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Abstract- Let the finite group G act transi-
tively and non-regularly on a finite set Ω whose
cardinality |Ω| is greater than one. Use N to de-
note the full set of fixed-point-free elements of
G acting on Ω along with the identity element.
Write H to denote the stabilizer of some α ∈ Ω in
G. In the note, it is proved that the subset N is
a subgroup of G if and only if G is a Frobenius
group. It is also proved G = 〈N〉H, where 〈N〉 is
the subgroup of G generated by N .
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I. Introduction

Finite group G is a transitive permutation group act-
ing on a set Ω, where |Ω| > 1. Recall that an element g of
G is a derangement if g acts fixed-point-freely on Ω. Let
N be the subset of G consisting of all derangements to-
gether with the identity, so N is clearly a normal subset
of G, but it need not be a subgroup in general. We refer
to N as the derangement kernel of G. Observe that G
is the union of the derangement kernel N together with
all of point stabilizers, which are conjugate in G, hence
|N | > 1. Recall that a transitive action of G on Ω is said
to be a Frobenius action if every point stabilizer is non-
trivial but the intersection of any two point stabilizers is
trivial. A group G is called a Frobenius group when it
has a Frobenius action on some set Ω whose cardinality
is greater than one. A celebrated theorem of Frobenius
asserts that if G is a Frobenius group, then its derange-
ment kernel N is a proper subgroup of G ([5, Theorem
7.2]), and in that case N is called the Frobenius kernel.
In [6], it is proved that if all elements in N are involu-
tions,then N is an elementary abelian 2-group such that
either G = N or G is a Frobenius group with kernel N .
In this note, we show that if the derangement kernel N
is a proper subgroup, then the action of G on Ω is of
Frobenius. When N is a subgroup, it is easy to prove
G = NH, where H is a point stabilizer in G. In fact,
there are other conditions to guarantee G = NH. For
example, we show that G = NH when G is 2-transitive
on Ω (Proposition 4). Also we show that it is always true

that G = 〈N〉H, where 〈N〉 is the subgroup of G gener-
ated by N (Theorem 3). We even guess that G = NH
whenever G has a transitive action on Ω. However, we
can neither prove the claim nor give a counterexample.
Under only the hypothesis that G acts transitively and
non-regularly on Ω, the subset N is not generally a sub-
group of G. We prove that N is a group if and only if G
is Frobenius group (Theorem 1).

We mention that Frobenius groups paly a prominent
role in the theory of finite groups, they usually act as
either a starting point or a reduced goal (by the mini-
mal counterexample argument) when investigating some
problems of group theory, for example, see [1, 2, 8].

Unless otherwise stated, the notation and terminol-
ogy is standard, as presented in [5].
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II. Results

The following result indeed shows that the derange-
ment kernel N is a group exactly when G is a Frobenius
group or a regular group. It is clear that |G| = |N | = |Ω|
when G is a regular group on Ω.

Theorem 1. Let G be a transitive and non-regular
group acting on Ω with the derangement kernel N , then
|Ω| ≤ |N |. Furthermore, the following statements are
equivalent.

1) The action of G on Ω is Frobenius.

2) The set N is a subgroup of G.

3) The equality |Ω| = |N | holds.

Proof. Write H for CG(α1). Since G acts transitively
on Ω, it follows that |Ω| = n = |G : H| and G = N ∪
CG(α1) ∪ CG(α2) ∪ · · · ∪ CG(αn), then we may deduce
that |G| ≤ |N |+ n(|H| − 1). Thus we get that

|G| ≤ |N |+ n|H| − n = |N |+ |G : H||H| − n,

hence |Ω| = n ≤ |N |, as desired.
Now assume part 1. Then the derangement kernel N

is just the Frobenius kernel, and Frobenius’ theorem ([4,
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Satz V.7.6] or [5, Theorem 7.2]) yields that N is a group,
part 2 follows.

Assuming part 2 we deduce that |Ω| = |αG1 | =

|αCG(α1)N
1 | = |αN1 | = |N : CN (α1)| = |N |, hence
|N | = |Ω|, part 3 follows.

Finally assume part 3. We have |Ω| = |G : H| , so
|G| = |Ω||H|. We are assuming that |N | = |Ω| = n,
and thus |G| = |N ||H|. By the definition of N , we have
G = N ∪

⋃
1≤i≤n CG(αi), so if we write Ci = CG(αi)−1,

we have G = N ∪
⋃

1≤i≤n Ci. Now, |Ci| = |H|−1 and by
assumption, |N | = n, and thus we have |N ||H| = |G| =
|N∪

⋃
1≤i≤n Ci| ≤ |N |+

∑
1≤i≤n |Ci| = |N |+n(|H|−1) =

|N | + |N |(|H| − 1) = |N ||H|. Equality holds, and thus
the union is disjoint. Then CG(αi)∩CG(αj) = 1 when i
and j are different, and thus by definition, the action of
G on Ω is Frobenius. The proof is finished.

