU. If
xeCly({y}) and  hence
yeCl;({x}). This implies that CI ({x})cU.
Hence (X, 1) is 8—R,.

yeU, then

Theorem1.33. For a topological space
(X, 1), the following properties are equivalent:

(1) (X, 1) isa 8—R, space;

(2) If F is 5—closed, then F =Ker,(F).

(3) If F is 8—closed and xeF, then
Ker,(F)c F.

(4)1f xe X, then Ker,({x})<=Cl;({x}).

Proof. (1)=(2): Let F bea —closed set and
xg¢F. Thus (X —F) isa 8—open set containing
X. Since (X,t) is 8-R,. Cl({x})=(X-F).
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Thus Cl ({x})I F=¢ and by Lemmal24
x ¢ Ker, (F). Therefore Ker,(F)=F.

(2)=(3):  In general, AcB  implies
Ker;(A)<=Cl;(B). Therefore, it follows from
(2) that Ker,({x})< Ker,(F)=F.

(3)=(4):Since xeCl({x}) and CI,({x}) Iis
8—closed, by (3), Ker;({x}) =Cl,({x}).

(4)=(1) We show the implication by using
Theorem 3.19. Let xeCl({y}). Then by
Lemma 1.26, y e Ker,({x}). Since xeCl,({x})
and Cly({x}) is a &—closed set, by (4) we
obtain yeKer,({x})=Cl,({x}).
xeCly({y}) implies yeCl({x}). The
converse is obvious and (X , r) is 8—R,.

Therefore

Theorem1.34. Let (X,t) be a topological
space. Then 1 {CI,({x})|xe X} =¢ if and only if
Ker, ({x})= X forevery xeX.

Proof. Necessity. Suppose that
I {Cl,({x})]xe X} =¢. Assume that there is a
point y in X such that Ker({y})=X. Then

y¢O, where O is some proper &—open
subset of  X. This implies that
yel {Cl({x})}xex}. ~But this is a
contradiction.

Sufficiency. Assume that Ker;({x})# X for
every X € X. If there exists a point y € X such
that yel {Cl,({x})jxe X}, then every &—open
set containing y must contain every point of

X. This implies that the space X is the unique
O —open set  containing y. Hence
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Ker,({x})=X which is a contradiction.
Therefore, 1 {Cl,({x})jxe X} =¢.

Definition1.35. A filter base F is called
§—convergent to a point X in X, if for any
d—open set U of X containing X, there exists
B in F suchthat B isasubset of U.

Lemma1.36. Let (X, t) be a topological space

and X and y be any two points in X such that
every net in X §-converging to Yy
8—converges to X. Then xeCl,({y}).

Proof. Suppose that x,=y for ael. Then
Cl({y}). Since
{x, :ael} d—converges to y, so {x,:oael}
to X and this implies that

{x,zael} is a net in

& —converges

xeCly({y})-

Theorem 1.37. For a topological space (X, 1),
the following statements are equivalent:

(1) (X, 1) is 5-R, space;

(2) If x,y e X, then yecCl,({x}) if and only if
every net in X J-—converging to Yy
d—converges to X.

Proof. (1)=(2):
yeCIg({X}). Suppose that {x, iael} is a
netin X such that this net 5 —converges to Y.
Since y eCl,({x}) so by Theorem1.28 we

ci () =C (1))

xeClg({y}). This means

{x, o.el} 3—converges to X.

Let x,y e X such that

have Therefore

that the net

Conversely, let X,y € X such that every net in
X 3-—converging to y d—converges to

X. Then XeCIS({y}) by Lemma1.36. By
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Theorem 1.28, we have
Cly({x})=Cl;({y}). Therefore y € Cl;({x}).

(2)=(1): Assume that X and y are any two
points of X such that
Cl, ({x})1 Cl;({y})#¢. Let
zeCl({x})1 Cly({y}). So there exists a net
i Cl;({x}) that

j

} such
{x,:oel}d—converges to z.

j

g

{x,ioel
Since

Z€C|S({y ) So by hypothesis {x, ja.el}

o—converges to y. It follows that
yeCly({x}).  similarly ~ we  obtain
xeCly({y})- Therefore

CIS({X})=CIS({y}) and by Theorem1.28,
(X,’C) is 6—R,.

2. CHARACTERIZATIONS OF MAPPINGS

The purpose of this part is to explore properties
and  characterizations of  &—continuous,

d—irresolute, 5 —open, & —closed,
pre—&—open, and pre—&—closed functions.

2.1. DELTA—-CONTINUOUS FUNCTIONS

The purpose of this section is to investigate
properties and  characterizations  of
&—continuous functions.

Definition 2.1. A function f :(X,t)—(Y,o) is
said to be 5—continuous if f*(V)er, for
every V eo.

