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Abstract—This paper demonstrates that for a given random
process, having a canonical form, there exists a dynamical
system equivalent in the sense that its output has the same
covariance function. It is shown that the dynamical approach is
more effective for simulating a Markovian and non-Markovian
random processes, computationally is less demanding, especially
with increasing of the dimension of simulated processes. Some
numerical examples and experiments are presented to show
the advantages of the proposed method for simulating random
processes as well as for solving the filtering problems.

Index Terms—Canonical representation, data assimilation,
dynamical system, Markovian and non-Markovian processes,
statistical simulation, stochastic process.

I. I NTRODUCTION

It is well known that generating pseudo random object,
process ... is one of the key issues in mathematical-statistical
modeling of complex systems. Mathematical-statistical mod-
eling plays an important role in almost every area of sci-
ence and technology, especially in the field of experimental
research and development. A straightforward experiment on
complex stochastic systems is the biggest drain on time and
resources, too expensive; or, as in the case of meteorology
and oceanography modeling ... physical experiments may be
simply impossible [18]. That is why in practice, a more popu-
lar method to study complex systems is simulation. Statistical
simulation using repeated random sampling to determine the
properties of some phenomenon, is hence a very useful and
efficient tool to test and select alternatives based on some
criteria, to analyze and interpret data from simulated results,
to understand behavior prediction of the underlying systems
...

This paper addresses the problem of construction of models
for random processes (RP), with the objective to well approx-
imate their covariance functions (CovFs), to better generate
their samples or to produce the estimates of high quality
on the basis of available observations. We will restrict our
attention to the class of RPs having CovF with separable
variables (for details, see Section II). Note that this class of
RPs, in some sense, is equivalent to the class of RPs which can
be represented in the canonical form (CF) [17]. Namely, let
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ζ(t) be anp-dimensional zero-mean random vector process.
Given its CovFKζ(t, τ), we are interested in solving two
following problems : The first is to generate a zero-mean
RP ζa(t) whose CovF matches the givenKζ(t, τ), either
exactly or approximately. The second quantity of interest is
a low-rank approximation to the covariance. That is, one is
interested in computing, for a given number of components,
such representation that fits best the covarianceKζ(t, τ).
As will become clear in the future, the proposed algorithm
(called Dynamical Systems - DS) allows to obtain a recursive
procedure for simulating different RPs such as Markovian
or non-Markovian, stationary or non-stationary, discrete or
continuous ... Compared to the CF, the DS approach achieves
a more significant speedup and requires less memory. As in
practice, only a limited number of components of CF can be
used, it will be shown that the DS is capable of producing
samples more close to the ”true” ones, compared to that
obtained from the CF. Moreover, the DS approach is easy to
apply to the problem of filter’ design with correlated noises
and appears to be more efficient in terms of Root Mean Square
(RMS) error.

The paper is organized as follows. In Section II the CF
theory is presented briefly. In fact the CF theory is closely
related to differential eigenvalue/eigenvector problems. To
avoid solving this type of problems, one of practical widely
used algorithms for computing the coefficients and coordinate
functions of the CF based onLU (lower upper) factorization
is given in this section (see [17]). Section III summarizes
the procedures for construction of DSs for Markov and non-
Markov RPs conditioned that their CovFs are separable and
known. Computational complexity of two approaches CF and
DS is clearly seen from examining simple numerical examples
in Section IV. The performances of CF and DS approaches
are compared in Section V by simulation studies. Here two
particular problems, one is a simulation of samples for an
RP, another is related to filtering problem, are considered.
It is shown that applying the algorithms CF and DS for
solving these two problems offers the superior performance
of the DS approach with respect to the CF approach. As
potential applications of the DS approach, the time series
prediction problem as well as data assimilation in very high
dimensional oceanic models are also exposed here. It is worth
of mentioning that due to different types of approximations,
non-linearities of system dynamics, model reduction ... the
residual sequence (RS) in a sub-optimal filter forms a time-
correlated process and an efficient whitening process can be
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performed successfullyby modeling the RS as a Markovian
or non-Markovian. The conclusions are given in Section VI.

II. CANONICAL FORM OF RANDOM PROCESS

A. Eigen-structure of covariance and canonical form

In this paper, otherwise stated, all random variables are
assumed to have zero mean value. For simplicity, let(Ω, A, P )
be some probability space,L2 = L2(Ω, A, P ) be a Hilbert
space of real variables induced by the inner product< ., . >,
i.e. if ζ ∈ L2 thenEζ2 <∞ and

< ζ, η >= E(ζ, η), ∀ζ, η ∈ L2.

Consequently, the distance between two random variablesζ
andη is

d(ζ, η) = [E(ζ − η)2]1/2

We have thenζ = η implies thatζ andη may be different in
a set of probability 0.

Let ζ(t) be a process withE[ζ2(t)] <∞. For eacht, ζ(t) ∈
L2. Parametrically,ζ(t) is therefore regarded as a ”curve” in
L2. This curve is continuous att0 if

limt→t0E[ζ(t)− ζ(t0)]
2 = 0

The RPs satisfying this condition for allt ∈ [0, T ] are said to
be continuous in the quadratic mean. Consider the collection
of real-valued RPsζ(t) for which

∫ T

0
E[ζ2(t)]dt <∞.

Stochastic processes in this set are verified to constitute a
linear vector space denoted asL2[0, T ]. Define the inner
product in this space as

< ζ(t), η(t) >L= E[< ζ(t), η(t) >t], < ζ(t), η(t) >t:=
∫ T

0
ζ(t)η(t)dt

One of the most interesting results of the theory of RPs
is that the normed vector space for processes previously
defined is separable. Consequently, there exists a complete
(and, by assumption, orthonormal) setϕi(t), i = 1, 2, ...
of deterministic (non-random) functions which constitutes a
basis. A process in this space can be represented as

ζ(t) =

∞
∑

k=1

ξkϕk(t), ξk =< ζ(t), ϕk(t) >t . (1)

More precisely the following result holds
Lemma 1: (Karhunen-Lòeve theorem [14]) A measurable

continuous in quadratic mean RP defined over a probability
space (Ω, A, P ) can be represented in the form (1) (for
Eζ(t) = 0). In (1) ξk is a sequence of uncorrelated random
variables,E(ξ2k) = λk, whereλk andϕk(t) are the eigenvalue
and eigenvector of the CovFKζ(t, τ),

∫

[0,T ]

Kζ(t, τ)ϕk(τ)dτ = λkϕk(t),

Kζ(t, τ) = E[ζ(t)ζ(τ)] =
∑

k

λkϕk(t)ϕk(τ). (2)

Return to the definition of the CF for the RPζ(t). According
to [17], canonical form ofζ(t) is called any representation

for ζ(t) in the form of its mathematical expectation and the
sum of mutually uncorrelated elementary random processes
Yk(t) = vkxk(t) where vk is a random variable,xk(t) is a
deterministic function, i.e.

