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     Abstract—In 1968 Velicko [30] introduced 

the concepts of closure  and int erior

operations. We introduce and study 

properties of derived , border, frontier  and 

exterior of a set using the concept of open

sets. We also introduce some new classes of 

topological spaces in terms of the concept of 

D sets  and investigate some of their 

fundamental properties. Moreover, we 

investigate and study some further properties 

of the well-known notions of closure and 

interior of a set in a topological space. We 

also introduce R0 space and study its 

characteristics. We also introduce R0 space 

and study its characteristics. We introduce 

,irresolute  ,closed  pre open   and 

pre closed  mappings and investigate 

properties and characterizations of these new 

types of mappings and also explore further 

properties of the well-known notions of 

continuous  and open  mappings. 
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I. INTRODUCTION AND PRELIMINARIES  

Velicko   30  introduced the notion of 

,closure  and int erior operations. 

Throughout this paper,  X ,  (simply X ) 

always mean topological space on which no 

separation axioms are assumed unless explicitly 

stated. Let  S be a subset of X . The closure 

(resp., interior) of S  will be denoted by  Cl S , 

  resp.,Int S .  A subset S of X  is called a 

semi-open set  21  if     S Cl Int S .  The 

complement of a semi-open set is called a semi-

closed set. The intersection of all semi-closed 

sets containing A  is called the semi-closure of 

A  and is denoted by  sCl A .  The family of all 

semi-open sets in a topological space  X ,

will be denoted by  , .SO X   A subset  M X  

of a space X  called a semi-neighborhood of a 

point x X  if there exists a semi-open set S  

such that   x S M x .  In  [19] Latif introduced 

the notion of semi-convergence of filters and 

investigated some characterizations related to 

semi-open continuous function. A point x X  is 

called the cluster  point of A X  if  

 IA Int Cl U      for every open set U  of X  

containing x.   The set of all cluster points of 

A  is called the closure  of A, denoted by 

 .Cl A  A subset A X is called closed if 

 .A Cl A  The complement of a closed set 

is called .open The collection of all  open

sets in a topological space  X ,  forms a 

topology   on ,X  called the semi-

generalization topology of ,  weaker than   

and the class of all regular open sets in   forms 

an open basis for  X , .   In this paper, we 

introduce and study properties of ,derived  

,border  frontier  and exterior  of a set 

using the concept of open  and study also 

other properties of the well-known notions of 

closure  and  int . erior  The notion of  

open subsets, closed  subsets and 

closure  were introduced by Velicko [30] for 

the purpose of studying the important class of  
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H closed spaces in terms of arbitrary 

filterbases. A point  x X  is called a 

adherent  point of A  [7], if    IA Cl V  for 

every open set  V containing .x  The set of all 

adherent  points of A  is called the 

closure  of A  and is denoted by  .Cl A  A 

subset A  of X  is called closed  if 

 .A Cl A  Dontchev and Maki 

 7 , Lemma 3.9    have shown  that if A  and  B  

are subsets of a space  , ,X   then 

     U UCl A B Cl A Cl B    and 

     .I ICl A B Cl A Cl B    Note also that the 

closure  of a given set need not be a 

closed set. But it is always closed. The 

complement of a closed  set is called a 

open   set. The int erior  of set A  in ,X

written  ,Int A  consists of those points x  of 

A  such that for some open set U containing ,x  

  .Cl U A  A set A  is open  if and only if 

 ,A Int A  or equivalently, X A  is 

.closed  The collection of all open  sets in 

a topological space  X ,  forms a topology   

on X ,  weaker than τ. We observe that for any 

topological space  X , ,  the relation 

      always holds. We also have 

        A Cl A Cl A Cl A ,  for any subset A  

of .X  

2. BASIC PROPERTIES AND APPLICATIONS OF  

DELTA OPEN SETS  

Definition 1.1.  Let A  be a subset of a 

topological space  X , .  A point x A  is said 

to be a  limit point of A  if for each 

open  set U containing x,    . IU A x    

The set of all  limit  points of A  is called 

the derived  set of A  and is denoted by 

 .D A  

Theorem 1.2.  For subsets A, B  of a space X , 

the following statements hold: 

 1    D A D A ,   where   D A is the derived 

set of A;  

 2  If A B, then     D A D B ;  

 3        U UD A D B D A B  and 

       I ID A B D A D B ;  

 4       
   D D A A D A ;  

 5            U UD A D A A D A . 

Proof .   1  It suffices to observe that every 

open  set is an open set. 

 2  Obvious. 

 3         U UD A D B D A B  is a 

modification of the standard proof for D, where 

open sets are replaced by open  sets. 

       I ID A B D A D B  follows by (2). 

 4  If    
   x D D A A  and U  is a 

open  set containing x, then 

        IU D A x .  Let       Iy U D A x .  

Then, since  y D A  and y U ,  so 

     IU A y .  Let     Iz U A y .  Then, 

z x  for z A  and x A. Hence, 

     IU A x .  Therefore,  x D A .   

 5  Let      Ux D A D A . If x A,  the result 

is obvious. So, let    
   Ux D A D A A , then, 

for open  set U  containing x, 

        I UU A D A x . Thus, 

     IU A x   or         IU D A x .  Now, 

it follows similarly from (4) that 

     IU A x .  Hence,  .x D A  
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Therefore, in any case, 

           U UD A D A A D A . 

Theorem 1.3.  For any subset A  of a space X ,

   . UCl A A D A   

Proof .   Since     D A Cl A ,

    UA D A Cl A .  On the other hand, let 

 x Cl A .  If x A,  then the proof is complete. 

If x A,  each open  set U  containing x  

intersects A  at a point distinct from x;  so

 x D A .   Thus,        UCl A A D A ,  which 

completes the proof. 

Corollary 1.4.  A subset A  is closed  if and 

only if it contains the set of its  limit  it 

points. 

1 5Def init ion . .  A point x X  is said to be a 

 int erior  point of A  if there exists a 

open  set U containing x  such that U A.  

The set of all  int erior  points of A  is said 

to be  int erior of A  and is denoted by

 Int A .  

Theorem 1.6.  For subsets A, B of a space X , 

the following statements are true: 

 1   Int A  is the largest open set contained 

in A;  

 2   A  is open  if and only if  A Int A ;  

 3        Int Int A Int A ;  

 4         Int A A D X A ;  

 5         X Int A Cl X A ;  

 6         X Cl A Int X A ;  

 7 A B,  then    .Int A Int B   

 8          U UInt A Int B Int A B ;  

 9          I IInt A B Int A Int B ;  

Proof .  4  If      x A D X A ,  then 

  x D X A  and so there exists a open  set 

U containing x  such that    IU X A .  Then, 

 x U A  and hence  x Int A , that is, 

        A D X A Int A .  On the other hand, if 

 x Int A ,then   x D X A  since  Int A  is 

open  and         IInt A X A .  Hence, 

        Int A A D X A .  

 5            X Int A X A D X A  

         X A D X A Cl X AU  

Def init ion 1.7.       Bd A A Int A is said to 

be the border of A.  

