
 

  
Abstract—The scheduling of processes is of strategic importance 

in many areas of software engineering. Verifying the correctness of 
scheduling is critical to ensure data integrity, process efficiency and 
system security. Therefore a scheduling must often be verified quick-
ly or even in “real time”. In this case it may be inefficient or too re-
source consuming to gather all the data about individual jobs. How-
ever, missing information may prevent the unique identification of 
each job in the scheduling. In this paper we define a framework in 
which we model this information loss and we define methods and 
algorithms to check the correctness of a scheduling with regard to the 
order in which the jobs are executed in the presence of such ambigui-
ties. Given a set of jobs and a specification, which is defined as a set 
of dependencies between the jobs, the task is to check if the order in 
which the jobs are scheduled satisfies the dependencies. We use par-
tial order structures to mathematically model dependencies in the 
specification and in the order of execution of the scheduled jobs. If 
some jobs become indistinguishable due to information loss it is not 
possible to determine all the precedences between jobs and the notion 
of dominance is lost. 

Here we use abstraction mechanisms at the combinatorial level to 
obtain new notions of dominance that enable the comparison of “ap-
proximated” partial orders. Based on these results, methods and algo-
rithms are developed which can be used to test actual schedulings 
with regard to their specifications. 

Keywords—security, scheduling, smart cards, model checking.  

I. INTRODUCTION 
CHEDULERS are software applications of strategic im-
portance. Bugs in schedulers may therefore cause impor-

tant efficiency and security problems. The security and stabili-
ty of IT systems is in particular sensitive to such bugs if sche-
dulers are managing new pieces of software that are integrated 
in open or distributed environments, or used in embedded sys-
tems: in such situations the environment in which the scheduler 
operates is not fully protected and any bug in the scheduler 
becomes a potential security threat. 

Verifying the correct operation of a scheduler in such envi-
ronments poses a number of important problems. In many se-
curity applications the scheduling must be analyzed in “real 
time” as it is not possible to test a scheduling a priori. A check 
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a posteriori is too late to allow for intervention or prevention 
of damages for example in case denial of service attacks. Test-
ing a scheduling in real time requires optimal use of limited 
resources like computational resources, time, and memory. In 
particular one must be able to check a scheduling even in the 
event that not all information about individual jobs is available 
which may prevent the unique identification of a job. This can 
be a direct consequence of how the environment in which the 
scheduler is operating has been setup (e.g. for thread pools), 
but may also be the result of a strategic choice to deal effi-
ciently with the problem given limited resources. In the latter 
case the decision is made to analyze only a part of the informa-
tion that is in principle available right away. 

Here we model this information loss and develop an effi-
cient verification application with the goal to check the order 
in which the jobs of one or more schedulings are to be ex-
ecuted against a specification representing the correct execu-
tion of the jobs. For this purpose we develop a new approach 
abstracting the scheduling process at the combinatorial level. 
This approach complements techniques used in model check-
ing [1, 2, 3] and in particular abstraction/refinement methods 
used in model checking [4] and it can be applied in process 
mining [5, 6, 7]. In particular this approach can address issues 
related to applying semantic model checking [8] in such a con-
text: it is not possible to apply the primitives used in these ap-
proaches to jobs about which limited information is available 
and which may be “legal” individually. Furthermore the ap-
proach avoids inefficient checking routines from analyzing all 
possibilities that could occur after a particular job has been 
executed in order to reach a decision whether to allow its ex-
ecution. This becomes particularly important when high num-
bers of verifications need to be performed: in this case it is 
possible to filter correct and incorrect schedulings already at 
high levels of abstraction and to determine for which schedul-
ings more information must be obtained to verify their correct-
ness. 

We represent a scheduling using a partial order of jobs, 
where the partial order represents the dependencies between 
them: if dependencies are satisfied in the scheduling, we as-
sume that the outcome will be correct. Assuming a partial or-
der to represent such dependencies between jobs is justified: 
while some job B might depend on the execution of a job A, at 
the same time B might be executed completely independently 
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from another job C in the same process (i.e. B can be executed 
before, after, or concurrently with job C and vice versa). 
Moreover, cyclic dependencies must not exist as this would 
result in deadlocks, so dependencies cannot be symmetric. 

We regard jobs as nodes in the partial order, and dependen-
cies between jobs correspond to precedences between nodes. 
Due to the limited information available certain jobs that 
would be distinguishable in principle (given their full specifi-
cations) become indistinguishable as the available information 
does not allow a differentiation between these jobs. A verifica-
tion based on the abstracted partial order may reveal the cor-
rectness or the incorrectness of a scheduling. If indistinguish-
able nodes do not allow to determine correctness or incorrect-
ness, one can zoom in to a lower level of abstraction to solve 
ambiguities and recheck for errors, for example by using an 
iterative checking mechanism. In particular, one can use this 
approach to “zoom in” only on especially critical jobs instead 
of all the jobs. In the following sections, we will develop the 
model to represent the abstracted partial order of jobs and de-
velop an algorithm to test a scheduling with regard to its speci-
fication.  

II. MATHEMATICAL MODEL 
In this section we present the mathematical model that al-

lows us to check a scheduling at different levels of abstraction. 
To do this a partial order model of a scheduling is defined in 
which several nodes may have the same value. An idea is to 
use a structure – first introduced by Gischer [9] and Pratt [10] 
to model concurrent processes – called labeled poset. A la-
beled poset is defined by a poset plus a node-labeling function. 
This function may be non-injective, and so it allows for nodes 
to have the same value. Labeled posets, by definition, contain 
all the information, because they contain not only the values 
but also the nodes labeled with these values, and these nodes 
represent the full specifications of jobs. Since we want to 
model the situation in which these specifications are not avail-
able, we will introduce multipair structures, which accurately 
reflect the available information. We then show how the cor-
rectness of a scheduling can be tested based on these multipair 
structures. 