ζ(t) = ζ̄(t) +

n
∑

k=1

vkxk(t), ζ̄(t) = E[ζ(t)] (3)

In (3) vk are the coefficients of CF,xk(t) - coordinate
functions. Thus then-truncated approximation of (1)ζn(t) =
∑n

k=1 ξkϕk(t) is an CF forζ(t).
Representation of the RP in the form of CF is a very

convenient method for performing different operations with
random functions, especially for linear random functions. In
the CF only its coefficients are random variables. The depen-
dence of RP on temporal variablet is expressed only through
the coordinate functionsxk(t) which are deterministic. As a
consequence, performing different operations like differentia-
tion, integration ... reduces to corresponding operations with
deterministic coordinate functions. The fact that the members
of the CF are uncorrelated considerably simplifies the formulas
for correlation functions of considered RP. However the CF,
as will be shown later, is a less efficient tool for generating
realizations of RP as well as for estimating the RP compared
to the dynamical systems-based method.

B. One practical method for construction of canonical form

Lemma 1 gives us an overview of how the RP can be
represented through eigenvalues and eigenvectors of its covari-
ance matrix. Since computing eigenvalues and eigenvectors is
time and memory consuming, another, computationally more
attractive methods, are proposed for practical applications of
the CF.

Let {vk} be a set of uncorrelated random variables,

E(vi) = 0, E(vivj) = σ2
i δij (4)

whereδij be the Kronecker symbol. Suppose we would like
to approximate the processζ(t) by

ζ(t) ≈ ζn(t) ≈
n
∑

k=1

vkxk(t) (5)

By minimizing the mean square distance

J(x) = E[ζ(t)−

n
∑

k=1

vkxk(t)]
2 → minx1,...,xn

(6)

one obtains
x0k(t) = E[ζ(t)vk]/σ

2
k (7)

It remains to determine the variablesvk. Generally speaking,
vk should be such that the sum (5) must be convergent as
n → ∞ (see Lemma 1 forξk). To obtain a more attractive
algorithm, let vn1 := (v1, ..., vn)

T , A = |aij |
n
i,j=1, yn1 :=

(ζ(t1), ..., ζ(tn))
T . Then we want to findvn1 as a function

of yn1 ,
vn1 = Ayn1 (8)

To satisfy (4), the coefficientsaij must be determined as a
solution of the system
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AK(n)AT = D,D := diag(σ1
2 , ..., σ

n
2 ), (9)

whereKζ(n) := |Kζ(ti, tj)|
n
i,j=1. It is seen, for example,

Eq. (9) is satisfied if the columns ofA are the eigenvectors of
Kζ(n) and σ2

k, k = 1, ... are the eigenvalues ofKζ(n). One
great disadvantage of this choice is that the system (9) must
be solved each time when we want to involve more values of
ζ to construct the CF. A recursive algorithm can be obtained
by applying the LDU (Low-Diagonal-Upper) algorithm [6]. In
this case, the matrixA is assumed to be, fori ≤ j,

aii = 1, aij = 0, j > i (10)

The elementsaij , j < i are defined now from (9). We have
then

v1 = ζ1, vi =

i−1
∑

j=1

aijζj + ζi, i = 2, 3, ... (11)

σ2
k =

k
∑

i,j=1

akiakjKζ(ti, tj), (12)

x0k(t) =
1

σ2
k

k
∑

j=1

akjKζ(t, tj),

k
∑

j=1

akjx
0
l (tj) = δkl. (13)

The algorithm (10)-(13) produces the processζn(t) which
is the same asζ(t) only at t = ti, i = 1, ..., n (in the sense
of their covariance structure). Thus in spite of the fact that
ζn(t) =

∑n
k=1 vkx

0
k(t) is not exactly the CF forζ(t), this

method, without requiring to solve an eigenvalue problem,
allows to approximate the initial process, when needed, to
approximate the processζ(t) at other points by different tech-
niques like interpolation theory (based on different coordinate
functions xk(t) such as orthogonal polynomial, splines ...),
variational-difference method ...[5]-[15]. This method is of
importance for the problem of order reduction of dynamical
systems and in some sense is closely related to the Principal
Components Analysis (or Empirical Orthogonal Function in
geodynamics, [12]). The latter creates a new set of orthogonal
variables that contain the same information as the original set.
It rotates the axes of variation to give a new set of orthogonal
axes, ordered so that they summarize decreasing proportions of
the variance (see also the Singular Value Decomposition which
can be thought of as decomposing a matrix into a weighted,
ordered sum of separable matrices [6]).

From (10)-(13) one can prove
Lemma 2: [17] Consider the RPζ(t). Then the optimal in

mean square CFζ0(t) is given by

v1 = ζ1, σ
2
1 = Kζ(t1, t1), x

0
1(t) =

1

σ2
1

Kζ(t, t1),

vk = ζk −

k−1
∑

j=1

vjx
0
j (tk),

σ2
k = Kζ(tk, tk)−

k−1
∑

j=1

σ2
j [x

0
j (tk)]

2,

x0k(t) =
1

σ2
k

[Kζ(t, tk)−

k−1
∑

j=1

σ2
jx

0
j (t)x

0
j (tk)],

k = 2, 3, ... (14)

with the mean square error

P (t) = E[ζ(t)−

n
∑

k=1

vkx
0
k(t)]

2 = Kζ(t, t)−

n
∑

k=1

σ2
k[x

0
k(t)]

2

(15)

C. Application of a canonical form for a random process in
control systems

In the control systems engineering, the following class of
RPs is frequently encountered

ζ(t) =

n
∑

k=1

ξkfk(t) (16)

herefk(t) are known deterministic functions,ξk are random
variables. Consideringξk, k = 1, 2, ... as a sequence of
zero mean random variables, applying Lemma 2 yields the
representation forξk in the form of a linear combination of
uncorrelated variablesvk,

ξk =

k
∑

j=1

akjvj . (17)

Substituting (17) into (16) gives the CF forζ(t)

ζ(t) =
n
∑

k=1

vkxk(t), xk(t) =
n
∑

j=k

ajkfj(t). (18)

Note that the representation (16) is widely used to approxi-
mate the RP by a linear combination of known functions with
random coefficients (regression models). Many applications
with this class of RPs can be found in [11]-[13].