 Theorem 1.8.  For a subset A  of a space X , the 

following statements hold: 

 1     Bd A Bd A  where  Bd A  denotes the 

border of A;  

 2       UA Int A Bd A ;  

 3        IInt A Bd A ;  

 4  A  is a open  set if and only if 

   Bd A ;  

 5       Bd Int A ;  

 6       Int Bd A ;  

 7        Bd Bd A Bd A ;  

 8        IBd A A Cl X A ;  

 9       Bd A D X A .   
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Proof .  6  If      x Int Bd A ,  then 

 x Bd A . On the other hand, since 

  Bd A A,         x Int Bd A Int A . Hence, 

     Ix Int A Bd A , which contradicts  3 .  

Thus,       Int Bd A . 

 8                Bd A A Int A A X Cl X A  

  A Cl X A .I  

 9                Bd A A Int A A A D X A  

  D X A . 

Def init ion 1.9.         Fr A Cl A Int A  is said 

to be the  frontier of A.  

Theorem 1.10.  For a subset A  of a space X , 

the following statements hold: 

 1     Fr A Fr A  where  Fr A denotes the 

frontier of A;  

 2          UCl A Int A Fr A ;   

 3        IInt A Fr A ;   

 4     Bd A Fr A ;   

 5         UFr A Bd A D A ;   

 6  A  is a open  set if and only if 

    Fr A D A ;  

 7         IFr A Cl A Cl X A ;   

 8       Fr A Fr X A ;  

  9  Fr A  is closed;  

 10        Fr Fr A Fr A ;  

 11        Fr Int A Fr A ;  

 12        Fr Cl A Fr A ;  

 13      Int A A Fr A .   

Proof .  2      Int A Fr AU

             Int A Cl A Int A Cl AU   

           3          I IInt A Fr A Int A Cl A Int A .

 

     5   Since Int A Fr AU    

                Int A Bd A D A , Fr A Bd A D AU U U  

           7        Fr A Cl A Int A Cl A Cl X A .I

  

 9                  Cl Fr A Cl Cl A Cl X AI

             Cl Cl A Cl Cl X AI  

         ICl A Cl X A Fr A . Hence   Fr A   

is closed.  

       10                  Fr Fr A Cl Fr A Cl X Fr AI

       Cl Fr A Fr A  

 12                       Fr Cl A Cl Cl A Int Cl A   

                       Cl A Int Cl A Cl A Int A Fr A .

 

 13                 A Fr A A Cl A Int A Int A .  

Remark 1.11.  Let A  and B  be subsets of X .  

Then A B  does not imply that either 

    Fr B Fr A  or     Fr A Fr B .  

Def init ion 1.12.       Ext A Int X A  is said to 

be a exterior of A.  

Theorem 1.13.  For a subset A  of a space X , the 

following statements hold: 
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 1     Ext A Ext A  where  Ext A  denotes the 

exterior of A;  

   2 Ext A  is opn;  

 3            Ext A Int X A X Cl A ;  

     4          Ext Ext A Int Cl A ;  

  5 If A B,  then     Ext B Ext A ;  

       6   U UExt A B Ext A Ext B ;  

       7   I IExt A Ext B Ext A B ;  

  8    Ext X ;  

 9    Ext X ;  

     10      Ext A Ext X Ext A ;   

     11      Int A Ext Ext A ;  

 12         U UX Int A Ext A Fr A ;  

 13        U IExt A Ext B Ext A B .   

Proof .      4            Ext Ext A Ext X Cl A  

       
       Int X X Cl A Int Cl A  

  10                Ext X Ext A Ext X Int X A

   
     Int X X Int X A

              Int Int X A Int X A Ext A .   

       11              Int A Int Cl A Int X Int X A

     Int X Ext A      Ext Ext A .  

 13

            Ext A Ext B Int X A Int X BU U

       Int X A X BU

        I IInt X A B Ext A B .  

Def init ion 1.14.  Let X  be a topological space. 

A set A X  is said to be  saturated  if for 

every x A  it implies that    Cl x A.  The 

class of all  saturated  sets in X  will be 

denoted by  B X .  

Theorem 1.15.  Let X  be a topological space. 

Then  B X  is a complete Boolean set Algebra. 

Proof .  We will prove that all the unions and 

complements of elements of  B X  are 

members of  B X .  Obviously, only the proof 

regarding the complements is not trivial. Let 

 A B X  and suppose that        Cl x X A  

for some   x X A .  Then there exists y A  

such that   y Cl x .  It follows that x and y  

have no disjoint neighborhoods. Then

  x Cl y .  But this is a contradiction, because 

by the definition of  B X  we have 

   Cl y A. Hence,       Cl x X A  for 

every   x X A , which implies

    X A B X .    

Corrolary 1.16.   B X  contains every union 

and every intersection of closed and open  

sets in X .   

Def init ion 1.17.  A space X  is said to be 

Hausdorff if for every  x y X , there 

exist open  sets xU ,  
yV  such that  xx U ,

 vy V  and  Ix yU V .  

Theorem 1.18.  Let  X ,  be a topological 

space. Then the following statements are 

equivalent: 

 1  X  is 2T ;  

 2  Let x X .For each y x,  there exists a 

open  set U  such that x U and  y Cl U ;  
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 3  For each x X ,  

       I Cl U U and x U x ;  

 4 The diagonal     x,x x X  is a closed  

set in X X .   

Proof .     1 2 :  Let x X  and y x. Then 

there are disjoint open  sets U  and V  such 

that x U and y V .  Clearly, cV  is closed ,  

   cCl U V ,   cy V and therefore  y Cl U .  

   2 3 .  If y x, there exists a open  set 

U  such that x U and  y Cl U .  So 

     Iy Cl U U and x U .  

   3 4 .  We prove that c
 is open. Let 

 x,y .  Then y x  and since 

       I Cl U U and x U x  there is some 

U  with x U and  y Cl U .  Since 

     I
c

U Cl U ,     
c

U Cl U  is a open  

set such that         
c cx,y U Cl U .  

   4 1 .  If y x, then  x,y  and thus there 

exist open  sets U and V such that 

  x,y U V and     IU V .  Clearly, for the 

open  sets U and V we have: x U , y V  

and  IU V .  

Def init ion 1.19.  A subset A  of a space X  is 

said to be compact  if every cover of X  by

open sets has a finite subcover.  

It is well-known that every closed subset of a 

compact space is compact. The next theorem 

approximates this result for compactness. 

Theorem 1.20.  A compact  subset of a 

Hausdorff space is closed.  

Proof .  Let A be a compact  subset of a 

Hausdorff  space X .We will show that 

 X A   is open.  Let   x X A .  Then for 

each a A  there exist open  sets x ,aU  and aV  

such that  x,ax U   and  aa V  and   Ix,a aU V . 

The collection  aV a A  is a open  cover of 

A.  Therefore, there exists a finite subcollection 

 1 2 3
kaV k , , ,...,n  that covers A.  Let 

 1 2 3 I
kx x,aU U k , , ,...,n .  Then  xx U , xU is δ-

open and  IxU A .  This proves that A  is 

closed.  