A. Labeled posets 
First we define labeled posets. Note that in the following we 

restrict ourselves to strict partial orders as the reflexive proper-
ty of a non-strict partial order is not relevant for our purposes. 

  
Definition 1 A labeled poset is defined as a 4-tuple 

M  = (E, X, P, val) where the following holds. 
• E is a set of elements, also called nodes. 
• X is a set of values. 
• P ⊆ E × E  is a partial order over E. 
• val: E → X is a surjective labeling function which as-

signs a value to each element. 
 
 

Like simple posets, a labeled poset can be represented by a 
labeled Hasse diagram, i.e. a Hasse diagram in which ele-
ments are replaced by their corresponding values given by the 
labeling function.  

 
Example 2 The following labeled Hasse diagram 

 

 
 

represents the labeled poset M  = (E, X, P, val) defined below. 
 

• E = {1, 2, 3, 4, 5, 6} 
• X = {A, B, C, D} 
• P = {(1, 2), (2, 5), (1, 5), (5, 6), (2, 6), (1, 6), (1, 3), 

(3, 6), (1, 4)} 
• val(1) = A, val(2) = B, val(3) = C, val(4) = C, val(5) = A, 

val(6) = D 
 

B. Strong and weak dominance 
Consider the labeled poset of example 2. Here value B must 

dominate value D because the unique node B precedes the 
unique node D. Also A must dominate D, because both nodes 
with value A precede the unique node D. However, A and B 
cannot be compared in terms of “must”-dominance, because 
not all nodes A precede the node with value B and vice versa. 
For the same reason, we cannot compare values C and D or 
values A and C. However, one can state that A may dominate 
C, because there exists a node A which dominates a node C, 
and for the same reason C may dominate D. Similarly, one can 
state that A may dominate B and B may dominate A. Below we 
formalize these notions of dominance, respectively called 
strong and weak dominance. 

 
Definition 3 Let M  = (E, X, P, val) be a labeled poset. We 

say that a value a strongly dominates a value b ≠ a, in sym-
bols a  M b, if a and b are in X and for each i, j ∈ E such that 
val(i) = a and val(j) = b it holds that (i, j) ∈ P. 

 
We write a   b instead of a  M b when M  is clear from 

the context. 
 
Example 4 In the labeled poset M of example 2, as said be-

fore, it holds that B   D and A   D. 
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We now verify that the strong dominance relation is itself a 
partial order. 
 
Proposition 5 The strong dominance relation   is a partial  
order. 
 
Proof: The irreflexive property is true by definition. We have 
to prove the transitivity property. Consider generic a, b, c ∈ X 
such that a   b and b   c. We have to prove that a   c. 
Consider generic i, j ∈ E such that val(i) = a and val(j) = c. 
Now we choose a generic k such that val(k) = b. Since a   b 
then it must be (i, k) ∈ P. Moreover, since b   c then it must 
be (k, j) ∈ P. Since P is a partial order, by the transitivity of P, 
it holds that (i, j) ∈ P. Since we have chosen generic i, j, then 
the property holds for every i, j, and so a   c.                       ⊔  
 

From the point of view of “must”-dominance, the strong 
dominance relation contains all information and is a partial 
order. No approximations (like removal of pairs) are required 
to maintain the partial ordering property. 

 
Example 6 Consider the labeled poset M  of example 2. 

The partial order corresponding to its strong dominance rela-
tion can be depicted by the following Hasse diagram. 

 

 
 

After strong dominance, we can similarly define the notion 
of weak dominance. 

 
Definition 7 Let M  = (E, X, P, val) be a labeled poset. We 

say that a value a weakly dominates a value b, in symbols            
a  b, if a and b are in X and there exist i, j ∈ E such that 
val(i) = a, val(j) = b and (i, j) ∈ P. 

 
Again, we write a  w b instead of a  b when M  is clear 

from the context. It can be easily verified that,  unlike strong  
dominance,  the weak dominance relation may not be a partial 
order. 

 
Example 8 Consider the labeled poset M of example 2. It 

holds that A  w B and B  w A, so  w  is not antisymmetric. 
 
Example 9 In the following diagram strong dominance 

(plain arrows) and weak dominance (dotted arrows) are shown 
for labeled poset of example 2. 

 
 

 
 

For readability, we will also write SD(M) instead of  M 
and WD(M) instead of  to represent strong and weak do-
minance relations. Thus, formally, if M  = (E, X, P, val) then 
we define SD(M) = {(a, b) ∈ X × X such that a  M b} and 
WD(M) = {(a, b) ∈ X × X such that a  b}.  
 

C. Relating completeness and incompleteness 
Labeled posets are a good model to represent, in the same 

model: 
 
• the complete information (by nodes and pairs of nodes); 
• the incomplete information (by values); 
• and how these are related (by the non-injective labeling 

function). 
 
However labeled posets contain information that cannot be 

obtained when a real scheduling is observed. Therefore we 
create a new model (multipair structures) that adequately 
represents the available information. In the following we will 
study both labeled posets and multipair structures. Labeled 
posets allows us to define notions, like completeness and cor-
rectness, which cannot be defined using multipair structures. 
Moreover we use labeled posets to formally prove that in many 
cases one can deduce completeness or correctness of a sche-
duling by using multipair structures. 