Theorem 2.2. Let f:(X,71)>(Y,o)be a
function. Then the following are equivalent:

(1) f is &—continuous;

(2) The inverse image of each closed set in
Y isa 5—closed set in X;
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(3) clL[fHVv)]etrcl(v)] for
Vcv;

every

(4) f[cl(U)]cal] ()], forevery U cX;

(5) For any point xe X and any open set
V of Y containing f(x), there exists
U ety such that xeU and f(U)cV;

(6) Bd,[f*(V)]cf'[Bd(V)], for every

(7) f[Dy(U)]<cI f(U)], forevery U < X;

(8) fr[nt(v)]cint,[f*(v)], for every
Vcv;

Proof. (1)=(2): Let FcY be closed. Since
fHY-F)=X-f"*(F)is
d—open. Therefore, f*(F) is &-closed in
X.

f IS &—continuous,

(2)=(3): Since CI(V) is closed for every
vcy.then  fr[ci(v)] s
Therefore

fA{CIv)]=cl[ fH(cI(v))|=Cl[ f*(V)]
(3)=(4): Let ucx and f(U)=V. Then
ClL[ F(V)]< fH[cI(V)]. Thus
Cl(U)=Cl [ f(f(U))]c f*[cI(f(u))] and
f[Cl(U)]<=cI] f(U)].

(4)=(2): Let wcy be a closed set, and
U=f*Ww). Then f[cCl(U)]<CI[f(U)]
=CI[ f(f*(w))]ccl(w)=w.Thus

Cl,(U)c f[ f(Cl(U))]c f*(W)=U. So U is

5—closed.

5 —closed.

(2)=(1):Let vy be an open set. Then
Y-Vis closed. Then f*(Y-V)=X-f*(V)
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is S—closed in X and hence

f7(V)is 3—openin X.
(1)=(5): Let f:(X,1)>(Y,0) be

§—continuous.For any xe X and any open set
V of Y containing f(x), U=f"*(V)er,, and

fU)=f[f*(V)]cVv.

(5)=(1): Let Veo. We prove f*(V)er,.
Let xef™(v).Then f(x)ev and there
exists such  that xeUand
f(x)ef(U)cV. Hence
xeUc f*[f(U)]cf?(v). It shows that
f*(V)is a &-neighborhood of each of its
points. Therefore f7(V)ex,.

(6)=(8): Let vcvy.Then by hypothesis,
Bd,[ f (V)] f[Bd(V)]

= 1 (V)-Int,[ (V)] FV=Int(V)]
=3 (V)- [ Int(V)]

= f[Int(V)]< Int[ £7(V)].

(8)=(6): Let vcY. Then by hypothesis,
fnt(v) ] Int,[ (V)]

=

Uer,

FAV)=Int,[ £7(V)]< £ (V)= 2 [Int(V)]=f [V =Int(V)]

= Bd,[ (V)] fP[Bd(V)].

1)=(7): It is  obvious,  since
f is 5—continuous and by (4)
f[Cl(U)]ccl f(U)] for each Uc=X. So

f[,(U)] <ol (V)]
(7)=(1):Let U <Y be an open set, V=Y -U

and f*(V)=w.Then by hypothesis
f[D,(W)]<=CI[ f(W)]. Thus
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o, (f(v)) ][ f(F(v))]=civ)=V.
Then D[ f(V)]= f7(V) and
f7(V)is 8—closed. Therefore,
f is 8 —continuous.

(1)=(8): Let vcvy.Then f7[Int(v)] is
5—openin X. Thus f2[int(v)]=
Int,[ £(int(v))]<  Int,[ (V)] Therefore

e line(v)] e nt [ £7(v) ).

(8)=(1): Let vy be an open set. Then
f (V)= [Int(v)]<Int;[ £*(v)]. Therefore,
f*(V)is 3—open. Hence f is 3—continuous.

In the next Theorem, #3—c. denotes the set
of points x of X for which a function
f:(X,t)—>(Y,o)is not &-continuous.

Theorem 2.3. #3—c. is identical with the
union of the &- frontiers of the inverse
images of 5—open sets containing f(x).

Proof. Suppose that f is not &-continuous at
a point x of X. Then there exists an open
set V Y containing f(x) such that f(U)

is not a subset of V for every Uer;
containing X. Hence, we  have
Ul fH(x-f*(Vv))=¢for every Uer,
containing X. It follows that
xeCl[X-f*(v)]. We also have

xe f*(V)cClL[f*(v)]. This means that
XEFrB[f*l(V)]. Now, let f be &—continuous
at xeX and Vv cYany open set containing
f(x).Then, xef™(vV) is a d—open set of
X. Thus. xelnt[f*(v)] and therefore
xeFr[ (V)] for every open set V
containing f(x).
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Remarks 24. (1) ~ Every  3—continuous

function is continuous but the converse may
not be true.