Theorem 1.21.  A closed subset of a 

Hausdorff space is compact.  

Proof .   Let X  be compact  and let A  be a 

closed  subset of X . Let   be a open  

cover of A.  Then     U* X A  is a open  

cover of X . Since X  is compact,  this 

collection *  has a finite collection * that 

covers X .  But then   ha a finite subcollection 

     * X A  that covers A  as we need. 

Def init ion 1.22.  Let A  be a subset of a 

topological space X . Then  ker nel  of A, 

denoted by       IKer A O A O .  

Def init ion 1.23.  Let x  be a point of a 

topological space X . Then  ker nel  of x, 

denoted by   Ker x is defined to be the set 

       IKer x O x O .  

Lemma 1.24.  Let  X ,  be a topological space 

and x X .  Then 

         IKer A x X Cl x A .  

Proof .  Let  x Ker A and     ICl x A .  

Hence   
   x X Ker x  which is a open  

set containing A.  This is impossible, since 

 x Ker A .  Consequently,     ICl x A .  Let 

    ICl x A  and  x Ker A .  Then there 

exists a open  set D  containing A  and 
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x D.Let    Iy Cl x A. Hence, D  is a 

open  neighborhood of y  with x D.  By this 

contradiction,  x Ker A  and the claim. 

Def init ion 1.25.  A topological space  X ,  is 

said to be a 0 R  space if every open  set 

contains the closure  of each of its singletons.  

Lemma 1.26.  Let  X ,  be a topological space 

and x X .  Then   y Ker x  if and only if 

  x Ker y .  

Proof .  Suppose that   y Ker x .  Then there 

exists a open  set V  containing x  such that

y V .   Therefore we have   x Cl y .  The 

proof of the converse case can be done similarly.  

Lemma 1.27.  The following statements are 

equivalent for any points x  and y  in a 

topological space  X , :    

 1        Ker x Ker y ;  

 2       Cl x Cl y .  

Proof .     1 2 :  Suppose that 

      Ker x Ker y .  Then there exists a point 

z  in X  such that   z Ker x  and 

  z Ker y .  It follows from   z Ker x  

that       Ix Cl x .This implies that 

  x Cl z .  By   z Ker y ,  we have 

      Iy Cl z .  Since   x Cl z  and 

      Cl x Cl z .  Hence       Iy Cl x .

Therefore,       Cl x Cl y .  

   2 1 :  Suppose that       Cl x Cl y .  

Then there exists a point z X  such that 

  z Cl x  and   z Cl y .Then, there exists 

a open  set containing z  and therefore x  but 

not y,  i.e.,   y Ker x .  Hence 

      Ker x Ker y .  

Theorem 1.28.  A topological space  X ,  is a 

0 R  space if and only if for every x  and y  in 

X .         Cl x Cl y implies 

        ICl x Cl y .  

Proof .  Necessity. Suppose that  X ,  is 0 R  

and x,y X  such that       Cl x Cl y .  Then 

there exists   z Cl x  such that   z Cl y  

(or   z Cl y  such that   z Cl x .  There 

exists V  such that y V and z V ;  hence 

x V .  Therefore, we have   x Cl y .  Thus 

   
    x X Cl y ,  which implies 

      
   Cl x X Cl y  and 

      ICl x Cl y   . The proof for 

otherwise is similar.  

Sufficiency. Let V  and let x V . We will 

show that    Cl x V .  Let y V ,  i.e., 

  y X V .  Then x y  and   x Cl y .  This 

shows that       Cl x Cl y .  By assumption, 

        ICl x Cl y .  Hence   y Cl x  and 

therefore    Cl x V .  

Theorem 1.29.  A topological space  X ,   is a 

0 R  space if and only if for any points x  and 

y  in X .        Ker x Ker y  implies 

      Ker x Ker y .  

Proof .  Suppose that  X ,  is a 0 R  space. 

Thus by Lemma 1.27,  for any points x  and y in 

X  if       Ker x Ker y  then 

      Cl x Cl y .  Now we prove that 

        IKer x Ker y . Assume that 

       Iz Ker x Ker y .  By   z Ker x  and 
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Lemma 1.26,  it follows that   x Ker z .  Since 

  x Ker x ,  by Theorem 1.28,  

      Cl x Cl z .  Similarly, we have 

           Cl y Cl z Cl x .This is a 

contradiction. Therefore, we have 

        IKer x Ker y . 

Conversely, let  X ,  be a topological space 

such that for any points x  and y  in X ,

      Ker x Ker y  implies 

        IKer x Ker y . If       Cl x Cl y ,  

then by Lemma 1.27,        Ker x Ker y .  

Hence         IKer x Ker y  which implies 

        ICl x Cl y .  Because   z Ker x  

implies that   x Ker z .  Therefore 

        IKer x Ker y . By hypothesis, we 

have       Ker x Ker z . Then 

       Iz Cl x Cl y  implies that 

           Ker x Ker z Ker y . This is a 

contradiction. Hence,         ICl x Cl y .  By 

Theorem 1.28  X ,  is a  0 R   space. 

Theorem 1.30.  For a topological space  X , ,  

the following properties are equivalent: 

   1 X ,  is a 
0 R space; 

 2  For any  A  and G  such that 

 IA G ,  there exists   F C X ,  such that 

 IA F  and F G;  

 3  Any G ,      UG F C X , F G ;  

 4 Any    F C X , ,    IF G F G ;  

 5  For any x X ,       Cl x Ker x .  

Proof .    1 2 :  Let A  be a nonempty subset 

of X  and G  such that  IA G .  There 

exists  Ix A G.  Since  x G ,     Cl x G.  

Set   F Cl x .  Then F  is a closed subset 

of X  such that F G  and  IA F .  

   2 3 :  Let G .Then 

     U F C X , F G G.Let x  be any point 

of G.  There exists   F C X ,  such that x F  

and F G.  Therefore, we have 

      Ux F F C X , F G  and hence 

     UG F C X , F G . 

   3 4 :  This is obvious.  

   4 5 :   Let x  be any point of X  and 

  y Ker x .  There exists V  such that 

x V  and y V;  hence     ICl x V .  By  4  

        I IG Cl y G V .  There exists 

G  such that x G  and    Cl y G.  

Therefore     ICl x G  and   y Cl x .   

Consequently, we obtain       Cl x Ker x .  

   5 1 :  Let G  and x G.  Suppose 

  y Ker x .  Then   x Cl y  and y G.  This 

implies that        Cl x Ker x G.  Therefore, 

 X ,  is a 0 R  space. 

Corollary 1.31.  For a topological space  X , ,  

the following properties are equivalent: 

   1 X , is a 0 R  space; 

       2  Cl x Ker x  for all x X .  

Proof .     1 2 :  Suppose that  X ,  is a 

0 R  space. By Theorem 1.30,

      Cl x Ker x  for each x X .  Let

  y Ker x .  Then   x Cl y  and so 

      Cl x Cl y .  Therefore,   y Cl x  and 
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hence       Ker x Cl x . This shows that 

      Cl x Ker x .  

   2 1 :  This is obvious by Theorem 1.30.  

