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Random processesith separable covariance
functions: Construction of dynamical model and its
application for simulation and estimation

Hong Son Hoang™ and Remy Baraille®

Abstract—This paper demonstrates that for a given random ((¢) be anp-dimensional zero-mean random vector process.
process, having a canonical form, there exists a dynamical Given its CovF K((t,7), we are interested in solving two
system equivalent in the sense that its output has the SamefO”OWing problems : The first is to generate a zero-mean

covariance function. It is shown that the dynamical approach is . .
more effective for simulating a Markovian and non-Markovian RP (,(t) whose CovF matches the g'VeﬁC(t’T)’ either

random processes, computationally is less demanding, especiallyexactly or approximately. The second quantity of interest is
with increasing of the dimension of simulated processes. Somea low-rank approximation to the covariance. That is, one is

numerical examples and experiments are presented to show interested in computing, for a given number of components,
the advantages of the proposed method for simulating random ;e representation that fits best the covariaftet, ).
processes as well as for solving the filtering problems. . . b
_ _ o As will become clear in the future, the proposed algorithm
Index Terms—Canonical representation, data assimilation, (called Dynamical Systems - DS) allows to obtain a recursive
dynamical system, Markovian and non-Markovian processes, nrocedure for simulating different RPs such as Markovian
statistical simulation, stochastic process. . . . .
or non-Markovian, stationary or non-stationary, discrete or
continuous ... Compared to the CF, the DS approach achieves
I. INTRODUCTION a more significant speedup and requires less memory. As in
C?ractice, only a limited number of components of CF can be

process ... is one of the key issues in mathematical-s;tatistikf.ﬁ?d'I it will be slhownt th?ﬁ thfi D% is capable of DBOiUCItI;gt
modeling of complex systems. Mathematical-statistical mogampies more close 1o the “lrue™ ones, compared 1o tha

eling plays an important role in almost every area of SC?_btamed from the CF. Moreover, the DS approach is easy to

ence and technology, especially in the field of experimem%?gly to the prct))blem of f]i:}e_r’ deggn W'thf?::)”elﬁed nglses
research and development. A straightforward experiment appears to be more efficient in terms of Root Mean Square

complex stochastic systems is the biggest drain on time a hS) error. - ized foll In Section Il the CF
resources, too expensive; or, as in the case of meteorol(%g € paper IS organized as Tollows. In Section e

and oceanography modeling ... physical experiments may ory is pre_sented_ brieﬂy. In fact j[he CF theory is closely
simply impossible [18]. That is why in practice, a more popJ—e a-ted to_ d'ffefe”“a' eigenvalue/eigenvector prpblem:'s. To
\{0|d solving this type of problems, one of practical widely

lar method to study complex systems is simulation. StatisticA 4 alaorithms f tina th Hicient d dinat

simulation using repeated random sampling to determine t Y t.agorlf trk?s c?li ck:)omp; g}% Iecoe clen sfant 900{ inate

properties of some phenomenon, is hence a very useful ctions ot the ase (lower upper) actorization
ggiven in this section (see [17]). Section Il summarizes

efficient tool to test and select alternatives based on so q ¢ fructi f DSs for Mark q

criteria, to analyze and interpret data from simulated resul ,e Erocgpures (()jr_t.consdrl:r(]: Ito?ho' C sFor arkov anbl non—d

to understand behavior prediction of the underlying syste rkov ks conditioned that their LovES are separable an
nown. Computational complexity of two approaches CF and

This paper addresses the problem of construction of modB? is clearly seen from examining simple numerical examples

for random processes (RP), with the objective to well appro&gl Section V. The performances of CF and DS approaches

imate their covariance functions (CovFs), to better genera"’}(rae compared in Section V by simulation studies. Here two

their samples or to produce the estimates of high qua"%?rtlcular problems, one is a simulation of samples for an

on the basis of available observations. We will restrict OLII P| another is related to filtering problem, are considered.