(2)If a function  f:(X,71)—>(Y,0)is
d—continuous and a function
g:(Y,0)—>(Z,9)is 8—continuous, then

gof :(X,t)—>(Z,9) is d—continuous.

(3)If a function f:(X,t)>(Y,0) s
8 —continuous and a function g:(Y,s)—(Z,9)
is continuous, then gof :(X,1)—>(Z,9)is
& —continuous.

(4)Let  (X,t)and (Y,c)be topological
spaces. If f:(X,t)—(Y,o)is a function, and
one of the following

(a) f*[nt(B)]<nt[f7(B)] for each
BcY.

(b) cI,[ f*(B)]< f*[cI(B)] foreach BCY.

(c) f[cl;(A)]<cl[ f(A)] for each AcXx
holds, then f is continuous.

Lemma25. Let AcYc< X, Yis &—open in
Xand A is &-open in Y. Then A is
5—open in X.

Proof. Since Ais §—open in Y, there exists a
5—open set U X such that A=Y 1 U. Thus
A being the intersection of two &-open sets
in X, is 8—open in X.

Theorem26.Let  f:(X,7)—>(Y,c) be a
mapping and {U,:iel} be a cover of X
such that U, et for each iel. Then prove
that f is &—continuous.

Proof. Let VcYbe an open set, then
(flu,)"(v) is 8—open in U, for each iel.
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Since U, is 5-open in X for each iel. So
by Lemma25, (flu,) (V) is 8—openin X
for each iel. But,
V)=U{(flu,) (v):iel}, then f7(v)ex,
because t;is a topology on X. This implies
that f is &-continuous.

2.2. DELTA-IRRESOLUTE FUNCTIONS

In this section, the functions to be considered are
those for which inverses of 0—0pen sets are

d—o0pen. We investigate some properties and
characterizations of such functions.

Definition 2.7.  Let (X,t)and (Y,o0) be

topological spaces. A function
f:(X,t)>(Y,o0) is called 5-irresoluteif the

inverse image of each &-—openset of Y is a
5—open setin X.

Theorem28. Let f:(X,1)—>(Y,c)be a

function between topological spaces. Then the
following are equivalent:

(1) fis d—irresolute;

(2) the inverse image of each 5—closed set in Y
isa 8—closed setin X;

(3) cI,[ F(V)]<= f*[Cly(V)] for every
VcY;

(4) f[Cl(U)]<=Cl] f(U)]forevery U c X;

(5) f*[Int;(B)]<Int,[ f*(B)] for every

Theorem29. Prove that a  function
f:(X,t)—>(Y,oc)is d—irresolute if and only if
for each point p in X and each &—openset B
in Y with f(p)eB, there isa 3-open set A
in X suchthat pe A, f(A)cB.

E-ISSN: 2313-0571

13

Volume 8, 2021

Proof. Necessity. Let pe X and Beo, such

that f(p)eB. Let A=f"(B). Sincefis
S—irresolute, A is d-openin  X.Also
pef?(B)=A as f(p)eB. Thus we have

f(A)=f[f7"(B)]<B.

Sufficiency. Let Beo,, let A=f"(B). We
show that A is &8-open in X. For this let

xeA It implies that f(x)eB. Then by
hypothesis, there exists A et such that Xxe A
and f(A)cB. Then
Actf(A)]cf*(B)=A Thus

A=U{A :xeA}. It follows that A is 5—open
in X. Hence f is d—irresolute.

Definition 2.10. Let (X,t)be a topological

space. Let xe X and N < X. We say that N is
a &-neighborhood of X if there exists a
d—open set M of X suchthat xeM < N.

Theorem 2.11.  Prove that a function
f:(X,t)—>(Y,oc)is s—irresolute if and only if
for each X in X, the inverse image of every
8—neighborhood of f(x), isa &-neighborhood
of X.

Proof. Necessity. Let Xe X and let B bea
8 —neighborhood of f (X). Then there exists
U eo; suchthat f(x)eU < B. This implies
that xe f *(U) < f*(B). Since f is
§—irresolute, so (U )et;. Hence
f~(B) isa 8—neighborhood of X.

Sufficiency. Let B e ;. Put A= f *(B). Let
xe A Then f(x)eB. But then, B being
d—open set, isa 3—neighborhood of f(x).
So by A=f*(B) is a
d—neighborhood of X.Hence by definition,
there exists A, € T; such that Xe A, < A. Thus

hypothesis,
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A=U{A :xeA}. It follows that A is a

d—open set in  X.Therefore f s
d—irresolute.

Theorem 2.12.  Prove that a  function
f:(X,t)—>(Y,o) is d—irresolute if and only
if for each X in X. and each §-neighborhood
U of f(x), there isa &—neighborhood V of
Xsuch that f(V)cU.