Theorem 1.32.  For a topological space  X , ,  

the following properties are equivalent: 

   1 X ,  is a 0 R  space;  

 2    x Cl y  if and only if   y Cl x ,  for 

any points x  and y  in X .  

Proof .    1 2 :  Assume that X  is 0 R . Let 

  x Cl y  and D  be any open  set such 

that y D.  Now by hypothesis, x D.  

Therefore, every open  set containing y  

contains x.  Hence   y Cl x .  

   2 1 :   Let U be a open  set and x U.  If 

y U ,  then   x Cl y  and hence  

  y Cl x .  This implies that    Cl x U.  

Hence  X ,  is 0 R . 

1 33Theorem . .  For a topological space 

 X , ,  the following properties are equivalent: 

   1 X ,  is a 0 R  space;  

 2
 If F  is closed , then  F Ker F .  

 3  If  F  is closed  and x F,  then 

  Ker F F.  

 4 If x X ,  then       Ker x Cl x .  

Proof .    1 2 :  Let F  be a closed  set and 

x F.  Thus  X F  is a open  set containing 

x.  Since  X ,  is 0 R .       Cl x X F .  

Thus     ICl x F  and by Lemma 1.24  

 x Ker F .  Therefore   Ker F F.  

   2 3 :  In general, A B  implies 

    Ker A Cl B . Therefore, it follows from 

 2  that       Ker x Ker F F.  

      3 4  : Since x Cl x  and   Cl x  is 

closed ,  by  3 ,       Ker x Cl x .  

   4 1  We show the implication by using 

Theorem 3.19.  Let   x Cl y .   Then by 

Lemma 1.26,   y Ker x .  Since   x Cl x  

and   Cl x  is a closed  set, by  4  we 

obtain        y Ker x Cl x . Therefore 

  x Cl y  implies   y Cl x . The 

converse is obvious and  X ,  is 0 R .  

Theorem 1.34.  Let  X ,  be a topological 

space. Then       I Cl x x X  if and only if

   Ker x X  for every x X .  

Proof .  Necessity. Suppose that 

      I Cl x x X .  Assume that there is a 

point y  in X  such that    Ker y X .  Then 

y O, where O  is some proper open  

subset of X . This implies that

    Iy Cl x x X . But this is a 

contradiction.  

Sufficiency. Assume that    Ker x X  for 

every x X .  If there exists a point y X  such 

that     Iy Cl x x X ,  then every open  

set containing y  must contain every point of  

X . This implies that the space X  is the unique 

open  set containing y.  Hence 
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   Ker x X  which is a contradiction. 

Therefore,       I Cl x x X .   

Def init ion 1.35.  A filter base F  is called 

convergent  to a point x  in X , if for any 

open   set U  of X  containing x, there exists 

B  in F  such that B  is a subset of U.  

Lemma 1.36.  Let  X ,  be a topological space 

and x  and y  be any two points in X  such that 

every net in X  converging  to y  

converges  to x.  Then   x Cl y .  

Proof .  Suppose that  x y  for  I .  Then 

  x : I  is a net in   Cl y .  Since 

  x : I converges  to y,  so   x : I

converges  to x  and this implies that 

  x Cl y .  

Theorem 1.37.  For a topological space  X , ,  

the following statements are equivalent: 

   1 X ,  is 0 R  space; 

 2  If x,y X ,  then   y Cl x  if and only if 

every net in X converging  to y

converges  to x.  

Proof .     1 2 :   Let x,y X  such that 

  y Cl x . Suppose that   x : I  is a 

net in X such that this net converges  to y.  

Since   y Cl x  so by Theorem 1.28  we 

have       Cl x Cl y . Therefore 

  x Cl y . This means that the net 

  x : I converges  to x.  

Conversely, let x,y X  such that every net in 

X  converging  to y converges  to  

x.  Then   x Cl y  by Lemma 1.36.  By 

Theorem 1.28,  we have 

      Cl x Cl y . Therefore   y Cl x .  

   2 1 :  Assume that x  and y  are any two 

points of X  such that 

        ICl x Cl y .  Let

       Iz Cl x Cl y . So there exists a net 

  x : I  in   Cl x  such that 

  x : I converges  to z.  Since 

  z Cl y .  So by hypothesis   x : I  

converges  to y.  It follows that 

  y Cl x . Similarly we obtain

  x Cl y . Therefore 

      Cl x Cl y  and by Theorem 1.28,  

 X ,  is 0 R . 

2. CHARACTERIZATIONS OF MAPPINGS

 

The purpose of this part is to explore properties 

and characterizations of continuous,

 irresolute, open, closed , 

pre open,  and pre closed  functions. 

2.1. DELTA CONTINUOUS FUNCTIONS  

The purpose of this section is to investigate 

properties and characterizations of  

continuous  functions. 

Definition 2.1.  A function      f : X , Y ,  is 

said to be continuous  if  1

f V  for 

every V .  

Theorem 2.2.Let      f : X , Y , be a 

function. Then the following are equivalent: 

 1  f  is continuous;   

 2  The inverse image of each closed set in 

Y  is a closed set in X;  
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 3     1 1 


      Cl f V f Cl V , for every 

V Y;  

 4            f Cl U Cl f U , for every U X;  

 5   For any point x X  and any open set 

V  of  Y  containing  f x ,  there exists 

U  such that x U  and  f U V;  

 6     1 1 


      Bd f V f Bd V ,  for every 

V Y;  

 7           f D U Cl f U , for every U X;  

 8     1 1 


     f Int V Int f V ,  for every 

V Y;  

Proof .     1 2 :  Let F Y  be closed. Since 

f  is continuous,     1 1   f Y F X f F is 

open.  Therefore,  1f F  is closed in 

X .  

   2 3 :  Since  Cl V  is closed for every 

V Y ,then  1   f Cl V  is closed.  

Therefore 

      1 1 1  

 
         f Cl V Cl f Cl V Cl f V . 

   3 4 :  Let U X  and   f U V .  Then 

   1 1 


      Cl f V f Cl V .  Thus 

       1 1 

 
       Cl U Cl f f U f Cl f U  and 

          f Cl U Cl f U .  

   4 2 :  Let W Y  be a closed set, and  

 1U f W .  Then           f Cl U Cl f U

    1   
 

Cl f f W Cl W W.Thus 

      1 1 

 
    Cl U f f Cl U f W U.  So U is 

closed.  

   2 1 : Let V Y  be an open set. Then 

Y V is closed. Then    1 1   f Y V X f V  

is closed in X and hence 

 1 f V is open in X .  

   1 5 :  Let      f : X , Y ,  be 

continuous.For any x X and any open set 

V of Y containing  f x ,   1 U f V ,  and 

   1   f U f f V V .  

   5 1 :  Let V .  We prove  1

f V .  

Let  1x f V . Then  f x V  and there 

exists U  such that x U and 

    f x f U V.  Hence 

   1 1     x U f f U f V .  It shows that 

 1f V is a neighborhood of each of its 

points. Therefore  1

f V .  