 

D. Multipair structures and strong dominance 

Let M  = (E, X, P, val) be a labeled poset. As stated pre-
viously, in our context the observed jobs may not be necessari-
ly “distinguishable” as the information that can be obtained 
about individual jobs may be incomplete. To model this fact 
we define a particular poset in which the set of the elements is 
X and a set of pairs is obtained by taking P and replacing 
nodes with corresponding values. If the labeling function val is 
injective (and then val is bijective) this representation is 
equivalent to the original labeled poset. We now model the 
information loss by considering the general case in which the 
labeling function val is not injective. In this case expressivity 
is invariably lost as shown in the following example. 
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Example 10 Consider the following tree-like posets. 

 
These different labeled posets yield the same set of pairs, 

even if we adopt multisets to consider multiple instances of 
values and pairs. In fact both of them produce the multiset of 
nodes [A, B, B, C, D] and the multiset of pairs [(A,B), (A,B), 
(A,C), (A,D), (B,C), (B,D)]. Based on the structural representa-
tions one finds, for example, that in the first poset a node la-
beled by B precedes both C and D which is not true in the 
second poset. 

A structural representation reflecting the “reduced” informa-
tion and in particular the “incomparability” between the values 
B, C, D is given below. 

 

 
It turns out that for our purposes the information about 

strong and weak dominance, together with information about 
the number of indistinguishable jobs and pairs, is sufficient to 
understand (at a certain level of abstraction) whether depen-
dencies may be violated by a scheduling. This information can 
be obtained querying only over the set of pairs. 

 

Definition 11 A multipair structure is a 4-tuple               
(X, φ, Q, ψ) defined as below. 

• X  is a set of values. 
• φ : X → N is a multiplicity function for X. 
• Q ∈ X × X is a set of pairs of values in X. 
• ψ : Q → N is a multiplicity function for Q. 

 

A labeled poset M = (E, X, P, val) can be transformed into a 
multipair structure (X, φ, Q, ψ) by reading the values of pairs 
in P, and then counting values and pairs by the multiplicity 
functions. Formally, the transformation is explained below. 

 

• X is already defined. 
• φ(a) = n if there are n elements i ∈ E s.t. val(i) = a. 
• Q is the weak dominance relation of M, that is Q = 

{(a, b) such that val(i) = a, val(j) = b and (i, j) ∈ P for 
some i,  j}. 

• If there are exactly m pairs (i, j) ∈ P such that val(i) = a 
and val(j) = b then ψ(a, b) = m. 

 

Function φ counts how many times a value appears in the 
labeled poset, and ψ counts how many times a value precedes 
another value. Practically, a multipair structure is easy to im-
plement, for example by using an array for X and φ and a ma-
trix for Q and ψ . 

 

Example 12 Consider again the labeled poset M of example 
2. Following the previous criterion, the corresponding multi-
pair structure (X, φ, Q, ψ)  is constructed as below. 

• X = {A, B, C, D} 
• φ(A) = 2, φ(B) = 1, φ(C) = 2, φ(D) = 1 
• Q = {(A,B), (B,A), (A,A), (A,D), (B,D), (A,C), (C,D)} 
• ψ(A, B) = 1, ψ(B, A) = 1, ψ(A, A) = 1, ψ(A, D) = 2,  

ψ(B, D) = 1, ψ(A, C) = 2, ψ(C, D) = 1 
 

Now we give a new characterization for strong dominance. 
 

Theorem 13 Let M  = (E, X, P, val) be a labeled poset, let 
(X, φ, Q, ψ) be the corresponding multipair structure and let 
a, b ∈ X with a ≠ b. Then a   b if and only if   
ψ(a, b) = φ(a) ⋅ φ(b). 

 

Proof: 
•  “Only if” part (⇒). Suppose that a   b. We calculate  

ψ(a, b). First, we choose an element i such that 
val(i) = a. There are φ(a) choices. Now we choose an 
element j such that val(j) = b and (i, j) ∈ P. Since a b, 
(i, j) ∈ P for all j with val(j) = b. So there are φ(b) 
choices and therefore ψ(a, b) = φ(a) ⋅ φ(b). 

• “If” part (⇐). Consider two elements i′, j′ such that 
val(i′) = a and val(j′) = b. Suppose that (i′, j′) ∉ P. We 
show that in this case ψ(a, b) < φ(a) ⋅ φ(b). First we 
choose an element i such that val(i) = a. There are two 
disjoint alternatives. 

o i ≠ i′, i.e. there are φ(a) − 1 choices for i. Now 
we choose an element j such that val(j) = b and 
(i, j) ∈ P. Trivially at most φ(b) j’s have this 
property. So, if w1 is the total number of 
choices for (i, j) and i ≠ i′, we have 
w1 ≤ (φ(a) - 1) ⋅ φ(b). 

o i = i′. Now we choose j such that val(j) = b and 
(i, j) ∈ P. In this case there are strictly less 
than φ(b) choices for j since we have to ex-
clude j = j′ (which has the value b) since 
(i′, j′) ∉ P. So, if w2 is the number of choices 
for (i, j) and i = i′ we have w2 < φ(b). 
 