D. Canonical form and random process with separable vari-
ables

The fact that the RPζ(t) has a CF implies that its CovF
has the following form

Kζ(t, τ) = E[
∑

i,j

vivjxi(t)xj(τ)] =

n
∑

i=1

σ2
i xi(t)xj(τ) (19)

With the notationsKi(t) = xi(t),Ki(τ) = σ2
i xi(τ) it

implies

Kζ(t, τ) =

n
∑

i=1

Ki(t)Ki(τ) (20)

Thus the CovFKζ(t, τ) as a function oft andτ is a function
of separable variables. The RPs with CovF of the form (20) is
investigated in [16]. We shall call (20) an CovF with separable
variables (Cov-SV). Thus when the RPζ(t) can be represented
in the CF, it has the CovF belonging to the class of CovF-SVs.
We note that all the results related to the CFs, CovFs of the
scalar RPs can be extended to the vector RPs [17]. General
conditions related to the class of discontinuous CovFsKζ(t, τ)
can be found in [17], [5].
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III . DYNAMICAL SYSTEM (DS) THEORY FOR RANDOM
PROCESSES WITHCOVF-SV

It turns out that the RPζ(t) having an CF, can be generated
as an output of some DS. This fact is shown in this section.
Parallelly a numerical procedure for determining all parame-
ters of the corresponding DS will be obtained which allows
to efficiently generate RPs considered in Section II based on
the results of [16]. We note that the DS representation exists
in the discrete and continuous form. The discrete DS yields
the RP having the same CovF asKζ(t, τ) at the desired
discrete instantst = ti, i = 1, ..., n whereas the continuous
DS produces the RP withKζ(t, τ) at all time-instantst. This
method can serve as an efficient tool for simulating samples
of the considered RP as well as for solving the estimation
problems with correlated noises as studied in [7].

A. DS representation for Gauss-Markovian RP

Theorem 1:(Discrete case) [16]. Let{w(1)
i } be an n1-

dimensional RP with zero mean and CF

Q1(i, j) = K
(1)
1 (i)P

(1)
1 (j) (21)

whereK(1)
1 (i) is non-singular. Then the condition (21) is

necessary and sufficient for{w(1)
i } to be generated as an

output of the DS described by the difference equation

w
(1)
i+1 = C

(1)
i w

(1)
i + w

(10)
i (22)

where{w(10)
i } is a white RP uncorrelated withw(1)

0 such
that

E(w
(10))
i = 0, E[w

(10)
i (w

(10)
i )T ] = Q10(i)δij (23)

For a given (21), the fundamental matrixC(1)
i in (23) and

the covariance matrixQ10(i) are determined by

C
(1)
i = K

(1)
1 (i+ 1)[K

(1)
1 (i)]−1 (24)

Q10(i) = K
(1)
1 (i+ 1){P

(1)
1 (i+ 1)[(K

(1),T
1 (i+ 1)]−1 −

P
(1)
1 (i)[K

(1),T
1 (i+ 1)]−1}K

(1),T
1 (i+ 1) (25)

whereK(1)
1 (0) = I - the unit matrix.

Theorem 2:(Continuous case [13]) Letw1(t) be ann1-
dimentional RP with zero mean and CovF

Q1(t, τ) = K
(1)
1 (t)P

(1)
1 (τ) (26)

whereK(1)
1 (t), P

(1)
1 (t) are(n1 × n1) matrices having contin-

uous derivatives,K(1)
1 (t) is non-singular,K(1)

1 (0) = I. Then
(26) is a necessary and sufficient condition forw1(t) to be
represented as

ẇ1(t) = C1(t)w1(t) + w10(t) (27)

wherew10(t) is a white RP unccorelated withw1(0) such
that

E[w10(t)] = 0, E[w10(t)[w
T
10(τ)] = Q10(t)δ(t− τ) (28)

δ(t− τ) is a Diract function. ForQ1(t, τ) of the form (26),

C1(t) = [
d

dt
K

(1)
1 (t)][K

(1)
1 (t)]−1 (29)

Q10(t) = K
(1)
1 (t)

d

dt
[P

(1)
1 (t)(K

(1),T
1 (t))−1]K

(1),T
1 (t) (30)

Comment 3.1. The conditionK(1)
1 (0) = I can be removed.

B. DS representation for a non-Markovian RP

Theorem 3:(Discrete case, [16]) Letζi := w2
i be ann2-

dimensional RP with zero mean and covariance matrix

Kζ(i, j) = Q2(i, j) :=

2
∑

l=1

K
(2)
l (i)P

(2)
l (j) (31)

whereK(2)
1 (i), P

(2)
1 (i) are (n2 × n2) matrices,K(2)

1 (i) is
non-singular;K(2)

2 (i), P
(2)
2 (i) - (n2×n1) matrices. Letw(1)

i be
an output of the DS (22) which hasK(1)

1 (i), P
(1)
1 (i) satisfying

the relationship

K
(2)
2 (i)P

(1)
1 (i) = P

(2),T
2 (i)K

(1),T
1 (i) (32)

Then (31) is necessary and together with (32) are sufficient
for w(2)

i to be presented as

w
(2)
i+1 = C

(2)
i w

(2)
i +D

(2)
i w

(1)
i + w

(20)
i (33)

where it is supposed that

E[w
(20)
i ] = 0, E[w

(20)
i w

(20),T
j ] = Q20(i)δij (34)

C
(2)
i , D

(2)
i are the matrices of dimensions(n2 × n2) and

(n2 × n1) respectively,w(2)
0 is a random vector such that

E[w
(1)
0 w

(2),T
0 ] = 0, E[w

(20)
i w

(2),T
0 ] = 0,

E[w
(20)
i w

(2),T
0 ] = 0, E[w

(20)
i w

(1),T
0 ] = 0

E[w
(k0)
i w

(l0),T
j ] =W

(i),T
kl δij ,K

(2)
1 (0) = I,K

(2)
2 (0) = 0. (35)

For the given (31) and (32), the matricesC(2)
i , C

(1)
i , D

(2)
i

and the RPsw(10)
i , w

(20)
i are determined by

C
(2)
i = K

(2)
1 (i+ 1)[K

(2)
1 (i)]−1,

D
(2)
i = −C

(2)
1 K

(2)
2 (i)[K

(1)
1 (i)]−1 +K

(2)
2 (i+ 1)[K

(1)
1 (i)]−1,

C
(1)
i = K

(1)
1 (i+ 1)[K

(1)
1 (i)]−1,

Q20(i) = K
(2)
1 (i+ 1){P

(2)
1 (i+ 1)[(K

(2),T
1 (i+ 1)]−1 −

P
(2)
1 (i)[K

(2),T
1 (i+ 1)]−1}K

(2),T
1 (i+ 1)

Q10(i) = K
(1)
1 (i+ 1){P

(1)
1 (i+ 1)[(K

(1),T
1 (i+ 1)]−1 −

P
(1)
1 (i)[K

(1),T
1 (i+ 1)]−1}K

(1),T
1 (i+ 1)

W11(i) =WT
11(i) =

K
(2)
1 (i+ 1){P

(1)
1 (i+ 1)[(K

(1),T
1 (i+ 1)]−1 −

P
(1)
1 (i)[K

(1),T
1 (i+ 1)]−1}K

(1),T
1 (i+ 1) (36)

The similar results can be obtained for the continuous RPs
and the reader is referred to [16] for more details.