   6 8 :  Let V Y.Then by hypothesis, 

   1 1 


      Bd f V f Bd V  

     1 1 1  


       f V Int f V f V Int V

   1 1     f V f Int V  

   1 1 


      f Int V Int f V . 

   8 6 :  Let V Y.  Then by hypothesis, 

   1 1 


     f Int V Int f V  

  

         1 1 1 1 1    


            f V Int f V f V f Int V f V Int V

 

    1 1 


      Bd f V f Bd V .  

   1 7 :  It is obvious, since 

f is continuous and by  4

          f Cl U Cl f U  for each U X. So 

          f D U Cl f U .  

   7 1 : Let U Y be an open set,  V Y U

and  1 f V W.Then by hypothesis  

          f D W Cl f W . Thus 
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       1 1 


     
   

f D f V Cl f f V Cl V V .  

Then     1 1 


   D f V f V  and 

 1 f V is closed. Therefore, 

f is continuous.  

   1 8 :  Let  V Y.Then   1   f Int V  is  

open in X . Thus  1   f Int V

  1


   Int f Int V    1


  Int f V .Therefore

   1 1 


     f Int V Int f V .  

   8 1 :  Let  V Y  be an open set. Then 

     1 1 1  


      f V f Int V Int f V .Therefore, 

 1 f V is open. Hence f is continuous.  

In the next Theorem, # c.  denotes the set 

of points x  of X  for which a function

     f : X , Y , is not continuous.  

Theorem 2.3.  # c.  is  identical with the 

union of the  frontiers of the inverse 

images of open  sets containing  f x .    

Proof . Suppose that f  is not continuous at 

a point x  of X .  Then there exists an open 

set V Y  containing  f x  such that  f U  

is not a subset of  V  for every U  

containing x.  Hence, we have 

  1 1   IU f X f V for every U  

containing x.  It follows that 

 1


   x Cl X f V . We also have 

   1 1 


    x f V Cl f V .  This means that 

 1


   x Fr f V .  Now, let f  be continuous

at x X  and V Y any open set containing 

 f x .Then,  1x f V  is a open  set of 

X . Thus.  1


   x Int f V  and therefore 

 1


   x Fr f V  for every open set V

containing  f x .   

Remarks 2.4.  1  Every continuous

function is continuous but the converse may 

not be true. 

 2 If a function      f : X , Y , is 

continuous and a function 

     g : Y , Z , is continuous,  then 

      g f : X , Z ,  is continuous.  

 3 If a function      f : X , Y ,  is 

continuous and a function      g : Y , Z ,  

is continuous, then       g f : X , Z , is

continuous.     

 4 Let  X , and  Y , be topological 

spaces. If      f : X , Y , is a function, and 

one of the following 

 a     1 1 


     f Int B Int f B  for each 

B Y.  

 b    1 1 


      Cl f B f Cl B  for each B Y.  

  c           f Cl A Cl f A  for each A X   

holds, then f  is continuous. 

Lemma 2.5.  Let  A Y X ,  Y is open  in 

X and A  is open  in Y . Then A  is 

open  in X .  

Proof . Since A is open  in Y , there exists a 

open  set U X  such that  IA Y U.  Thus 

A  being the intersection of two open sets 

in X , is open  in X .  

Theorem 2.6.Let      f : X , Y ,  be a 

mapping and  iU : i I  be a cover of X  

such that iU for each i I .  Then prove 

that f is continuous. 

Proof .  Let V Y be an open set, then 

   
1

if U V  is open  in iU  for each i I .  
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Since iU  is open  in X for each i I .  So 

by Lemma 2.5,     
1

if U V   is open in X

for each i I .  But, 

      11   U if V f U V : i I , then   1

f V  

because  is a topology on X . This implies 

that f  is continuous. 

2.2. DELTA IRRESOLUTE FUNCTIONS  

In this section, the functions to be considered are 

those for which inverses of open  sets are 

open.  We investigate some properties and 

characterizations of such functions.  

Definition 2.7.  Let  X , and  Y ,  be 

topological spaces. A function 

     f : X , Y ,  is called  irresolute if the 

inverse image of each open set of Y  is a 

open  set in X . 

Theorem 2.8.  Let      f : X , Y , be a 

function between topological spaces. Then the 

following are equivalent: 

 1  f is  irresolute;  

 2  the inverse image of each closed set in Y  

is a closed set in X ;  

 3     1 1 

 
      Cl f V f Cl V  for every 

V Y;  

 4            f Cl U Cl f U for every U X;  

  5     1 1 

 
     f Int B Int f B  for every 

B Y.  

Theorem 2.9.  Prove that a function 

     f : X , Y , is  irresolute  if and only if 

for each point p  in X  and each open set B  

in Y  with  f p B, there is a open  set A  

in X  such that p A,  f A B. 

Proof .  Necessity. Let p X and B  such 

that  f p B.  Let  1A f B .  Since f is 

 irresolute, A  is open in X .Also

 1 p f B A   as  f p B.  Thus we have 

   1   f A f f B B.  

Sufficiency. Let B ,  let  1A f B .  We 

show that A  is open  in X . For this let 

x A.   It implies that  f x B.  Then by 

hypothesis, there exists xA  such that xx A  

and  xf A B.  Then 

   1 1     x xA f f A f B A.  Thus 

  U xA A : x A . It follows that A  is open  

in X . Hence f  is irresolute.  

 Definition 2.10.  Let  X , be a topological 

space. Let x X  and N X .  We say that N  is 

a neighborhood  of x  if there exists a 

open  set M  of X  such that  x M N.  

 Theorem 2.11.  Prove that a function 

     f : X , Y , is  irresolute  if and only if 

for each x  in X , the inverse image of every 

neighborhood  of  f x ,  is a neighborhood

of x.  

Proof .  Necessity. Let x X  and let B  be a 

neighborhood of  f x . Then there exists 

U   such that  f x U B.   This implies 

that    1 1x f U f B .    Since f  is 

irresolute,  so  1f U .

  Hence 

 1f B
 is a neighborhood  of x.  

 Sufficiency. Let B .  Put  1A f B .  Let 

x A.  Then  f x B.  But then, B  being 

open  set, is a neighborhood  of  f x .  

So by hypothesis,  1A f B  is a 

neighborhood of x.Hence by definition, 

there exists xA  such that xx A A.   Thus 
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 xA A : x A . U  It follows that A  is a 

open  set in X .Therefore f  is 

irresolute.   

Theorem 2.12.  Prove that a function 

     f : X , Y ,  is irresolute  if and only 

if for each x  in X .  and each neighborhood

U  of  f x ,  there is a neighborhood V  of 

x such that  f V U.  

Proof .  Necessity. Let x X  and let U be a 

neighborhood  of  f x . Then there exists 

  
f x

O  such that     
f x

f x O U. It follows 

that 
   1 1   

 f x
x f O f U . By hypothesis, 

 
1


 
 f x

f O .  Let  1V f U .  Then it follows 

that V  is a neighborhood  of x  and 

   1   f V f f U U.  