Since the two alternatives count disjoint choices for 
(i, j), the total number of choices is given by 
 

ψ(a, b) = w1 + w2 < w1 + φ(b) 
 

≤ (φ(a) - 1) ⋅ φ(b) + φ(b) = φ(a) ⋅ φ(b) 
 

and then 
ψ(a, b) < φ(a) ⋅ φ(b) 

⊔  
For our purposes it is therefore sufficient to work on multi-

pair structures instead of labeled posets. This is important as 
the multipair structures reflect the information about jobs that 
is indeed available at a given level of abstraction. 
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III. APPLICATIONS IN SCHEDULING VERIFICATION 
We can now proceed to discuss how a scheduling can be 

checked for correctness. We will assume that the scheduling is 
observed as a multipair structure and therefore the verification 
algorithm will be based on these structures. To define the no-
tion of correctness and to motivate the verification algorithm 
on multipair structures we use labeled posets as these eliminate 
ambiguities. The formal definitions of specification and sche-
duling are given below. 

 
Definition 14 Given a labeled poset M  = (E, X, P, val), 

called a specification, a scheduling of the specification M is a 
labeled poset S = (E′, X′, P′, val′) such that E′ ⊆ E, and 
val′ = val|E′ . 

 

A. Complete schedulings 
In the following we distinguish between complete and par-

tial schedulings. A complete scheduling is fully specified in 
the sense that it contains all jobs to be executed and all their 
dependencies. In a partial scheduling some jobs or dependen-
cies may not yet be included. The formal definition of com-
plete scheduling is given below. 

 
Definition 15 Let M  = (E, X, P, val) be a specification and 

let S = (E′, X′, P′, val′) be a scheduling of M. Then S is com-
plete if and only if E′ = E (and then X′ = X ∧ val′ = val). 

 
We now define a function to count the nodes labeled with 

the same value. 
 
Definition 16 Let M  = (E, X, P, val) be a labeled poset. 

Given an element a ∈ X then ФM(a) ≡ {i ∈ E | val(i) = a} and 
φM(a) ≡ |ФM(a)|. 

 
We can exploit φ to verify if a scheduling is complete, as 

shown in the following theorem. 
 
Theorem 17 Let M  = (E, X, P, val) be a specification and 

let S = (E′, X′, P′, val′) a scheduling of M. Then S is complete 
w.r.t. M if and only if for each a ∈ X it holds that 
φM(a) = φS(a). 

 
Proof: Before proving the “if and only if” we observe that it 

is easy to verify that for each a ∈ X the following property 
holds.1 

ФS(a) ⊆ ФM(a) (1) 
 

 
1 In fact, consider an element a ∈ X. Since S is a scheduling of M then 

E′ ⊆ E and val′ = val|E′. So, for each j ∈ ФS(a) since j ∈ E′ then j ∈ E and also 

val(j) = val′(j) = a thus j ∈ ФM(a), i.e. ФS(a) ⊆ ФM(a). 

• “Only if” part (⇒). 
We prove equivalently that if there exists a ∈ X such 
that φM(a) ≠ φS(a) then S cannot be complete w.r.t. M. 
Suppose that such a exists. This means that 
ФS(a) ≠ ФM(a). More precisely, since property (1) 
holds, then it can only be ФS(a) ⊂ ФM(a). This means 
that there exists i such that i ∈ ФM(a) but i ∉ ФS(a). 
Since i ∈ ФM(a) then i ∈ E and val(i) = a. Moreover, 
since i ∉ ФS(a) and val(i) = a then it must be i ∉ E′. So 
E ≠ E′ and the scheduling S is not complete. 

• “If” part (⇐). For each a ∈ X, since property (1) holds, 
then φM(a) = φS(a) implies ФS(a) = ФM(a). We already 
know that E′ ⊆ E, so we only need to prove that E ⊆ E′. 
Consider a generic element i ∈ E. Let a = val(i). So 
i ∈ ФM(a) and then i ∈ ФS(a), and this means, by defi-
nition of Ф, that i ∈ E′, so E ⊆ E′ and then E = E′, i.e. S 
is complete. 

⊔  

B. Correct schedulings  
Assume we have a specification, represented by a partial or-

der of jobs, and a complete scheduling, represented in the 
same way. Intuitively this scheduling is correct if it satisfies all 
dependencies in the specification, i.e. if the dependencies of 
the specification are also dependencies in the scheduling. This 
concept is formalized below. 

 
Definition 18 Let M  = (E, X, P, val) be a specification and 

let S = (E, X, P′, val) be a complete scheduling of M. Then S 
is correct with regard to M if and only if P′ ⊇ P. 

 
We also define a function to count the number of indistin-

guishable pairs. 
 
Definition 19 Let M  = (E, X, P, val) be a labeled poset. 

Given two elements a, b ∈ X then ΨM(a, b) ≡ {(i, j) | (i, j) ∈ P 
∧ val(i) = a ∧ val(j) = b} and ψM(a, b) ≡ |ΨM(a, b)|. 

 
The following theorem gives the criteria for checking 

whether a complete scheduling is correct with regard to a spe-
cification. The above stated definition of correctness is not 
applied directly, instead the criteria for strong and weak do-
minance and the ψ  function are used. 

 
Theorem 20 Let M  = (E, X, P, val) be a specification and 

let S = (E, X, P′, val) be a complete scheduling of M. Then the 
following properties hold. 

 
1. If SD(S) ⊇ WD(M) then the scheduling S is correct. 
2. If there exists (a, b) such that  ψS(a, b) < ψM(a, b)  then 
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the scheduling S is not correct. In particular if 
WD(S)  WD(M) then S is not correct. 

3. If SD(S)  SD(M) then the scheduling S is not correct. 
4. Otherwise (i.e. if SD(M) ⊆ SD(S)  WD(M)) it is not 

possible to establish if S is correct at the current level 
of abstraction. 