Proof. Necessity. Let xe X and let U be a
d—neighborhood of f(x). Then there exists

Oy, €0, such that f(x)eO,, cU. It follows
that Xef‘l[of(x)]gf‘l(u). By hypothesis,
70y
that V is a &—neighborhood of X and
f(v)=f[f*Uu)]cu.

Jex,. Let v =17(U). Then it follows

Sufficiency. Let Beo,. Put O=f"(B). Let
xeO. Then f(x)eB. Thus B
8—neighborhood of f (). So by hypothesis,

is a

there exists a 5—neighborhood V, of X such that
f(V,)<B. Thus it that
xeV, < f*[f(V,)]c f*(B)=0. Since V, is a
&—neighborhood of X, so there exists an O, et
such that xeO, cV,. Hence xe0O, cO, O, ;.
Thus O=U{O,:xe0O}. It follows that O is
d—open in X. Therefore, f is d—irresolute.

follows

Theorem 2.13.  Prove that a  function
f:(X,t)>(Y,o0) is 5—irresoluteif and only if
f[D;(A)]< f(A)UD;[ f(A)], forall AcX.

Proof. Necessity. Let f:(X,1)—>(Y,c) be
Let AcX,and a,eD;(A).
Assume that f(a,) f(A) and let V denote a
5—neighborhood of f(a,). Since f s
§—irresolute, so by Theorem 2.12, there exists
a 8-neighborhood U of a, that

S —irresolute.

such
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f(U)cV. From a,eD,(A), it follows that
Ul A=¢; there exists, therefore, at least one
element acUl A such that f(a)e f(A) and
f(a)ef(V). f(a,)e f(A), we have
f(a)= f(a,). Thus every &-—neighborhood of
f(a,) contains an element of f(A) different
from f(a,), consequently, f(a,)eD;[f(A)].
This proves necessity of the condition.

Since

Sufficiency. Assume that f is not &—irresolute.
Then by Theorem 2.12, there exists a, € X and a

§—neighborhood V of f(a,) such that every

§—neighborhood U of @, contains at least one

element acU for which f(a)eVv. Put
A={aeX:f(a)gV}. Then a;&A since
f(a)eV,and therefore  f(a,)eA; also

f(a,)e D,[ f(A)] since VI (V—{f(a)})=¢. It
follows that
f(a,)e f[Dy(A)]-[ F(A)UD,((A))]*9,

which is a contradiction to the given condition.

The condition of the Theorem is therefore
sufficient and the theorem is proved.

Theorem 2.14.Let f :(X,t)—>(Y,c) be a one-
to-one function. Then f is &—irresolute if and
only if f[D;(A)]=D,[ f(A)], forall AcX.

Proof. Necessity. Let f be &—irresolute. Let
Ac X, a,eD;(A) and V be a §-neighborhood
of f(a,). so by
Theorem 2.12, there exists a §—neighborhood U
of a, such that f(U)cV. But a, eD;(A);
hence there exists an element acUIl A such
that a+# a,; then f(a)e f(A) and, since f is
one to one, f(a)=f(a).Thus
8—neighborhood V  of f(a,) contains an
element of f(A) different from f(a,);
consequently  f(a,)eD;[ f(A)]. We have

(
therefore f[D;(A)]=D,[ f(A)].

Since f is &—irresolute,

every
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Sufficiency. Follows from Theorem 2.13.
2.3. DELTA—-OPEN FUNCTIONS

The purpose of this section is to investigate
some characterizations of §—open mappings.

Definition 2.15. Let (X,t)and (Y, o) be

topological spaces. A function
f:(X,1)—>(Y,o) is called 5—open if for every

openset G in X, f(G) isa 5—opensetin Y.

Theorem 2.16. Prove that a mapping
f:(X,1)—>(Y,o) is 8—open if and only if for
each xe X, and U etsuch that xeU, there
existsa 3—open set W c Y containing f (x)
such that W < f (U).

Proof. Follows immediately from
Definition 2.15.

Theorem 2.17. Let f:(X,1)—>(Y,oc)be
If WcY and Fc X is a closed set
f7(W), then there exists a
H cY containing W such that

5 —open.
containing

8 —closed
f’l(H)g F.

Proof. Let H=Y-f(Y-F). Since
FHW)F, FHY F) (Y -W).
Since f is 5—open, then H is §—closed and

we have

frH)=X-f[f(X-F)]eX-(X-F)=F.
Theorem 2.18. Let f:(X,7)—>(Y,c) be a
d—open function and let BcY. Then

[ cl,(1nt,(C1,(B))) <l £7(B)].
B)] s

containing f~(B). By Theorem 2.17, there
exists a d—closed set B H <Y such that

fH(H)ccI[ f7(B)]. Thus,

Proof. Cl[f‘l( closed in X
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£ Cly (Inty (Cl,

c f*[H] cC|[f-1 B)].