Sufficiency. Let B .  Put  1O f B .  Let 

x O.  Then  f x B.  Thus B  is a 

neighborhood  of  f x . So by hypothesis, 

there exists a neighborhood xV  of x  such that 

 xf V B.  Thus it follows that 

   1 1      x xx V f f V f B O.  Since xV  is a 

neighborhood of x, so there exists an xO  

such that  x xx O V . Hence  xx O O,  xO . 

Thus   U xO O : x O .  It follows that O  is 

open  in X .  Therefore, f is irresolute.  

Theorem 2.13.  Prove that a function 

     f : X , Y ,  is  irresolute if and only if 

            Uf D A f A D f A ,  for all A X . 

Proof . Necessity. Let      f : X , Y ,  be 

 irresolute.  Let A X ,and  0 a D A .

Assume that    0 f a f A  and let V denote a  

neighborhood  of  0f a .  Since f  is 

 irresolute, so by Theorem 2.12,  there exists 

a neighborhood  U  of 0a  such that 

 f U V .  From  0 a D A ,  it follows that 

 IU A ;  there exists, therefore, at least one 

element  Ia U A  such that    f a f A  and 

   f a f V . Since    0 f a f A , we have 

   0f a f a . Thus every neighborhood  of 

 0f a  contains an element of  f A  different 

from  0f a , consequently,    0    f a D f A .   

This proves necessity of the condition. 

Sufficiency. Assume that f  is not  irresolute.  

Then by Theorem 2.12,  there exists 0 a X  and a 

neighborhood V  of  0f a   such that every 

neighborhood  U  of 0a  contains at least one 

element a U  for which  f a V .  Put 

    A a X : f a V .   Then 0a A  since 

 0 f a V ,and therefore  0 f a A;  also 

   0    f a D f A  since    0  IV V f a .  It 

follows that 

        0  
        Uf a f D A f A D f A , 

which is a contradiction to the given condition. 

The condition of the Theorem is therefore 

sufficient and the theorem is proved. 

Theorem 2.14.Let      f : X , Y ,  be a one-

to-one function. Then f is  irresolute  if and 

only if           f D A D f A ,  for all A X . 

Proof . Necessity. Let f  be  irresolute.  Let 

A X ,  0 a D A  and V  be a neighborhood

of  0f a .  Since f is  irresolute, so by 

Theorem 2.12,  there exists a neighborhood U  

of 0a  such that  f U V .  But  0 a D A ;  

hence there exists an element  Ia U A  such 

that 0a a ;  then    f a f A  and, since f  is 

one to one,    0f a f a .Thus every 

neighborhood  V  of  0f a  contains an 

element of  f A  different from  0f a ;  

consequently    0    f a D f A .  We have 

therefore           f D A D f A . 
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    Sufficiency. Follows from Theorem 2.13.  

2.3. DELTA OPEN FUNCTIONS  

The purpose of this section is to investigate 

some characterizations of open  mappings. 

Definition 2.15.  Let  X , and  Y ,   be 

topological spaces. A function 

     f : X , Y ,  is called open  if for every 

open set G  in X ,  f G  is a open set in Y .  

Theorem 2.16.  Prove that a mapping 

     f : X , Y ,  is open  if and only if for 

each x X ,  and U such that x U ,   there 

exists a open  set W Y containing  f x  

such that  W f U . 

Proof .  Follows immediately from 

Definition 2.15.  

Theorem 2.17.  Let      f : X , Y , be 

open.   If  W Y  and F X  is a closed set 

containing  1f W , then there exists a 

closed  H Y containing W  such that 

 1 f H F. 

Proof .  Let    H Y f Y F .  Since 

 1 f W F,  we have    1   f Y F Y W .  

Since f  is open,  then H  is closed  and 

     1 1         f H X f f X F X X F F.  

Theorem 2.18.  Let      f : X , Y ,  be a 

open  function and let B Y.  Then 

     1 1 

  
      

f Cl Int Cl B Cl f B .  

Proof .  1Cl f B     is closed in X  

containing  1f B .
 By Theorem 2.17,  there 

exists a closed  set B H Y   such that 

   1 1f H Cl f B .      Thus, 

       1 1 

     
   
   

f Cl Int Cl B f Cl Int Cl H

   1 1     f H Cl f B . 

Theorem 2.19.  Prove that a function 

   f : X , Y ,    is open  if and 

only if 

   f Int A Int f A , for all A X .         

Proof .Necessity. Let A X .  Let 

 x Int A . Then there exists xU   such that 

xx U A.   So       xf x f U f A .  and 

by hypothesis,  xf U .  Hence  

   f x Int f A .     Thus 

   f Int A Int f A .        

Sufficiency. Let U .  Then by hypothesis, 

   f Int U Int f U .        Since 

 Int U U  as U  is open. Also 

   Int f U f U .    Hence 

   f U Int f U .     Thus  f U  is 

open open in Y .So f  is open.  

Remark 2.20.  The equality may not hold in the 

preceding Theorem. 

Theorem 2.21.  Prove that a function 

     f : X , Y , is open  if and only if  

   1 1 


      Int f B f Int B ,  for all B Y.  

Proof .  Necessity. Let B Y.  Since 

 1  Int f B  is open in X  and f  is open,

  1 
 

f Int f B  is open  in Y . Also we have 

    1 1       
f Int f B f f B B.  Hence, 

    1


  
 

f Int f B Int B .  Therefore 

    1 1 

   Int f B f Int B .  
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 Sufficiency. Let A X . Then  f A Y.  

Hence by hypothesis, we obtain 

       1 1 


       Int A Int f f A f Int f A .  

Thus          f int A Int f A ,  for all A X . 

Hence, by Theorem 2.19,  f  is open.  

Theorem 2.22.  Let      f : X , Y ,  be a 

mapping. Then a necessary and sufficient 

condition for f  to be open  is that 

   1 1 


     f Cl B Cl f B for every subset B  of 

Y .  

Proof .  Necessity. Assume f  is open.  Let 

B Y.  Let  1

   x f Cl B .  Then 

   f x Cl B . Let U  such that x U.  Since 

f  is open,  then  f U  is a open set in 

Y .   Therefore,    IB f U . Then 

 1  IU f B .  Hence  1   x Cl f B .  We 

conclude that    1 1 


     f Cl B Cl f B .  

 Sufficiency. Let B Y.  Then   Y B Y.  By 

hypothesis,    1 1 


       f Cl Y B Cl f Y B . 

This implies that 

   1 1 


        X Cl f Y B X f Cl Y B . 

Hence 

   1 1 


        X Cl X f B f Y Cl Y B .  By 

applying  Theorem 10 18 ,  

   1 1 


      Int f B f Int B .  Now form 

Theorem 2.21,  it follows that f is open.  

2.4. DELTA CLOSED FUNCTIONS  

In this section we introduce closed functions 

and study certain properties and 

characterizations of this type of functions. 

Definition 2.23.  A mapping      f : X , Y ,  

is called closed  if the image of each closed 

set in X  is a closed  set in Y .  

Theorem 2.24.  Prove that a mapping 

     f : X , Y ,  is closed  if and only if

          Cl f A f Cl A  for each A X . 