 
Proof: 
 
1. Consider a generic pair (i, j) ∈ P. This means by defini-

tion of weak dominance that (val(i), val(j)) ∈ WD(M) 
and therefore by hypothesis (val(i), val(j)) ∈ SD(S). By 
definition of strong dominance, for each l, m ∈ E such 
that val(l) = val(i) and val(m) = val(j) it holds that 
(l, m) ∈ P′, and therefore also (i, j) ∈ P′. Since (i, j) ∈ P 
is generic, P′ ⊇ P, i.e. S is correct. 

2. If  ψS(a, b) < ψM(a, b) then ΨS(a, b) ⊂ ΨM(a, b) so 
there exist i, j ∈ E such that (i, j) ∈ ΨM(a, b) but 
(i, j) ∉ ΨS(a, b). Since (i, j) ∈ ΨM(a, b) then (i, j) ∈ P 
and val(i) = a ∧ val(j) = b. Moreover, since 
(i, j) ∉ ΨS(a, b) and val(i) = a ∧ val(j) = b then 
(i, j) ∉ P′. So P′  P and the scheduling S is not correct. 

3. Suppose that SD(S)  SD(M). So there exists             
(a, b) ∈ SD(M) such that (a, b) ∉ SD(S). Since 
(a, b) ∉ SD(S) then there exist i, j ∈ E such that 
val(i) = a ∧ val(j) = b but (i, j) ∉ P′. But, since 
val(i) = a ∧ val(j) = b, the fact that (a, b) ∈ SD(M) im-
plies that (i, j) ∈ P. Since (i, j) ∉ P′ but (i, j) ∈ P, then 
P′  P i.e. S is not correct. 

4. Since SD(S)  WD(M) there exists (a, b) ∈ WD(M)  
such that (a, b) ∉ SD(S). Since (a, b) ∉ SD(S) there ex-
ist i, j ∈ E such that val(i) = a ∧ val(j) = b but (i, j) ∉ P′. 
Now we have to verify if (i, j) ∈ P to know if S can be 
correct. Since SD(M) ⊆ SD(S) and (a, b) ∉ SD(S) then 
(a, b) ∉ SD(M) so there exist i′, j′ ∈ E such that 
val(i′) = a ∧ val(j′) = b but (i′, j′) ∉ P, and then the set 
A = {l, m | val(l) = a ∧ val(m) = b but (l, m) ∉ P} is not 
empty. But, since (a, b) ∈ WD(M) there also exist 
i′′, j′′ ∈ E such that val(i′′) = a ∧ val(j′′) = b and 
(i′′, j′′) ∈ P, so the set B = {l, m | val(l) = a ∧ val(m) = b 
and (l, m) ∈ P} is non-empty as well. Since val(i) = a 
and  val(j) = b then (i, j) must be either in A or in B. In 
the first case S is not correct, and in the second case S 
may be correct. The only way to find out it is to refine 
M and S. 

⊔  
 
 

In the following examples we discuss some cases in which 
the criteria described in theorem 20 can be applied. 

 
Example 21 Consider the specification M and the schedul-

ing S depicted in the following labeled Hasse diagrams. 
 

 
 

The diagrams representing strong and weak dominance of 
M and S are below. 

 

 
 

It is clear that strong dominance of S captures both strong 
and weak dominance of M, so each dependency of M must be 
satisfied by S. Here criterion (1) of theorem 20 is fulfilled, so, 
without making any refinement, we can state that S is correct. 

 
Example 22 Consider the specification M and the schedul-

ing S represented below. 
 

 
 

The diagrams for strong and weak dominance of M and S 
are the following. 
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By looking at the diagrams for strong and weak dominance 
one might get the impression that the scheduling is substantial-
ly correct. Here, the pair counting helps. In fact, one finds that  
ψM(C,D) = 2 and  ψS(C,D) = 1. So criterion (2) of theorem 20 
is fulfilled and this means that S is not correct. In specification 
M the job C must precede the job D in two cases, and so S 
cannot satisfy the corresponding two dependencies because it 
has only one (C, D) pair. 

 
Example 23 Consider the following labeled posets. 
 
 

 
 

The strong/weak dominance diagrams are below. 
 

 
 

From these diagrams we can observe that (A, B) ∈ SD(M) 
but (A, B) ∉ SD(S). So criterion (3) of theorem 20 is fulfilled 
and S is not correct. In fact, in M the job B must be preceded 
by A in all cases, and this is not satisfied by the scheduling S. 

 
Example 24 Consider the following labeled posets. 
 

 
 

The diagrams for strong and weak dominance are depicted 
below. 

 

 
 

In this case, criteria (1), (2) and (3) of theorem are not ful-
filled, and one can erroneously think that S is correct. Also, in 
the scheduling S the value E strongly dominates D, and this 
dominance is only weak in the specification. But consider val-
ues F and D. The value F weakly dominates D in both models 
and ψS(F,D) = ψM(F,D) = 1, so the dependency (F,D) in M 
could be satisfied by the dependency (F,D) of S. Since there 
are two jobs labeled with value F, it is unclear whether the F 
that dominates D in S is the same F which dominates D in M. 
To know it we need to make a refinement, in order to know 
who really F is in those dependencies. In fact, criterion (4) is 
fulfilled. 

 
We can also check the correctness of a partial scheduling by 

applying locally criterion (1) of theorem 20. Below we define 
safe pairs. 

 
Definition 25 Let M  = (E, X, P, val) be a specification and 

let S = (E′, X′, P′, val′) be a scheduling of M. A pair 
(a, b) ∈ X × X is safe in S with regard to M  if and only if 
ΨM(a, b) ⊆ ΨS(a, b). 