Theorem 2.19. Prove that a  function
f:(X,1)—>(Y,o) is o6-open if and
only if
f[Int(A)|< Int;[ f(A)], for all Ac X.

Proof. Necessity. Let Ac X. Let

x € Int(A). Then there exists U, €T such that
xeU,c A so f(x)ef(U,)c f(A). and
f(U,)eo;.

by hypothesis, Hence

f(x)ent] f(A)].
flInt(A)]<Int,[ f(A)].
Sufficiency. Let U € 1. Then by hypothesis,
f[Int(U)]< Int;[ f(U)]. Since
Int(U)=U as U is open. Also

Int,[ f(U)]< f(U
f(U)=Int,[ f(U)]. Thus f(U)is
d—openopenin Y.So f is d—open.

Thus

). Hence

Remark 2.20. The equality may not hold in the
preceding Theorem.

Theorem 2.21. Prove that a function
f:(X,1)—>(Y,c)is d—open if and only if
Int[ f*(B)]< f*[Int,(B)], forall BCY.

Necessity. Let BcY.  Since
Int[ f*(B)] is open in X and f is 3-open,

Proof.

)
f[int(*(B))] is 5-open in Y. Also we have
t[nt(£(8))]< f[ £7(B)]<B.

f[ nt(f(B))] < Int,(B).
Int(f(B))< [ Int;(B)].

Hence,

Therefore

(B)))|< 7 c1y(int; (1, (H)))]
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Sufficiency. Let AcX. Then f(A)cY.
Hence by hypothesis, we obtain
Int(A) < Int[ £ (A))]< [ Int,(T(A))]:
Thus f[int(A)]<Int[ f(A)], for all AcX.
Hence, by Theorem 2.19, f is 5—open.

Theorem 2.22. Let f:(X,7)—>(Y,c) be a

mapping. Then a necessary and sufficient
condition for f to be &-open is that

f[cl,(B)]=CI[ f*(B)]for every subset B of
Y.

Proof. Necessity. Assume f is §—open. Let
BcY. Let xe f*[Cl,(B)]. Then
f(x)eCl(B). Let U e such that xeU. Since
f is 0—open, then f(U) is a 5—openset in
Y. Therefore, BI f(U)=¢.Then
Ul f*(B)#¢. Hence xeCI[f*(B)]. We
conclude that f*[Cl,(B)]<=CI[ f*(B)].

Sufficiency. Let BCY. Then (Y-B)cY. By
f[cl,(Y-B)]<cCI[ f*(Y-B)].
that

hypothesis,
This implies

X-CI[ f*(Y-B)]= X - f*[Cl(Y-B)].
Hence

X-CI[X-f*(B)|]c f*[Y-Cl(Y-B)]. By
applying Theorem 10[18],
Int[ £(B)]< £ Int;(B)]. Now
Theorem 2.21, it follows that f is &—open.

form

2.4. DELTA—-CLOSED FUNCTIONS

In this section we introduce §-closed functions
and study certain properties and
characterizations of this type of functions.

Definition 2.23. A mapping f :(X,1)—>(Y,0)
is called 5—closed if the image of each closed
setin X isa S—closed setin Y.
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Theorem 2.24.  Prove that a mapping
f:(X,1)—>(Y,c) is 8—closed if and only if
Cl,[ f(A)]< f[CI(A)] foreach Ac X.

Proof. Necessity. Let f be 5—closed and let
Ac X. Then f(A)c f[CI(A)] and f[CI(A)]
isa d—closed setin Y. Thus

Cl,[ f(A)]< f[CI(A)].

Sufficiency. Suppose that

Cl,[ f(A)]< f[CI(A)], foreach Ac X. Let
Ac X be a closed set. Then

Cl,[ f(A)]< f[CI(A)]=f(A). This shows that
f(A)isa 5—closed set. Hence f is 5—closed.

Theorem 2.25. Let f:(X,t)—>(Y,c) be
d—closed. If VcY and Ec X is an open set
containing f™(V), then there exists a 5—open

set G Y containing V such that f™(G)<E.

Proof. Let G=Y-f(X—E).Since
f*(V)cE,we have f(X-E)cY-V.

Since f is 8—closed, then G is a d—o0pen
set and

f*(G)=X-f?[f(X-E)]eX—(X-E)=E.

Theorem 2.26.Suppose that f :(X,t)—>(Y,o)
is a &—closed mapping. Then
Int, [ Cl,( (A))]< f[CI(A)]for every subset A
of X.