Comment 3.2As shown in [16],
(i) The conditions in (35) are not the constraints for

Kζ(i, j).
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(ii) The case whenK(2)
1 (i) is singular can be overcome

by introducing two matricesK(2)
01 (i), P

(2)
01 (i) of dimensions

(n2 × n2), with K
(2)
01 (i) being non-singular. Then one can

write

Q2(i, j) =

2
∑

l=1

K
(2)
0l (i)P

(2)
0l (i)

K
(2)
02 (i) = [−K

(2)
01 (i),K

(2)
1 (i),K

(2)
2 (i)]

P
(2)
02 (i) = [P

(2),T
01 (i), P

(2),T
1 (i), P

(2),T
2 (i)] (37)

By this way one can construct the DS forζ(t). We note
the interesting fact that from (37) it is trueR[P (2),T

02 (i)] ⊂

R[K
(2),T
02 (i)], ∀i which is equivalent to the requirement (32)

whereR[A] denotes a linear space spanned by the columns of
the matrix A.

(iii) Let

Kζ(i, j) = Q2(i, j) =

N
∑

l=1

K
(N)
l (i)P

(N)
l (j) (38)

(compared (38) with (20)), where for simplicityK(N)
1 is non-

singular. Putting

K
(2)
1 (i) = K

(N)
1 (i), P

(2)
1 (i) = P

(N)
1 (i),

K
(2)
2 (i) = [K

(N)
2 (i), ...,K

(N)
N (i)],

P
(2)
2 (i) = [P

(N),T
2 (i), ..., P

(N),T
N (i)],

we obtain again the DS (31) or (33) for the RPζ(t).

IV. COMPARISON BETWEENCF AND DS APPROACHES:
EXAMPLES

A. Stationary process

1) Application of Lemma 1:Consider the RP with zero
mean and CovF

Kζ(t, τ) = Kζ(t− τ) = c2e−β|t−τ |, t, τ ∈ [0, T ] (39)

Generally speaking, it is impossible to find analytically
the system of eigenvalues{λk} and eigenvectors{xk(t)} of
Kζ(t, τ). However, in this particular case one can prove that
[17]

ζ(t) =
∑

k

vkxk(t),

xk(t) =
2

T + λk
sin[ωk(t−

T

2
) +

kπ

2
],

σ2
k =

c2

2
λk(T + λk), λk = c2

2β

β2 + ω2
k

, (40)

whereωk are thepositive roots of the equation,tanωT =
− 2βω

β2−ω2 . Thus onecan simulate the realizations forζ(t) using
the formula (40) subject tovk having zero mean and variance
σ2
k.

2) Application of Lemma 2:Suppose it is impossible to
obtain the system of eigenvalues and eigenvectors ofKζ(t, τ).
To construct a model forζ(t) to generate its samples, let us
follow Lemma 2 to obtainζa(t) whose CovF matches exactly
the CovF ofζ(t) at the pointstk = (k − 1)∆t, k = 1, ..., n.
For ρ := e−β∆t we have

ζa(t) =
n
∑

k=1

vkx
0
k(t),

σ2
1 = c2, x01(t) = e−β|t|,

σ2
2 = c2(1− ρ2), x02(t) =

1

1− ρ2
[e−β|t−∆t| − ρe−β|t|],

σ2
3 = c2 −

2
∑

k=1

σ2
k[x

0
k(t3)]

2,

x03(t) =
1

σ2
3

[e−β|t−2∆t| −
2

∑

k=1

σ2
kx

0
k(t)x

0
k(t3)

2],

x01(t3) = e−2β∆t = ρ2,

x02(t3) =
1

1− ρ2
[e−β∆t − ρe−β2∆t] = ρ.

(41)

The coefficientsσ2
k and coordinate functionsx0k(t) can

be computed in the similar manner fork = 4, 5, .... The
coefficientsσ2

k are the covariances ofvk which are of zero
mean and uncorrelated. The algorithm (41) is written out here
to see its complexity when dealing with an arbitrary RP. If the
values ofζ(t) are given attk, it is possible to write out the
formula for vk as a function ofζ(tk) as done in Lemma 2.
Note that in this particular example, it is possible to present
these elements in a more compact form as

σ2
k = c(1− ρ2),

x0k(t) =
1

1− ρ2
[e−β|t−(k−1)∆t| − ρet−β|t−(k−2)∆t|]. (42)

Similarly one can write out the formulas (15) for estimation
errors.

3) Application of Theorem 1:Consider the problem in
(ii) and let us apply Theorem 1 to obtain the algorithm for
simulating the processζ(t) at tk, k = 1, 2, .... It is easy to see
that (39) is equivalent to (21) subject to

t ≥ τ : K1(t) = e−βt, P1(τ) = c2eβτ ,

t < τ : K1(t) = eβt, P1(τ) = c2e−βτ (43)

This choice ensuresK1(0) = 1. It is seen that it is sufficient
to consider the caset ≥ τ . We have then from Theorem 1,

C
(1)
k = e−β(tk+1−tk) = ρ,

Q10(k) = c2(1− e−β∆t) = c2(1− ρ2). (44)

Thus we have the following recursive equation for simulat-
ing ζk = ζ(tk),

ζk+1 = ρζk + wk, (45)

wk is an uncorrelated sequence of zero mean and variance
Q10(k) defined in (44).
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4) Applicationof Theorem 2:

ζ̇(t) = −βζ(t) + wt,

C1(t) = −β,Q10(t) = 2c2β, (46)

wherew(t) is a noise sequence with zero mean and intensity
Q10(t).

One sees here that the DS-representations (43)-(45) and (46)
are very simple compared to the CFs expressed by (40) and
(41). The result (42) says that all coordinate functionsxk(t)
participate in the CF with the same weightvk since σ2

k =
c(1 − ρ2) is constant for allk. Thus generally speaking a
large amount of coordinate functionsxk(t) must be computed
to well approximate the required RP in the CF (see (41)).