 
So a pair (a, b) is safe in a scheduling S of a specification 

M if each dependency (i, j) of M in which i and j are labeled 
respectively with a and b is also a dependency of S. This can 
be used to check at runtime if a request to execute a job b of S 
can be satisfied even if the scheduling S is not fully specified. 
In fact, it suffices to verify if for each job a of S the pair (a, b) 
is safe w.r.t. M. If so, all dependencies are satisfied and b can 
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be executed safely. If not, a lazy approach can be used, i.e. the 
execution of b is suspended until we have more information 
about the dependencies in which b is involved and in the mean 
time we can execute the other safe jobs. 

This approach can also be used to partially check a com-
plete scheduling. For example, if a complete scheduling is in-
correct we can obtain its safe pairs to understand which jobs 
can be still safely executed, and adopting a “lazy” approach to 
manage unsafe jobs. 

As said above, by applying locally criterion (1) of theorem 
20 we can check if a pair is safe using only weak and strong 
dominance plus the function φ. 

 
Theorem 26 Let M  = (E, X, P, val) be a specification and 

let S = (E′, X′, P′, val′) be a scheduling of M. A pair 
(a, b) ∈ X × X is safe if one of the following properties holds. 

 
1. (a, b) ∉ WD(M) 
2. φM(a) = φS(a) ∧ φM(b) = φS(b) ∧ (a, b) ∈ SD(S) 
 
Proof: 
 
1. If (a, b) ∉ WD(M) then there are no pairs (i, j) ∈ P such 

that val(i) = a ∧ val(j) = b. Thus ΨM(a, b) = ∅ ⊆ ΨS(a, b) 
and (a, b) is safe. 

2. First we remember the property (1) cited in the proof of 
theorem 17. So φM(a) = φS(a) ∧ φM(b) = φS(b) implies 
that ФM(a) = ФS(a) ∧ ФM(b) = ФS(b). Consider now a 
generic pair (i, j) ∈  ΨM(a, b). We have to prove that (i, j) 
is also in ΨS(a, b). Since (i, j) ∈ ΨM(a, b) then val(i) = a 
∧ val(j) = b, i.e. i ∈ ФM(a) and j ∈ ФM(b). Then it also 
holds that i ∈ ФS(a) and j ∈ ФS(b). This means that 
i, j ∈ E′ and val′(i) = a ∧ val′(j) = b so, since 
(a, b) ∈ SD(S) then it must be (i, j) ∈ P′. This means that 
(i, j) ∈  ΨS(a, b) and, since we considered generic i, j it 
holds that ΨM(a, b) ⊆ ΨS(a, b), so (a, b) is safe. 

⊔  
 

Example 27 Consider the three labeled posets below. 
 

 
 
 
 
 

Diagrams for strong and weak dominance are below. 
 

 
 

The pair (C, D) is unsafe in the scheduling S. In fact, even if 
C strongly dominates D in S, the scheduling is incomplete and 
there is only one C job. This means that S could execute the 
wrong C job (the one which does not precede D in M) and so 
it could not satisfy the (C, D) dependency of the specification. 
Instead, in S′ the pair (C, D) is safe. This is because in S′ there 
are two C jobs, like in the specification, and since 
(C, D) ∈ SD(S′) then both C jobs dominate B, so the depen-
dency (C, D) of M is surely satisfied. 

 

C. Verification algorithms for multipair structures 
Theorem 20 can be employed to build a verification algo-

rithm for complete schedulings (see fig. 1), while the algorithm 
in figure 2 uses theorem 26 to calculate the set of unsafe pairs. 
Both algorithms have linear complexity w.r.t. the number of  
pairs of the weak dominance. Be M a labeled poset and 
(X, φ, Q, ψ) the corresponding multipair structure. SD(M) can 
be deduced by applying theorem 13 and Q = WD(M) (see the 
construction of multipair structure on page 4). By construction, 
φ(a) = φM(a)  for each a, and ψ(a, b) = ψM(a, b)  for each a, b. 
This implies that multipair structures are sufficient to apply 
theorems 17, 20 and 26, so they can be used instead of labeled 
posets in the corresponding algorithms. 
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IV. A SPECIAL CASE: LABELED CHAINS 
As for normal chains, a labeled chain is a labeled poset 

(E, X, P, val) in which all elements are comparable, that is for 
each i, j ∈ E it holds that i = j or (i, j) ∈ P or (j, i) ∈ P. They 
can be used to represent linear order models, linear schedul-
ings and similar execution models (like straight line programs, 
as we will see in the next section). While a normal chain can 
be represented by a sequence, a labeled chain can be 
represented in the same way but replacing elements with cor-
responding labels. 

 
Example 28 The following sequence 
 

(A, B, C, B, D) 
 

represents the labeled chain M  = (E, X, P, val) defined be-
low. 

 
• E = {1, 2, 3, 4, 5} 
• X = {A, B, C, D} 
• P = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), 

(3, 4), (3, 5), (4, 5)} 
• val(1) = A, val(2) = B, val(3) = C, val(4) = B, val(5) = D 
 
Even though labeled chains are less expressive than generic 

labeled partial orders, information is lost when transforming 
them into multipair structures, as shown in the following ex-
ample. 

 
Example 29 Consider the following labeled chains. 
 

(A, B, B, A) 
(B, A, A, B) 

These two different labeled chains produce the same multi-
pair structure. In fact both of them yield the multiset of values 
[A,A,B,B] and the multiset of pairs [(A,A), (A,B), (A,B), (B,A), 
(B,A), (B,B)]. 