Proof. Suppose f isa &—closed mapping and
A is an arbitrary subset of X. Then f[CI(A)]
is d—closed in Y. Then
Int, [ Cl,(f(CI(A)) | FlCI(A)].  But also
Int, [ C1, ( (A))] < Int,| Cl, (£ (C1(A))) ]
Int,[ CI, (T (A))]< f[CI(A)].

Theorem 2.27. Let f:(X,1)—>(Y,0)
Sd—closed function, and B,CcY.

Hence

be a
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Proof. (1) If U is an open neighborhood of
f*(B), then there exists a

neighborhood V of B such
f’l(B)g f’l(V)gU.

d—open
that

(2) If f s also onto, then if f*(B) and
f7(C) have disjoint open neighborhoods, so
have B andC.

Proof. (1) Let V=Y-f(X-U).Then
Ve=Y-V=f(U°). Since f is 3—closed, so V
is a 5—open set. Since f7(B)cU, we have
VC:f(UC)gf[f_l(Bc)Jch. Hence, BcV,
and thus V is a §—open neighborhood of B.
Further U< £ f(U°)]=f*(ve)=[F*(V)].
This proves that f*(V)cU.

(2) If £*(B) and f*(C) have disjoint open
neighborhoods M and N,then by (1), we have
&—open neighborhoods U and vV of B and C
respectively such that
f‘l(B)gf‘l(U)glntB(M)and

f*(C)c f*(V)cInt;(N). Since M and N
are disjoint, so are Int;(M) and Int;(N), hence
so f*(U) and f*(V) are disjoint as well. It

follows that U and V are disjoint too as f is
onto.

Theorem 2.28. Prove that a surjective mapping
f:(X,1)—>(Y,oc) is 8—closed, if and only if
for each subset B of Y and each open set U in
X containing f*(B), there exists a 5—open set

V inY containing B suchthat f*(V)cU.

Proof. Necessity. This follows from (1) of
Theorem 2.27.

Sufficiency. Suppose F is an arbitrary closed
set in X. Let y be an arbitrary point in

Y- f(F). Then
f(y)eX-f7[f(F)]=(X-F) and (X -F)
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is open in X. Hence by hypothesis, there exists
a &-open set V, containing Yy such that

f*(V,)e(X-F).  This  implies  that
yeV, c[Y-f(F)]. Thus
Y- f(F)=U{V,:yeY—f(F)}.  Hence

Y- f(F), being a union of d—0pen sets, is
d—open. Thus its complement f(F) is
d—closed. This shows that f is &—closed.

Theorem 2.29. Let f :(X,t)—>(Y,oc) bea
bijection. Then the following are equivalent:

(a) f is 3—closed.
(b) f is 8—open.
(c) f is &—continuous.

Proof. (a)=(b): Let Uet. Then X-U is
closed inX. By (@), f(X-U) is —closed in
Y. But f(X-U)=f(X)-f(U)=Y-f(U).
Thus f(U) is 8—open in Y. This shows that
f is 8—open.

(b)=(c): Let U < X. be an open set. Since f
is &—open. Sof(U)=(f’1)7l(U) is —openin
Y. Hence f is 8—continuous.

(¢)=(a):
X. Then X—A is open in X. Since ™ is
5—continuous, ()" (X -A) is 5-open in Y.

Let A be an arbitrary closed set in

But(f) (X -A)=f(X-A)=Y-f(A). Thus
f(A) is 8—closed in Y. This shows that f is

3 —closed.

Remark 2.30. A bijection f:(X,1)—>(Y,o0)
may be open and closed but neither &—open nor
d—closed.

2.5. PRE-DELTA-OPEN FUNCTIONS
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The purpose of this section is to introduce and
discuss certain properties and characterizations
of pre—dJ—open functions.

Definition 2.31. Let (X,t) and (Y,c) be
topological ~ spaces. Then a  function
f:(X,1)—>(Y,o) is said to be pre—&—open if
and only if for each Aert;, f(A)eo,.

Theorem2.32. Let f:(X,7)—>(Y,c) and
g:(Y,0)—>(Z,n) be any two pre—3—open
functions. Then the composition function
gof :(X,t)—>(Z,n) isa pre—5—open function.

Proof. Let U er,. Then f(U)eo,. Since f is
pre—5—open. But then g(f(U))en, as g is
pre—3—open. Hence, gof is pre—3&—open.

Theorem2.33. Prove that a mapping
f:(X,1)—>(Y,o) is pre—3—open if and only if
for each xeXand for any U ez, such that
xeU, there exists V eoc, such that f(x)eV
and V< f(U).

Proof. Routine.

Theorem2.34.  Prove that a mapping
f:(X,1)—>(Y,o) is pre-3—open if and only if
for each xe X and for any 3&—neighborhood U
of X in X, there exists a &—neighborhood

Vof f(x)inY suchthatVvc f(u).