B. Non-stationary random process

Consider the non-stationary RP with zero mean and covari-
ance

Kζ(t, τ) = c2e−βtte−βττ = K1(t)P1(τ),

K1(t) = e−βtt, P1(τ) = c2e−βττ , (47)

which ensuresK1(0) = 1.
1) Application of Lemma 2:The optimal in mean square

CF based on the values ofζ(t) at the pointsti = (i−1)∆t, i =
1, ..., n is expressed by (ρ(t) :=e−βt∆t),

σ2
1 = c2, x01(t) =

e−βtt

c2
,

σ2
2 = (c2 − 1)ρ2(t1), x

0
2(t) =

(c2 + 1)ρ(t2)e
−βtt

ρ2(t1)
etc (48)

For this simple example, write out here the formulas for
σk, x

0
k(t) for all k = 3, 4, ... is a hard task, not to say on a

possible inability to realize this procedure.
2) Application of Theorem 1:From Theorem 1 one obtains

the following simple difference equation for simulation of
ζ(tk) := w

(1)
k ,

w
(1)
k+1 = Ckw

(1)
k , k = 0, 1, 2, ...

Ck = e−αk∆t, αk = k∆βk + βi,

∆βk := βk+1 − βk, βk := βtk , Q1(0, 0) = c2 (49)

C. Non-Markovian random process

Consider the RPζ(t)

ζ(t) =
2

∑

l=1

ξlfl(t),

ξ = (ξ1, ξ2)
T , E(ξ) = 0, E(ξξT ) = Ξ,

Ξ = [Ξij ], i, j = 1, 2,Ξ11 = Ξ22 = 2,Ξ12 = Ξ21 = 1,

f1(t) =
1

1 + t
, f2(t) =

1

1 + t2
. (50)

Thus the processζ(t) has the covariance

Kζ(t, τ) =

f1(t)[2f1(τ) + f2(τ)] + f2(t)[2f2(τ) + f1(τ)] (51)

1) Application of Lemma 2:For tk = (k−1)∆t, application
of Lemma 2 subject to (51) yields

σ2
1 = 6, x01(t) = 2[

1

1 + t
+

1

1 + t2
],

σ2
2 = Kζ(t2, t2)− σ2

1 [x
0
1(t2)]

2,

Kζ(t2, t2) = 2[
1

(1 + ∆t)2
+

1

(1 + ∆t2)2

+
1

(1 + ∆t)(1 + ∆t2)
],

x02(t) =
1

σ2
2

[Kζ(t, t2)− 4x01(t)x
0
1(t2)],

x01(t2) = 3[
1

1 + ∆t
+

1

1 +∆t2
], etc

(52)

2) Application of Theorem 3: To make the choice of
K

(1)
1 (t), P

(1)
1 (t) easier (sinceK(t, τ) = K

(1)
1 (t)P

(1)
1 (τ) must

be a covariance function and satisfy (32)), represent (50) in
the equivalent form

Kζ(t, τ) =
2

∑

l=1

K
(2)
l (t)P

(2)
l (τ),

K
(2)
l (t) = P

(2)
l (t) = xl(t), l = 1, 2,

x1(t) =
a11
1 + t

+
a21

1 + t2
, x2(t) =

a22
1 + t2

,

a11 = 1, 414, a12 = 0, a21 = 0, 707, a22 = 1.225. (53)

The representation (53) is obtained by applying the
Cholesky algorithm toΞ which results inΞ = AAT (see
Section II.C). Then from Theorem 3 one obtains the following
equations for simulating ofζ(t) := w

(2)
i , noticing that by the

choiceK(1)
1 (t) = P

(1)
1 = 1 the condition (32) is automatically

satisfied,

w
(2)
k+1 = C

(2)
k w

(2)
k +D

(2)
k w

(1)
k ,

C
(2)
k =

x1(k + 1)

x1(k)
, D

(2)
k = −C

(2)
k x2(k) + x2(k + 1),

x1(k) :=
a11

(k − 1)∆t
+

a21
1 + [(k − 1)∆t]2

,

x2(k) :=
a22

1 + [(k − 1)∆t]2
,

w
(1)
1 (k + 1) = w

(1)
1 (k), k = 1, 2, ...,

E[w
(2)
0 w

(1)
0 ] = 0, Q1(0, 0) = 1, Q2(0, 0) = 6. (54)

It is seen thatζ(t) is not Markovian sincew(1)
k = w

(1)
0 , ∀k is

not an uncorelated sequence.

V. SIMULATION STUDIES

A. Simulation of process (50)

Let us consider the process (50) and assume thatξ is
normally distributed with the statistics given in (50). In this
experiment the following three algorithms will be applied to
simulate the realizations of (50):

(i) Simulate the realizations forξ and henceζ1(tk) =
∑2

l=1 ξlf
0
l (tk), tk = (k − 1)∆k, k = 1, ..., 100;∆ = 0.1.

Concretely, we simulateξ = Av whereA is given in (53). As
to v = (v1, v2)

T , it is normally distributed with zero mean and
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the unitcovariance (Algorithm 1 - A1). These realizations can
serve as ”true” and will be used as references to be compared
with realizations produced by other algorithms.

(ii) Apply the algorithm (52) to construct the basis functions
x0k(t) and to simulate the process as (Lemma 2)

ζ2(t) =
n
∑

k=1

ǫkx
0
k(t), ǫk = σkvk, (55)

subject to covariance function (51). Mention that the realiza-
tions of v = (v1, v2)

T are taken to be that obtained in (i)
(Algorithm 2 - A2).

(iii) Apply the algorithm (53)-(54) (Dynamical approach).
The resulting realizations are denoted asζ3(ti). Here the
realizations of(w1

0, w
2
0)

T are taken as(w1
0, w

2
0)

T = v, v is
given in (i) (Algorithm 3 - A3).

The simulation results are shown partly in Fig. 1. Here 8
realizations produced by each of three algorithms A1, A2 and
A3 are shown. To facilitate visualization, theith realization
is displayed at the points[100(i − 1) + 1, ..., 100i] on the
horizontal axis. All three algorithms have the same initial
realizationζk(1), k = 1, 2, 3. One sees from Fig. 2 that the
algorithms A1, A3 have produced almost the same realizations
whereas the realizations4th, 5th, 8th of A2 in Fig. 1 are far
away from that of A1, especially at the beginning. In A2,
only two coordinate functions are involved. Notice that the
varianceσ2

2 = 0.00328 hence it has no sense to involve more
coordinate functions in simulation of RP. Asσ2

1 = 6, the
first component accounts for 99% of the variability in the
data. To be convinced thatσ2

2 is small in general, asσ2
2 is a

function of only∆t, in Fig. 3 the valuesσ2
2(∆t) are displayed

against∆t. We have also computed the (average) difference
(in absolute value) between the trueKζ(ti, ti) (51) and that
resulting fromKζo(ti, ti), ζo(t) = v1x

0
1(t) in (52) (v1 is a

random variable with zero mean and varianceσ2
1 = 6) and

found that this difference is almost the same as that presented
in Fig. 3. It justifies once more that the first componentv1x

0
1(t)

has the covariance structure almost identical to that ofζ(t).
On average, the difference between two covariance values
|Kζ(ti, tj)−Kζo(ti, tj)|, i, j = 1, ..., 100 is equal to 0.1706.