The structural representation (as labeled sequences) con-
tains more information, for example that in the first chain there 
exists a node (labeled with) A which precedes all nodes B. 

 
However, if we restrict to labeled chains, a simpler criterion 

for strong dominance can be given. 
 
Theorem 30 Let M  = (E, X, P, val) be a labeled chain and 

let (X, φ, Q, ψ) be the corresponding multipair structure. Let 
a, b ∈ X with a ≠ b. Then a ≺ b if and only if (a, b) ∈ Q and 
(b, a) ∉ Q. 

Proof: 
• “Only if” part (⇒). Suppose that a ≺ b. Consider gener-

ic i, j such that val(i) = a and val(j) = b. Since a ≺ b 
then (i, j) ∈ P and therefore (a, b) ∈ Q. Since P is anti-
symmetric then (j, i) ∉ P for all i, j with val(i) = a and 
val(j) = b. Therefore (b, a) ∉ Q. 

• “If” part (⇐). Suppose that (a, b) ∈ Q and (b, a) ∉ Q. 
Consider generic i, j such that val(i) = a and val(j) = b. 
Then i ≠ j because val(i) = a ≠ b = val(j). Moreover    
(j, i) ∉ P because otherwise (b, a) ∈ Q. Since the order 
is total then it must be (i, j) ∈ P. As i, j are generic we 
have a ≺ b. 

⊔  
This theorem allows us to determine strong dominance us-

ing only the weak dominance relation Q without referring to φ 
and ψ. 

 
Example 31 Consider the labeled chain M of example 28. 

The partial order corresponding to its strong dominance rela-
tion can be depicted by the following Hasse diagram. 

 

 
 

Figure 1: Algorithm for correctness of complete schedulings 
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In the examples below correctness and safeness criteria are 

applied to verify if a scheduling is correct with respect to a 
labeled chain specification. 

 
Example 32 Let M be a labeled chain specification and let 

S be a complete scheduling of M. Consider the criterion (1) of 
theorem 20 to detect the correctness of S. If SD(S) ⊇ WD(M) 
then WD(M) = SD(M) and this implies that M has no ambigu-
ities. An easy corollary of this proposition is that if a labeled 
chain specification M has ambiguous values then it is imposs-
ible to state that a scheduling of M is correct without refining 
these values. Then if the specification is ambiguous we can 
only detect the incorrectness, otherwise we have to refine it. 
 

Example 33 Let M be the specification represented by the 
sequence (A,B,A,B,B) and let S be a complete scheduling 
represented by the sequence (A,B,B,A,B). In this case it holds 
that  ψS(A,B) = 4 and  ψM(A,B) = 5. Then criterion (2) of theo-
rem 20 is fulfilled and we can conclude that S is not correct. In 
fact, in specification M the job A must precede the job B in 
five cases, and so S cannot satisfy all the corresponding five 
dependencies. 

 
Example 34 Let M be the specification represented by the 

sequence (A,B,C,C,D,B,E) and let S be a complete scheduling 
represented by the sequence (A,B,C,D,C,B,E). Their strong 
dominance relations are represented by the following Hasse 
diagrams. 

 

 
 
 

 
 
 
By observing the diagrams we notice that (C,D) ∈ SD(M) 

but (C,D) ∉ SD(S), then criterion (3) of theorem 20 is fulfilled 
and S is not correct. In fact, in M the job C must precede the 
job D in all cases, and in S this is not true since D may also be 
executed before C. 

 
Example 35 Consider the labeled chains M and S of pre-

vious example. We can reverse that example by considering 
now a specification M′ = (A,B,C,D,C,B,E) and a complete 
scheduling S′ of M′ such that S′ = (A,B,C,C,D,B,E). Now only 
criterion (4) of theorem 20 is fulfilled, so one needs to refine. 

 
Example 36 Let M be a specification, let S be a partial 

scheduling of M and let (a, b) be a pair of values. Since theo-
rem 26 applies, then we can deduce, similarly to what has been 
said in example 32, that if (a, b) ∉ WD(M) or (a, b) ∈ SD(S) 
then values a and b cannot be ambiguous. But in this case we 
can still deduce safe pairs without refining. In fact, since in 
this case we focus on individual pairs, the specification M can 
also have ambiguities. Suppose for example that M corres-
ponds to the sequence (A,B,C,D,E,D,C,F) and S corresponds 
to the sequence (A,B,C,D,D,E,C,F). The Hasse diagrams cor-
responding to their strong dominance relations are depicted 
below. 

 
 

 
 

Applying the theorem 26 we can state that pairs (A, B), 
(B, F) and (A, F) are safe pairs. 

 
Figure 2: Algorithm to find unsafe pairs 
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V. A CASE STUDY: A SMART CARD INTERFACE SYSTEM 
The Smartcards (SCs) are increasingly used for security ap-

plications like authentication and digital signature [11]. One of 
the significant roadblocks for SC use is SC interoperability: 
currently users are not able to easily connect SCs with SC ap-
plications independently of the type and manufacturer of the 
SC and application software. One solution would be a middle-
ware that is able to handle a large variety of SCs and to con-
nect them with various applications. Here we show how some 
of the methods developed in this work can be applied in such 
an environment. 

Suppose we have one or more SCs inserted into SC readers 
and connected to several applications via a middleware (see 
figure 3) [12, 13, 14, 15]. We assume that on each SC one or 
more straight line programs (SLPs) can be executed for exam-
ple to digitally sign a document. For the SLPs we use the nota-
tion SLPn(m)where the number n identifies the program and 
the number m identifies the smart card in which the program 
has to be executed. Such system usually uses a thread pool 
approach, placing the instructions of straight line programs in 
a queue, and a pool of threads executes them. The threads use 
a special middleware to get a standard interface with the smart 
cards. The structure of the system is depicted in figure 3. 