Proof. Necessity. Let xeX and let U be a
d—neighborhood of  X. Then there exists

W e, such that xeW cU. Then
f(x)ef(W)cf(U). But f(W)eo, as f is
pre—3—open. Hence V=f(W) is a
&—neighborhood of f (X) and V ¢ f(U).

Sufficiency. Let U et,. Let xeU. Then U isa
d—neighborhood of X. So by hypothesis, there
f(x) such

iy S F(U). It follows at once that

exists a &-neighborhood V,,  of
that f(x)eV
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f(U)is a 3—neighborhood of each of its points.

Therefore f(U) is &—open.
pre —3&—open.

Hence f s

Theorem 2.35. Prove that a  function
f:(X,1)—>(Y,o) is pre-3—open if and only if
f[Int;(A)]< Int[ f(A)], forall Ac X.

Proof. Necessity. Let Ac X. Let xelnt;(A).
Then there exists U, et; such that xeU, c A.
So f(x)ef(U,)cf(A) and by hypothesis,
f(U,)eo,. Hence f(x)elnt,[f(A)]. Thus

fInt;(A)]< Int[ £(A)].

Sufficiency. Let U er,. Then by hypothesis,
f[Int;(U)]< Int,[ f(U)]. Since Int;(U)=U as
U is 5—open. Also Int[ f(U)]|< f(U
f(U)=Int[ f(U)]. Thus f(U) is 8—open in
Y.So f

). Hence

iS pre—3—open.

We remark that the equality does not hold in
Theorem 2.35 as the following example shows.

Example 2.36. Let X =Y ={1,2}. suppose X is
antidiscrete and Y is discrete. Let f=1d.,

A={1}. Then ¢=f[Int;(A)]=Int,[ f(A)]=
Theorem 2.37.  Prove that a  function
f:(X,1)—>(Y,o) is pre—5—open if and only if
Int,[ f7(B)]< f*[Int,(B)] forall B<Y.
Proof.  Necessity. Let BcY.  Since
Int,[ f(B)] is S—open in X and f s
pre—&—open, f[lnt (f’l(B))J is 8—open in
Y. Also we have f [ Int,(f* )] e ]
c B. [Int :|g
Therefore Int,[ f(B)]< f- [Int5 )]-

Hence,

Sufficiency. Let Ac X. Then f(A)<Y. Hence
by hypothesis, we obtain

Int, (A) < Int, [ £7(F(A))]< [ Int,(T(A))].
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This implies that
t[int(A)]< [ £ (int (f(A))) < e[ £ (A)].
Thus f[Int,(A)]|< Int[ f(A)], for all AcX.
Hence, by Theorem 2.35, f is pre—3&—open.

Theorem2.38. Prove that a mapping
f:(X,1)—>(Y,o) is pre-3—open if and only if
f[cl,(B)]=Cl[ f*(B)], for every subset B
of Y.

Proof. Necessity. Let BcY. Let
xe f[Cl;(B)]. Then f(x)eCl,(B). Let
Uert, such that xeU. By hypothesis,
f(U)eo; and f(x)ef(U). Thus
f(U)l B#¢. Hence Ul f*(B)=¢. Therefore,
xeCl,[ f7(B)], So we

f[Cl,(B)]=Cl,[ f(B)].

Sufficiency. Let BcY. Then (Y-B)cY. By
hypothesis, [ CI,(Y-B)]<Cl[ f*(Y-B)].
This implies that
X—Cl[ f*(Y-B)]=X-f*[Cl(Y-B)].
Hence

X -Cl[X-f*(B)]< f*[Y-Cl,(Y-B)]. By
Theorem 2.7(6)[ 20],

Int,[ £7(B)|< f*[Int,(B)].

Theorem 2.37, it follows that f is pre—3&—open.

obtain

Now by

Theorem 2.39. Let f:(X,7)—>(Y,c) and
g:(Y,0)—>(Z,n) be two mappings such that
gof :(X,1)—(Z,n) is d—irresolute. Then

(1)If g isa pre—&—open injection, then f is
d—irresolute.

(2) If f isa pre—5—open surjection, then g is
d—irresolute.

Proof. (1)
g is pre—d—open. Also gof is d—irresolute.
Therefore, we have (gof)'[g(U)]er,. Since

Let Ueo;. Then g(U)ep; since
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g is an injection, so we have

(gof ) "[a(U)]=(f"0g™)[g(U)]=
f*[g(g(V))]=f"*(U). Consequently f*(U)
is 6—open in X. This proves that f s
d—irresolute.

(2) Let V ep,. Then (gof )" (V)et, since gof
is &—irresolute. Also f is pre—3d—open,

f[(gof )‘l(V)J is 5—0pen in Y. Since f is
surjective, we note that f[(gof )_l(V)}:

[fo(gof)71}(V):[f0(f’1og’1)J(V):[(fof’l)og’l(V)J:g’l(V).
Hence g is d—irresolute.