To have the idea on how the algorithms A2, A3 well
simulate the ”true” realizations, Figs 4-5 show two curves
”RMS-A2” and ”RMS-A3” corresponding to the sample RMS
between the ”true” realizations and simulated by A2, A3.

RMS −Ak = 1
NrN

∑Nr
r=1

∑N
i=1(ζ

r
k(ti)− ζr1 (ti))

2

whereζrk(ti) is therth realization ofζk(ti). In Figs 4-5,Nr =
1000, N = 100. It is evident that in average, the realizations
of ζr3 (ti) are much closer to that ofζr1 (ti) than those ofζr2 (ti).

B. Estimation of random process (50)

Let the following observation model be available

z(tio) = ζ(tio) + ν(tio), io = 1, 2, ...,

tio = 1 + (io− 1)∆T,∆T = 10δt, δt = 0.1, (56)

with ζ(tio) being given by (50) andν(tio) is an uncorrelated
sequence of observational error with zero mean and variance

Fig. 1. Realizations produced by A1 and A2. The realizations4th, 5th, 8th
of A2 are far too much from the true A1.

Fig. 2. Realizations produced by A1 and A3 : All realizations of theA3 are
close to that of A1.

Fig. 3. The variance of the second coefficient in the CF: it is small enough,
the proof that there is no need to involve more components in the CF.

Fig. 4. Sample RMS between realizations produced by A1 and A2.
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Fig. 5. Sample RMS between realizations produced by A1 and A3. The
curve RMS-A3 shows that compared to RMS-A2 in Fig. 4, the realizations
of the A3 are much closer to the ”true” A1.

σ2
ν = 1. Assume further thatν(tio) and ξ in (50) is uncorre-

lated. The problem we want to solve here is to estimate the
value of ζ(ti). It is evident that if we desire to obtain the
estimate ofζ(tio=io′) given by z(tio), io = 1, ..., io′ then we
have the filtering problem. Analogously one can consider the
smoothing or prediction problems. For example, the prediction
concerns the estimation ofζ(ti), ti > tio ... Note that the
above estimation problem is encountered frequently in data
assimilation whereδt represents a model time step in the
numerical model integration (for example, in minutes) and∆T
symbolizes the interval between two observations (in hours,
days).

1) Filtering problem: .
(i.1) Algorithm A1. From (50)(56) one has the following

observation model

z(tio) = H(tio)θ + ν(tio), io = 1, 2, ...,

H(tio) = [f1(tio), f2(tio)], θ := (θ1, θ2)
T ,

E(θ) = 0, E(θθT ) = Ξ. (57)

The optimal in minimum mean square (MMS) estimation
procedure is

θ(tio+1) = θ(tio) +K(tio+1)[z(tio+1)−H(tio+1)θ(tio)],

θ(t1) = 0, io = 1, 2, ...,

K(tio+1) = P (tio+1)

HT (tio+1)[H(tio+1)P (tio+1)H
T (tio+1) + Iσ2

ν ]
−1,

P (tio+1) = [I −K(tio+1)H
T (tio+1)]P (tio), P (t1) = Ξ (58)

Thus the MMS filtered estimatêζ(tio) can be obtained as
ζ̂(tio) = H(tio)θ̂(tio).

(i.2) Algorithm A2. For the model (52) the algorithm re-
mains the same as A1 with the differences

H(tio) = [x01(tio), x
0
2(tio)], P (t1) = diag[σ2

1 , σ
2
2 ]. (59)

(i.3) Algorithm A3. Direct application of the Kalman filter
(KF) to the DS (54) subject to the observation system (57) is

Fig. 6. Ensemble averaged RMSs of the PE produced by A1, A2 and A3.
The predictionis made over∆t = 1. The errors are stabilized after about
100 realizations. The algorithm A3 has produced the better estimates. A1 and
A2 are of nearly the same performance.

impossible since the sequencew(1)
i is not uncorrelated. Intro-

ducingy(ti) = (w
(2)
i , w

(1)
i )T leads to the filtering problem in

state-space form

y(tio+1) = Ce
ioy(tio), y(t1) := (w

(2)
1 , w

(1)
1 )T ,

Ce(tio) = |cekl|
2
k,l=1,

ce11 = C
(1)
tio , c

e
12 = D

(1)
tio , c

e
21 = 0, ce22 = 1,

z(tio) = Hey(tio) + ν(tio), H
e = [I, 0], io = 1, 2, ...,

(60)

The MMS filter can be written out as

ŷ(tio+1) = Ce
ioŷ(tio) +

K(tio+1)[z(tio+1)−HeCe
ioŷp(tio)], ŷ(t1)(t1) = 0,

K(tio+1) =M(tio+1)H
e,T [HeM(tio+1)H

e,T ]+,

M(tio+1) = Ce
ioP (tio)C

e,T
io , P (t1) = diag[6, 1],

P (tio+1) = [I −K(tio+1)H
e]M(tio+1),

ζ̂(tio) = [I, 0]ŷ(tio). (61)

2) Numerical results: In Fig. 6 we show the ensemble
averaged RMSs of the prediction error (PE) produced by
three algorithms A1, A2, A3. The same RMSs but for the
filtered error (FE) are displayed in Fig. 7. It is undoubted
that the DS approach (A3) produces the best estimates. The
algorithm A1 is slightly better than A2 especially at the
beginning, but in general they behave in the same way. If
A3 is capable of improving considerably the filtered estimate
compared to the predicted estimate (see Fig. 8), only non-
significant improvement of the filtered estimates compared to
their predicted estimates is observed for A1 and A2. Noticing
that all three algorithms have filtered well the observation
noise since its variance is equal 1. It means that the algorithms
reduce about 90% noise level in the estimates. The reason of
the better performance of A3 may be explained by the fact that
the filter A3 estimates directly the processζ(t) whereas two
filters A1, A2 estimate indirectlyζ(t) (through the estimation
of the coefficients in decompositions).
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Fig. 7. The same as in Fig. 6 but for the FE.