Consider a generic set of SLPs (see figure 4). At the high-
level process layer one can univocally identify an instruction 
as the sending application, the receiving SC and the order of 
commands are specified. Suppose now that we can observe the 
actual scheduling only at the middleware level i.e. in the thread 
pool. Here the association between a command in the thread 
and the sending application is broken, only the receiving 
smartcard is specified. Further the threads are essentially 
“anonymous” and only by evaluating the command itself it is 
possible to obtain some information about it. However doing 
this is costly and therefore we assume for the sake of this ex-
ample that the limited information characterizing a command 
that can be efficiently obtained is limited to an element in  

 
{A,B,C,D,E,F,G,H,L}. Figure 4 shows two SLPs to be ex-
ecuted on two different smartcards where the limited informa-
tion available is listed instead of the command. Due to errors 
or during an attack threads may be relabeled with two effects: 
commands are executed in the wrong order and/or on the 
wrong SC. Therefore the only information one can rely on to 
verify the scheduling is the one letter characterization of the 
command. As a consequence certain commands may have be-
come indistinguishable. The applications of our model to this 
situation is illustrated in the following examples. 
 
Example 37 Consider the SLP of fig. 4(a) which, at process 
level, corresponds to the following chain: 

 
(SLP1.1_A, SLP1.2_B, SLP1.3_H, SLP1.4_C,  

SLP1.5_B, SLP1.6_D) 
 

This chain could also be regarded as the full specification of 
a correct scheduling which, if executed as described, ensures a 
correct outcome. 

 
At middleware level, the high level information is lost, so 

the program number and the instruction number are not availa-
ble anymore. We obtain the following labeled chain: 

 
(A, B, H, C, B, D) 

 
From this chain we can get the multipair structure 

(X, φ, Q, ψ) given by: 

 
Figure 3: Smartcard interface system 

 

 
Figure 4: Two straight line programs with limited  

information about each job. 

 
Figure 5: Labeled poset corresponding to  

the SLPs in figure 4 
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• X = {A,B,C,D,H} 
 { 2 if x = B 

1 if x ∈ X \{B} • φ(x) = 
 
• Q  = {(A,B), (A,H), (A,C), (A,D), (B,H), (B,C), 

(B,B), (B,D), (H,C), (H,B), (H,D), (C,B), 
(C,D)} 

 { 
2 if (x, y) ∈ {(A,B), (B,D)} 
1 if (x, y) ∈ Q \ {(A,B), (B,D)} • ψ(x, y) = 

 
 

Applying theorem 30 to Q we find that the strong domin-
ance relation comprises the following pairs: 
 

≺= {(A,B), (A,H), (A,C), (A,D), (B,D), (H,C), 
(H,D), (C,D)}. 

 
B and H as well as B and C are incomparable. The Hasse 

diagram with multiplicities (from φ) corresponding to the 
strong dominance relation is depicted below. 

 

 
 
 

Example 38 Suppose that we have two SCs, and consider 
now both the SLPs shown in figure 4 which, at middleware 
level, correspond to the labeled poset in figure 5. The cor-
responding multipair structure (X, φ, Q, ψ) is given by: 

 
• X = {A,B,C,D,E,F,G,H,L} 
 { 2 if x ∈ {A,B,C} 

1 otherwise. • φ(x) = 
 
• Q  and ψ are represented by the following matrix. 

 
 A B C D E F G H L 

A  2 2 1 1 1 1 1 1 
B  1 1 2    1  
C  1  1 1     
D          
E          
F   1  1  1  1 
G   1  1     
H  1 1 1      
L   1  1  1   

 

 
 
 

From this, applying theorem 13, we obtain the strong do-
minance relation: 

 
≺= {(B,D), (H,D), (F,L), (F,G), (F,E),  

(L,G), (L,E), (G,E)} 
 

We can represent this relation by the following Hasse di-
agram with multiplicities. 

 
 
In this examples we can apply the algorithm described in 

the previous section to verify the correctness of schedulings 
either for both smartcard together or for each individual 
smartcard. By observing and comparing a complete (partial) 
scheduling of jobs with this abstracted specification based 
on theorems 20 and 26 a scheduling can be checked against 
this specification. 

 

VI. CONCLUSIONS 
In this work we have developed methods and algorithms to 

describe and verify schedulings in the presence of undistin-
guishable jobs due to information loss. We discussed how do-
minance information in an approximated partial order of jobs 
can be obtained by counting indistinguishable nodes and pairs. 
This dominance information has been used to check the cor-
rectness of schedulings at a high level of abstraction. 
These methods can also be applied iteratively in order to verify 
the correctness of a scheduling without obtaining the full spe-
cification of each job. The efficiency of these algorithms in-
creases with the ratio of the cardinalities of the strong domin-
ance and weak dominance relations. Methods to increase this 
ratio will be developed for the specific applicative contexts 
(e.g. smartcards). In future work the verification problem dis-
cussed here w.r.t. to the order of jobs will be extended to take 
into account the potential replication of jobs or the introduc-
tion of jobs into the scheduling that do not exist in the specifi-
cation. Further one can consider specific contexts where one 
can exploit the characteristics of particular partial order topol-
ogies (e.g. tree-like orders) to increase the efficiency of the 
verification algorithms. 
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