2.6. PRE—DELTA—-CLOSED FUNCTIONS

In this last section, we introduce and explore
several properties and characterizations of
pre—3&—closed functions.

Definition 2.40. A function f :(X,t)—>(Y,o) is
said to be pre—-5-closed if and only if the
image set f(A) is 5—closed for each &—closed
subset A of X.

Theorem 2.41. The composition of two
pre — 3 —closed mappings is a

pre—3—closed mapping.
Proof . The straight forward proof is omitted.

Theorem 2.42. Prove that a mapping
f:(X,1)—>(Y,o0) is pre-3—closed if and only
if CI,[f(A)]< f[Cl;(A)] for every subset A
of X.

Proof.  Necessity. Suppose f is a
pre—3—closed mapping and A is an
arbitrary subset of X. Then f[CI,(A)] s
3—closed in Y. Since f(A)c f[Cl(A)], we
obtain Cl,[ f(A)]< f[CI,(A)].
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Sufficiency. Suppose F is an arbitrary
d—closed set in X. By hypothesis, we obtain

f(F)cCl,[ f(F)]< f[Cl,(F)]=f(F). Hence
f(F)=Cl,[ f(F)]. Thus f(F) is 3—closed in
Y. It follows that f is pre—&—closed.

Theorem 2.43. Let f:(X,7)—>(Y,c) be a

pre—3—closed function, and B,C Y.

(1) If U isa 8—open neighborhood of f(B),
then there exists a 6—open neighborhood V of
B suchthat f*(B)c f™(V)cU.

(2) If f is also onto, then if f7(B) and
f7(C) have disjoint 5—open neighborhoods,
sohave Band C.

Proof. (1) Let V=Y-f(X-U).Then
Ve=Y-V=f(U°). Since f is pre—5—closed,
so V is d-open. Since f*(B)cU, we have
Ve=f(Us)c [ £7(B°)|]<B°. Hence, Bcv,
and thus V is a 0—0pen neighborhood of B.

Further
uec i f(us)|=r1" s\l

This proves that f ™ (V )

(2) 1f f*(B) and f*(C) have disjoint
d—open neighborhoods M and N, then by
(1), we have 3—open neighborhoods U and

V of B and C respectively such that

f‘l(B)gf_l(U)glnté(M) and
f*(C)c (V)< Inty(N). Since M and
N are disjoint, so are Int;(M) and Int;(N),
and hence so f(U) fH(V) are
disjoint as well. It follows that U and V are

and

disjointtoo as f is onto.
Theorem 2.44. Prove that a surjective
mapping f (X, 1)—>(Y,0) is
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pre—d&—closed if and only if for each subset
B of Y and each d—open set U in X

containing f *(B), there exists a 5—0pen set
V inY containing B such that f*(V)cU.

Proof.Necessity. This follows from (1) of
Theorem 2.43.

Sufficiency. Suppose F is an arbitrary
d—closed set in X. Let y be an arbitrary

Y-f(F). Then
fHy)e X - f(F)|=(X-F)
(X—-F) is d-open in X. Hence by
there exists a O—oOpenset V,

point in

and

hypothesis,
containing y such that f’l(Vy)g(X—F).
This implies that y eV, <[Y —f(F)]. Thus
Y—f(F)=U{V,|yeY-f(F)}.
Y — f(F), being a union of 8—0pen sets is
d—open.
d—closed. This shows that f is &—closed.

—(Y,0)

the following are

Hence

Thus its complement f(F) is

Theorem 2.45. Let f:(X,r)

be a bijection. Then
equivalent:

(1) f is pre—&—closed.
(2) f is pre—&—open.
(3) f™is 5—irresolute.

Proof. (1)
is 8—closed in X. By (1),
d—closed in Y.
f(X-U)=f(X)-f(U)=Y-f(U).
Thus f(U) is 3—open in Y.This shows that
f is pre—3—open.

=(2): Let U et,. Then X -U
f(X-U) is
But
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(2)=(3):Let AcX. Since f s
pre—d—open, so by Theorem 2.38,
f[ClL(f(A)]sCL[ F7(F(A)] 1t

implies that CI;[ f (A)|< f[Cl,(A)].

Thus  Cl [( f -1)‘1(A)} (1) e (A)],
for all Ac X. Then by Theorem 2.8, it
follows that f ™ is 8 —irresolute.

(3)=(1): Let A be an arbitrary 3 —closed
setin X. Then X —A is d—o0pen in X. Since

f1is S—irresolute, (ffl)fl(X—A) is

d—open in Y. But

(F4)(X=A)=F(X-A)=Y —f(A).
Thus f(A) is 8—closed in Y. This shows
that f is pre—3—closed.
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