Proof .  Necessity. Let f  be closed and let 

A X . Then       f A f Cl A  and    f Cl A  

is a closed  set in Y .  Thus 

          Cl f A f Cl A .  

Sufficiency.  Suppose that 

          Cl f A f Cl A , for each A X . Let 

A X be a closed set. Then 

             Cl f A f Cl A f A .  This shows that 

 f A is a closed set. Hence f is closed.  

Theorem 2.25.  Let      f : X , Y ,  be 

closed.  If V Y  and E X is an open set 

containing  1f V ,  then there exists a open  

set G Y  containing V such that  1 f G E.  

Proof .  Let  G Y f X E .   Since 

 1f V E,  we have  f X E Y V .    

Since f  is closed ,  then G  is a open  

set and 

     1 1f G X f f X E X X E E.         

 

Theorem 2.26.Suppose that      f : X , Y ,  

is a closed  mapping. Then 

     
      Int Cl f A f Cl A for every subset A  

of X .  

Proof .  Suppose f  is a closed  mapping and 

A  is an arbitrary subset of X .  Then    f Cl A  

is closed  in Y .  Then 

      
      

Int Cl f Cl A f Cl A .  But also 

         
      

Int Cl f A Int Cl f Cl A .  Hence 

     
      Int Cl f A f Cl A .  

Theorem 2.27.  Let      f : X , Y ,  be a

closed  function, and B, C Y.  
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Proof .   1  If U  is an open neighborhood of 

 1f B ,  then there exists a open  

neighborhood V of B  such that 

   1 1  f B f V U. 

 2   If f  is also onto, then if  1f B  and 

 1f C  have disjoint open neighborhoods, so 

have B  andC.  

Proof .  1  Let    V Y f X U .Then 

   c cV Y V f U . Since f  is closed ,  so V  

is a open  set. Since  1 f B U ,  we have 

   1   
 

c c c cV f U f f B B .  Hence, B V ,  

and thus V is a open  neighborhood of B.  

Further      1 1 1          

c
c c cU f f U f V f V .  

This proves that  1 f V U. 

 2  If  1f B  and  1f C  have disjoint open 

neighborhoods M and N , then by  1 ,  we have 

open  neighborhoods U  and V  of B  and C  

respectively such that 

     1 1 

 f B f U Int M and 

     1 1 

 f C f V Int N .  Since M  and  N

are disjoint, so are  Int M  and  Int N ,  hence 

so  1f U  and  1f V  are disjoint as well. It 

follows that U and V are disjoint too as f is 

onto. 

Theorem 2.28.  Prove that a surjective mapping 

     f : X , Y ,  is closed ,  if and only if 

for each subset B  of Y  and each open set U  in 

X  containing  1f B ,  there exists a open  set 

V  in Y  containing B  such that  1 f V U.  

Proof .  Necessity. This follows from  1  of 

Theorem 2.27.    

Sufficiency. Suppose F  is an arbitrary closed 

set in X . Let y  be an arbitrary point in 

 Y f F .  Then 

     1 1      f y X f f F X F  and  X F  

is open in X .  Hence by hypothesis, there exists 

a open  set 
yV  containing y  such that

   1  yf V X F .  This implies that 

     yy V Y f F .  Thus 

       U yY f F V : y Y f F . Hence 

 Y f F ,  being a union of open  sets, is 

open.  Thus its complement  f F  is 

closed.   This shows that f  is closed.  

Theorem 2.29.  Let      f : X , Y ,  be a 

bijection. Then the following are equivalent: 

 a f  is closed.   

 b f  is open.    

 c
1f   is continuous.  

Proof .    a b :   Let U .  Then X U  is 

closed in X .  By  a ,   f X U  is closed  in 

Y .  But            f X U f X f U Y f U . 

Thus  f U  is open  in Y . This shows that  

f  is open.  

   b c :  Let U X. be an open set. Since f  

is open.  So      
1

1


f U f U  is open in 

Y .   Hence 1f  is continuous. 

   c a :   Let A  be an arbitrary closed set in 

X . Then X A  is open in X . Since 
1f  is 

continuous,     
1

1


 f X A  is open  in Y . 

But        
1

1


     f X A f X A Y f A . Thus 

 f A  is closed in Y . This shows that f  is 

closed.  

 Remark 2.30.  A bijection      f : X , Y ,

may be open and closed but neither open nor 

closed.  

2.5. PRE DELTA OPEN FUNCTIONS   
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The purpose of this section is to introduce and 

discuss certain properties and characterizations 

of pre open  functions. 

Definition 2.31.  Let  X ,  and  Y ,  be 

topological spaces. Then a function 

     f : X , Y ,  is said to be pre open  if 

and only if for each 
A ,   f A .  

Theorem 2.32.  Let      f : X , Y ,  and 

     g : Y , Z ,  be any two pre open  

functions. Then the composition function 

      g f : X , Z ,  is a pre open  function. 

Proof .  Let 
U . Then   f U .  Since f  is 

pre open. But then    g f U  as g  is 

pre open. Hence, g f is pre open. 

Theorem 2.33.  Prove that a mapping 

     f : X , Y ,  is pre open  if and only if 

for each x X and for any 
U  such that 

x U ,  there exists 
V  such that  f x V  

and  V f U .  

Proof . Routine. 

Theorem 2.34.  Prove that a mapping 

     f : X , Y ,  is pre open  if and only if 

for each x X  and for any neighborhood  U 

of x  in X , there exists a neighborhood  

V of  f x  in Y  such that  V f U .  

Proof .  Necessity. Let x X  and let U  be a 

neighborhood   of  x.  Then there exists 

W  such that  x W U. Then 

      f x f W f U . But   f W  as f  is 

pre open. Hence  V f W  is a 

neighborhood of  f x  and  V f U .  

Sufficiency. Let 
U . Let x U.  Then U  is a 

neighborhood of x.  So by hypothesis, there 

exists a neighborhood  f x
V   of   f x  such 

that       
f x

f x V f U . It follows at once that 

 f U is a neighborhood  of each of its points. 

Therefore  f U  is open.  Hence f  is 

pre open. 

Theorem 2.35.  Prove that a function 

     f : X , Y ,  is pre open  if and only if 

          f Int A Int f A , for all A X . 

Proof .  Necessity. Let A X . Let  x Int A .  

Then there exists 
xU  such that  xx U A.

So       xf x f U f A  and by hypothesis, 

  xf U .  Hence       f x Int f A .  Thus 

          f Int A Int f A .  

Sufficiency. Let 
U . Then by hypothesis, 

          f Int U Int f U .  Since   Int U U  as 

U  is open.  Also       Int f U f U .  Hence 

      f U Int f U .  Thus  f U  is open  in 

Y . So f   is pre open. 

We remark that the equality does not hold in 

Theorem 2.35  as the following example shows.  

Example 2.36.  Let  1 2 X Y , .  suppose X  is 

antidiscrete and Y  is discrete. Let f Id.,

 1A . Then      1          f Int A Int f A .  

Theorem 2.37.  Prove that a function 

     f : X , Y ,  is pre open  if and only if 

   1 1 

 
      Int f B f Int B ,for all B Y.  