The following consequence may be regarded as a
slight improvement of Frattini argument (see [7, The-
orem 2.1.4], for example).

Lemma 2. Let G act transitively on the set Ω where
|Ω| > 1, H = CG(α) for α ∈ Ω and N a subset of G.
Then G = HN if and only if αN = Ω, where αN = {αn |
n ∈ N}.

Proof. If G = HN , then Ω = αG = αHN = αN , as
wanted. For g ∈ G, if αg = β for β ∈ Ω, then since
αN = Ω, there exists some n ∈ N such that αn = β,
thus αgn

−1

= α, so gn−1 ∈ H, hence g ∈ HN , and so
G = HN , as desired.

Theorem 3. Let G be a transitive group acting on Ω
with the derangement kernel N and H = CG(α1). Then
the subgroup 〈N〉 is transitive on Ω and 〈N〉H = G.
Furthermore, if NH is subgroup, then NH = G.

Proof. Since N is a normal subset, it follows that〈N〉 is
a normal subgroup, and thus 〈N〉H is a subgroup that
contains N . Now

⋃
g∈G(〈N〉H)g contains N and all con-

jugates of H, and since G is the union of N and the con-
jugates of H, it follows that

⋃
g∈G(〈N〉H)g = G. But it

is a fact that if the union of all conjugates of some sub-
group of a group is the whole group, then the subgroup
must be the whole group. We have G = 〈N〉H = H〈N〉.
By Lemma 2, all αi are in the 〈N〉-orbit containing α1,
and thus 〈N〉 acts transitively. Finally, suppose NH is
a subgroup. Then NH contains both 〈N〉 and H, so it
contains 〈N〉H = G, and thus NH = G.

Observe that G may be expressible as G = NH even
though N is not a subgroup, as shown in the following
consequence.

Proposition 4. Let G act on the set Ω =
{α1, α2, · · · , αn} with the derangement kernel N and
H = CG(α1), n > 1. If the action is 2-transitive, then
G = NH.

Proof. Let g ∈ G − H and αg1 = αi. Pick 1 6= z ∈ N
and let αz1 = αj . By the 2-transitivity, we know that H
acts transitively on the difference set Ω − {α1}, and so

there exists h ∈ H such that αhj = αi, then αzhg
−1

1 = α1,

which implies zhg−1 ∈ H and so g ∈ HNH. Because
HNH = NHH = NH, it follows g ∈ NH. We therefore
conclude G = NH, as desired.

It is known that Symmetric group Sn and Alternating
group An are 2-transitive when n ≥ 4. Thus they have
the above product form.

For the alternating group A5 of degree 5, we may get
via GAP ([3]) that

N = {(), (1, 5, 4, 3, 2), (1, 4, 2, 5, 3), (1, 3, 5, 2, 4),
(1, 2, 3, 4, 5), (1, 4, 5, 3, 2), (1, 2, 4, 3, 5), (1, 5, 3, 2, 4),
(1, 4, 5, 2, 3), (1, 5, 4, 2, 3), (1, 3, 4, 5, 2), (1, 5, 3, 4, 2),
(1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 2, 4, 5, 3), (1, 5, 2, 3, 4),
(1, 2, 5, 4, 3), (1, 4, 3, 2, 5), (1, 2, 3, 5, 4), (1, 4, 3, 5, 2),
(1, 3, 4, 2, 5), (1, 5, 2, 4, 3), (1, 4, 2, 3, 5), (1, 3, 5, 4, 2),
(1, 2, 5, 3, 4)}, and its subset

{(), (1, 5, 4, 3, 2), (1, 4, 2, 5, 3), (1, 3, 5, 2, 4), (1, 2, 3, 4, 5)}

is actually a right transversal for A4 in A5, thus we
achieve that A5 = A4N = NA4 (as N is a normal sub-
set). As (1, 4, 5, 3, 2) ∗ (1, 5, 4, 3, 2) = (1, 3)(2, 5) 6∈ N , we
see that N is not a group. (The nonabelian simple group
A5 has a proper normal subset N and a nontrivial fac-
torization form A5 = NA4. This is really an interesting
thing! ) For A6, we may also verify via GAP ([3]) that
A6 = A5N = NA5, where N is the derangement kernel
of A5.
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