Fig. 8. Ensemble averaged RMSs of the PE and FE produced by A1 and
A3. Onesees here there is a significant decrease of FE compared to that of
the PE in A3. In contrast, only a non-significant improvement of the FE is
observed (compared to PE) in A1. The same performance is produced by A2
and it is not shown here.

C. Prediction of time series

1) Construction of DS:Let x(t) be a random process and
consider the problem of optimal linear predictionx(t). This
happens, for example, when one wants to estimatex(t) as the
daily rainfall, wind speed, temperature ... at instantt given a
series of historical datax(t−1), ..., x(t−n). Then the problem
of construction of a dynamical model forx(t) is of the first
importance.

Let us introduce the following dynamical model

x(t) = a1x(t− 1) + ...+ anx(t− n) + w(t) (62)

First for simplicity, let w(t) = 0. Introduce X(t) =
[x(t), ..., x(t − n + 1)]T . We have then a state-space repre-
sentation

X(t) = AX(t− 1),

A =









a1 a2 ... an
1 0 0 0
0 1 ... 0
0 ... 1 0









=





aT

−−−−−−
In−1, 0



 (63)

Thus if A is given, an optimal predictorX̂(t) can be
obtained by integration of (63) fromX(t − 1). In practice,
usually we are given a seriesz(t − 1), ...z(t − n), ... of

observations (contaminated with noise) for the processx(t),
hence estimating the matrixA is required first before being
able to make the prediction. One way to obtain an optimalAo

is to require thatAo will minimize the mean prediction error,
i.e.

J(Ao) = minAJ(A),
J(A) := E[(X(t)−AX(t− 1))T (X(t)−AX(t− 1))] (64)

Taking a derivative ofJ(A) with respect toA leads to
E[(X(t)−AoX(t−1))XT (t−1)] = 0 (orthogonal principle)
hence

Ao = KX(t, t− 1)K−1
X (t− 1),

KX(t, t− 1) := E[X(t)XT (t− 1)],

KX(t− 1) := E[X(t− 1)XT (t− 1)]. (65)

Mention that (65) constitutes a basis for the derivation of
the fundamental matrixC(1)

i in Theorem 1.
Inversely, suppose we are given a DS

X(t) = AX(t− 1), t = 1, 2, ...,

X(t) = [x(t), ..., x(t− n+ 1)]T , (66)

whereA may be any unknown matrix. We will show now
that the optimal estimateAo, determined by (65), will have
the structure (63) with

aTo = KxX(t, t− 1)K−1
X (t− 1). (67)

Really from the definition ofX(t), if we representKT
X(t, t−

1) = [b, BT ], b ∈ Rn, B ∈ R(n−1)×n thenKT
X(t− 1) has the

structureKT
X(t − 1) = [BT , cT ], c ∈ Rn. If we denote by

K−1
X (t− 1) = [B̃, c̃] then fromKT

X(t, t− 1)K−1
X (t− 1) = I

it follows

BB̃ = I, cT B̃ = 0, (68)

Consider (67) using the introduced definitions for
KxX(t, t− 1),KX(t− 1) one comes to

Ao = KxX(t, t− 1)K−1
X (t− 1) = [b, BT ]T [B̃, c̃]

= [d,DT ]T , d := bT [B̃, c̃], D = [I, 0] (69)

which proves thatAo has the structure (63) witha = ao =
d. Thus if we are given a series of dataz(1), ..., z(t− 1) then
the optimal MMS prediction forx(t) can be obtained by first
estimatingao and next to integrate the model (63).

2) Numerical experiment:Fig. 9 displays the values of a
typical time seriesx(t) at 100 first time instants (the curve
”true”) whose observationsz(t) = x(t) + v(t) (the curve
”obs”) are obtained by adding the noisev(t) with zero mean
and unit varianceσ. In the experiment we will assume, how-
ever, thatσ is unknown. Let us be given the observations at 300
time instants and the experiment consists in using the set of
100 first observationsZ[1:100] := [z(1), ..., z(100)] to estimate
the system dynamics; the 200 last observations will be used
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TABLE I
ESTIMATED DYNAMICS PARAMETERS

dimension a1 a2 a3 a4 a5
n = 1 -0.415 - - - -
n = 2 -0.508 -0.226 - - -
n = 3 -0.53 -0.273 -0.091 - -
n = 4 -0.543 -0.305 -0.148 -0.103 -
n = 5 -0.546 -0.308 -0.1457 -0.093 0.0207

Fig. 9. Typical time series ”true” and its observations ”obs” contaminated
with an uncorrelated noise sequence of zero mean and unknown variance

to validate the performance of the estimation algorithm. The
matricesKxX(t−1, t) andKX(t−1) in (67) are approximated
fromZ[1:100]. Applying the described above algorithm for esti-
matingao subject ton = 2 yieldsa1 = −0.508, a2 = −0.226
(see also Table I). In Fig. 10 we show the RMS of PE produced
by the DS approach and that of one-step persistence error
(PER(1)). Recall that thep-ahead persistence errorPER(p)
is defined asPER(p) = z(t+ p)− z(t). The Fig. 10 can be
considered as a validation test which justifies that the model
largely outperforms persistence. Using the models of lower
and higher dimensions results in the estimates for the dynamics
parameters displayed in Table I. Experiments carried out by
models withn > 2 cannot lead to a noticeable decrease of
RMS, compared to the casen = 2. The worse performance is
observed forn = 1 (its RMS is higher about3% compared to
the casen = 2).

D. Data assimilation in oceanic model

1) Adaptive filter based on DS representation for PE sys-
tem output: The objective of oceanic data assimilation is
to estimate the ocean state and to produce its best forecast
for the period of interest (10 days, for example) using a
numerical model (NM) and available observations. Last years
the satellite sea surface height (SSH) is one of the most
important sources of observations. Due to very high dimension
of the NM (order of 106−7) and large set of observations
(order of 104−5), its non-linearities ... at the present only
approximate filters of simplified structure can be implemented.
As a consequence, the resulting PE for the system output (a
residual sequence - RS)ζ(t) remains usually time-correlated.
It is worth of noticing that under standard conditions of

Fig. 10. Time average RMS of the prediction error (PE) resulting fromthe
DS approach subject ton = 2 and that ofPER(1). It is seen that the DS
has produced the performance much better than the persistence.

validity of the Kalman Filter (KF) (the underlying system is
a linear dynamical system, all error terms and measurements
have a Gaussian distribution ...), the RS represents a white
sequence (hence it is an innovation sequence). Thus, a time-
correlation of the RS signifies that the designed filter is non-
optimal.