Proof .  Necessity. Let B Y.  Since  

 1


  Int f B  is open  in X  and f  is 

pre open,    1


 
 

f Int f B  is open  in 

Y .  Also we have     1 1 


      

f Int f B f f B  

 B. Hence,     1

 
  
 

f Int f B Int B .  

Therefore    1 1 

 
      Int f B f Int B .   

Sufficiency. Let A X . Then  f A Y.  Hence 

by hypothesis, we obtain 

       1 1 

  
       Int A Int f f A f Int f A .  
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This implies that 

       1

  
         

f Int A f f Int f A Int f A .  

Thus           f Int A Int f A , for all A X . 

Hence, by Theorem 2.35, f  is pre open. 

Theorem 2.38.  Prove that a mapping 

     f : X , Y ,  is pre open  if and only if 

   1 1 

 
     f Cl B Cl f B ,  for every subset B  

of  Y .  

Proof .  Necessity. Let B Y.  Let 

 1

   x f Cl B .  Then    f x Cl B . Let 

U  such that x U.  By hypothesis, 

  f U  and    f x f U . Thus 

   If U B .  Hence  1  IU f B .  Therefore, 

 1


   x Cl f B ,  So we obtain 

   1 1 

 
     f Cl B Cl f B . 

Sufficiency. Let B Y.  Then   Y B Y.   By 

hypothesis,    1 1 

 
       f Cl Y B Cl f Y B .

This implies that 

   1 1 

 
        X Cl f Y B X f Cl Y B . 

Hence 

   1 1 

 
        X Cl X f B f Y Cl Y B . By 

 Theorem 2.7(6) 20 ,  

   1 1 

 
      Int f B f Int B .  Now by 

Theorem 2.37,  it follows that f  is pre open. 

Theorem 2.39.  Let      f : X , Y ,  and 

     g : Y , Z ,   be two mappings such that 

      g f : X , Z ,  is  irresolute.  Then 

 1 If g   is a pre open  injection, then f  is 

 irresolute.  

 2  If f  is a pre open  surjection, then g  is 

 irresolute.  

Proof .  1   Let U .  Then   g U  since 

g  is pre open. Also g f  is  irresolute.  

Therefore, we have    
1

   g f g U . Since 

g  is an injection, so we have : 

       
1 1 1           g f g U f g g U  

    1 1 1     f g g U f U . Consequently  1f U  

is open  in X .  This proves that f   is 

 irresolute.   

 2  Let 
V .  Then    

1

 g f V  since g f  

is  irresolute.  Also f  is pre open,  

   
1 

 
f g f V  is open  in Y . Since f  is 

surjective, we note that    
1  

 
f g f V  

             
1 1 1 1 1 1                  

    
f g f V f f g V f f g V g V .

Hence g  is  irresolute.  

2.6. PRE DELTA CLOSED FUNCTIONS   

In this last section, we introduce and explore 

several properties and characterizations of 

pre closed  functions. 

Definition 2.40.  A function      f : X , Y ,  is 

said to be pre closed  if and only if the 

image set  f A  is closed  for each closed  

subset A  of X .  

Theorem 2.41.  The composition of two 

pre closed  mappings is a 

pre closed  mapping. 

Proof .The straight forward proof is omitted. 

Theorem 2.42.  Prove that a mapping 

     f : X , Y ,  is pre closed  if and only 

if           Cl f A f Cl A  for every subset A  

of X .  

Proof .  Necessity. Suppose f  is a 

pre closed  mapping and A  is an 

arbitrary subset of X .  Then    f Cl A   is 

closed  in Y .  Since       f A f Cl A , we 

obtain           Cl f A f Cl A . 
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Sufficiency. Suppose F  is an arbitrary 

closed  set in X .  By hypothesis, we obtain 

                f F Cl f F f Cl F f F .  Hence 

      f F Cl f F .  Thus  f F  is closed  in 

Y .  It follows that f  is pre closed.  

Theorem 2.43.  Let      f : X , Y ,  be a 

pre closed function, and B,C Y. 

 1  If U  is a open  neighborhood of  1f B ,  

then there exists a open  neighborhood V  of 

B  such that    1 1  f B f V U. 

 2   If f  is also onto, then if  1f B  and 

 1f C   have disjoint open  neighborhoods, 

so have  B and C.  

Proof .   1  Let    V Y f X U .Then 

   c cV Y V f U . Since f  is pre closed ,  

so V  is open.  Since  1 f B U ,  we have 

   1   
 

c c c cV f U f f B B .  Hence, B V ,  

and thus V  is a open  neighborhood of B.  

Further  

     1 1 1          

c
c c cU f f U f V f V .

This proves that  1 f V U. 

 2  If  1f B  and  1f C  have disjoint 

open   neighborhoods M  and N , then by 

 1 ,   we have open  neighborhoods U  and  

V  of B  and C  respectively such that 

     1 1 

 f B f U Int M  and 

     1 1 

 f C f V Int N . Since M  and 

N  are disjoint, so are  Int M  and  Int N , 

and  hence so  1f U   and   1f V  are 

disjoint as well. It follows that U  and  V are 

disjoint too as f   is onto.  

2 44Theorem . .  Prove that a surjective 

mapping    f : X , Y ,    is 

pre closed  if and only if for each subset 

B  of Y  and each open  set U in X 

containing  1f B , there exists a open  set 

V  in Y containing B  such that  1 f V U.  

Proof .Necessity. This follows from  1 of 

Theorem 2.43.   

Sufficiency. Suppose F  is an arbitrary 

closed set in X . Let y   be an arbitrary 

point in  Y f F .   Then 

     1 1      f y X f f F X F  and

 X F  is open  in X. Hence by 

hypothesis, there exists a open set 
yV  

containing y  such that    1  yf V X F .  

This implies that      yy V Y f F .  Thus 

       U yY f F V y Y f F . Hence 

 Y f F , being a union of open  sets is 

open.  Thus its complement  f F  is 

closed.   This shows that f is closed.  

2 45Theorem . .  Let    f : X , Y ,    

be a bijection. Then the following are 

equivalent: 

 1 f  is pre closed.  

 2 f  is pre open. 

 3  
1f  is  irresolute.  

Proof .    1 2 :  Let U . Then X U

is closed in X . By  1 ,   f X U  is 

closed  in Y . But 

           f X U f X f U Y f U .  

Thus  f U  is open  in Y .This shows that 

f  is pre open.  
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   2 3 : Let A X . Since f  is 

pre open, so by Theorem 2.38,  

     1 1 

 
      f Cl f A Cl f f A . It 

implies that           Cl f A f Cl A . 

Thus        
1 1

1 1
 

 

 
       

Cl f A f Cl A , 

for all A X . Then by Theorem 2.8,  it 

follows that 
1f  is  irresolute.   

   3 1 :  Let A  be an arbitrary closed  

set in X . Then X A  is open  in X . Since 

1f  is   irresolute,    
1

1


 f X A  is 

open  in Y . But 

       
1

1


     f X A f X A Y f A . 

Thus  f A  is closed  in Y . This shows 

that f  is pre closed. 
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