In this situation, one possible and efficient way (see below)
to improve the filter’ performance is to impose a Markovian or
non-Markov structure (see Theorems 1,2 for example) for the
RS in order to reduce as much as possible its time correlation.

More concretely, consider the filtering problem

x(t+ 1) = Φx(t) + w(t),

z(t+ 1) = Hx(t+ 1) + v(t+ 1), t = 0, 1, 2, ... (70)

wherex(t) ∈ Rn, z(t) ∈ Rp, w(t), v(t) are the system and
observational noise. Suppose the filter used in the assimilation
is of the form

x̂(t+ 1) = Φx̂(t) +K(t+ 1)ζ(t+ 1),

ζ(t+ 1) := z(t+ 1)−H(t+ 1)Φx̂(t), (71)

whereζ(t) is an RS. Under the standard conditions related
to the distributions ofx(0), w(t), v(t), the gainK(t) can
be computed using the KF formalism and the resultingζ(t)
represents a time uncorrelated sequence. However when the
gain K(t) is obtained using different approximations (from
physical considerations, order reduction of system state, wrong
noise statistics, without involving a time-consuming Ricatti
equation ...), the filter is not optimal and the sequenceζ(t) is
time correlated.

One simple approximation for better representingζ(t) is to
assume thatζ(t) is a Markov RP. This assumption leads to
the following equation forζ(t) (see Eq. (22)),

ζ(t) = Ψ1(t)ζ(t− 1) + Ψ2(t)ζ(t− 2) + ...+

Ψd(t)ζ(t− d) + ν(t) (72)
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Fig. 11. The time average RMS of PE for the SSH resulting from the filter
CHF (thecurve ”CHF”), CHF-MRK1 (the curve ”MRK1”) and CHF-MRK2
(the curve ”MRK2”).

Fig. 12. The time average RMS of PE for the total velocity(u, v) resulting
from the filter CHF (the curve ”CHF”), CHF-MRK1 (the curve ”MRK1”) and
CHF-MRK2 (the curve ”MRK2”).

whereν(t) is a white sequence. However in this equation
the matricesΨk(t), k = 1, ..., d are unknown; That is true also
for the statistics ofν(t). Notice that Eq. (72) is of the form (62)
hence we can apply the results in Section 5.D to estimate the
elements ofΨk(t), k = 1, ..., d. In the experiment to follow,
for simplicity it is assumed thatΨk(t) = ψk, k = 1, ..., d
whereψk are time-invariant scalar parameter. The equation
for estimatingψk is given by (67).

2) Experiment: We have tested the described above ap-
proach in the experiment with the Cooper-Haines Filter (CHF)
which is developed by Cooper and Haines [4] for assimilating
the SSH observations in the oceanic models. The objective
of this test is to verify whether it is possible to obtain better
results by imposing new DS structures for the RS. Remember
that the gain in the CHF is constructed on the basis of the
principle of conservation of potential velocity. The experiment
has been carried out using the noise-free SSH data (3 years)
and the NM Micom [9] to model the circulation in the
North Atlantic. The observations are simulated as along-track
altimetric observations hence are sparsly located. An optimal
interpolation has been applied to generate a smooth set of
observations, making possible the calculation of the horizontal
velocity from the layer thickness estimates. This model has
the horizontal grid (140× 180), 4 vertical layers with three
variables: SSH, layer thicknessh(i, j, k) and two velocity

components[u(i, j, k), v(i, j, k)]. The system state consisting
of (h, u, v) has the dimensionn = 302400.

In Fig. 11 we show the time averaged RMS of the SSH
PE, which are produced by three filters: CHF, CHF-MRK1
in which the RS is modelled by the DS (72) subject tod =
1 and CHF-MRK2 (subject tod = 2). It is seen that after
about 30 iterations while the error becomes to grow in the
CHF, the CHF-MRK1 allows to stabilize the estimation error.
Moreover, the CHF-MRK2 is capable of decreasing the PE in
a continuous way. The PEs produced by these three filters for
the total velocity(u, v) are also displayed in Fig. 12 which
exhibits a great advantage of two filters CHF-MRK1, CHF-
MRK2 over the CHF.

It is seen that by introducing a simple Markov or non-
Markov structure for the RS, it is possible to improve sig-
nificantly the filter’ performance if the original filter is still
far from an optimal one. We have applied this approach, with
nearly the same success, to a so called Prediction Error Filter
(PEF) (developed in [8]) for the MICOM model in the North
Atlantic domain as well as for a much more complex ocean
model HYCOM (HYbrid Coordinate Ocean Model) with the
coastal Bay of Biscay configuration [1]. Notice that the PEF
outperforms largely the CHF in terms of its (much) lower
estimation error. It is hoped that the presented approach will
certainly find practitioners who wish to adopt it for yielding
more accurate solutions to practical engineering problems.

VI. CONCLUSIONS

In this paper an algorithm for the construction of a DS
model for a random process given CovF-SV is described. It is
shown that this approach is applicable to a wide class of RPs
having canonical forms. As seen from numerical examples
and simulation studies, compared to the CF approach, the
proposed algorithm is simpler to implement and generates
samples closer to the references (samples of the ”true” RP).
Moreover, application of DS model is proved to be beneficial
in solving the estimation problems like filtering, smoothing ...
of Markov or non-Markov RPs yielding better performance
compared to the CF approach. When solving estimation prob-
lems with correlated noises (see [2], [10], [7] ...), the DS
models, formulated in Theorems 1-3, are usually assumed
to be given. That is why it is of primary importance to be
aware of how one can construct the DS models for Markov
and non-Markov RPs, from the knowledge on statistics of
the correlated noise sequences. Time correlation is present
in a majority of engineering problems, in particular for the
atmospheric and oceanographic observations [3]. Even with
noise-free observations, the models in Theorems 1-3 can still
serve as an useful tool for improving the filter’ performance.
This fact has been demonstrated in Section V.D where the
experiment has been carried out on assimilation of noise-
free SSH observations in the ocean model MICOM for the
North Atlantic. The major difficulties we have in solving
oceanic assimilation problems are due to very high dimension
of numerical models, its non-linearities, sparse observations ...
which do not allow to apply an optimal filter like the Kalman
filter. Consequently only simplified, sub-optimal filters are
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feasible inpractice. Whitening the RS in the filter is a natural
and logic way to improve the filter’ performance. This can
be done efficiently, as shown in this paper, by means of
introducing a Markov or non-Markov model structure for
the RS and estimating the unknown system parameters based
on realizations of the RS during filtering process. Numerical
results from the experiment with SSH data assimilation in the
oceanic MICOM model show that by this way it is possible
to reduce the estimation error up to about15% compared to
the level of the initial error.
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