attention to the class of RPs having CovF with separabfels. Sh?;]Nn tht\?vt applt))/lmg theﬁ alg(zrr:thms C.F andeS for
variables (for details, see Section Il). Note that this class E\t/r']ng Dsese N pr:O izrr]ns ° erst i etrs]up(e:rllzor per orn;]an:e
RPs, in some sense, is equivalent to the class of RPs which &€ approach with respect to the approach. As

n
be represented in the canonical form (CF) [17]. Namely, 18P

It is well known that generating pseudo random obje

tential applications of the DS approach, the time series
prediction problem as well as data assimilation in very high

+ S. Hoang is with the Service Hydrographique e&@uographique de la dimensional oceanic models are also exposed here. It is worth
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performed successfullpy modeling the RS as a Markovianfor {(¢) in the form of its mathematical expectation and the
or non-Markovian. The conclusions are given in Section Visum of mutually uncorrelated elementary random processes
Yi(t) = vpzr(t) wherevy is a random variabler,(t) is a

[l. CANONICAL FORM OF RANDOM PROCESS deterministic function, i.e.
A. Eigen-structure of covariance and canonical form n
In this paper, otherwise stated, all random variables are () = () + Y vkan(t), C(t) = E[C()] @)
k=1

assumed to have zero mean value. For simplicity{let4, P)
be some probability spacd,, = L»(f2, A, P) be a Hilbert  In (3) v, are the coefficients of CFy(t) - coordinate
space of real variables induced by the inner product. >, functions. Thus thex-truncated approximation of (X),(t) =
i.e. if ¢ € Ly then EC? < 0o and >k Erepr(t) is an CF for¢(t).
_ Representation of the RP in the form of CF is a very
<G >=E(C,m),Ve,n € Lz. convenient method for performing different operations with
Consequently, the distance between two random varigblegandom functions, especially for linear random functions. In
andn is the CF only its coefficients are random variables. The depen-
d(¢,n) = [B(C - ,'7)2]1/2 dence of RP on temporal variablés expressed only through
the coordinate functions(¢t) which are deterministic. As a
We have ther{ = 7 implies that¢ andn may be different in  consequence, performing different operations like differentia-
a set of probability O. tion, integration ... reduces to corresponding operations with
Let ¢(t) be a process witt[¢*(t)] < oc. For eacht, ((t) €  deterministic coordinate functions. The fact that the members
L,. Parametrically((t) is therefore regarded as a "curve” inof the CF are uncorrelated considerably simplifies the formulas
Ls. This curve is continuous b if for correlation functions of considered RP. However the CF,
lime_s, E[C(t) — C(t0)]2 = 0 as vyill pe shown later, is a less efﬁcien_t tool for generating
realizations of RP as well as for estimating the RP compared
The RPs satisfying this condition for alle [0, 7] are said to to the dynamical systems-based method.
be continuous in the quadratic mean. Consider the collection

of real-valued RPs(t) for which B. One practical method for construction of canonical form

foTE[C2(t)]dt < 0. Lemma 1 gives us an overview of how the RP can be
éegresented through eigenvalues and eigenvectors of its covari-
ance matrix. Since computing eigenvalues and eigenvectors is
time and memory consuming, another, computationally more
attractive methods, are proposed for practical applications of

Stochastic processes in this set are verified to constitut
linear vector space denoted ds[0,7]. Define the inner
product in this space as

<¢(0),n(t) >1= E[< (1), n(t) >¢], < ¢(t),n(t) >¢:=  the CF.
Jo ¢<@n(t)dt Let {vx} be a set of uncorrelated random variables,
One of the most interesting results of the theory of RPs E(v;) =0, E(v;v;) = gf(sij 4)

is that the normed vector space for processes previously

defined is separable. Consequently, there exists a complet¥N€redi; be the Kronecker symbol. Suppose we would like
to approximate the processt) by

(and, by assumption, orthonormal) sef(t),: = 1,2,...
of deterministic (non-random) functions which constitutes a n
basis. A process in this space can be represented as C(t) = Ga(t) = Y vpan(t) (5)
- k=1
((t) = Zgwk(t),gk =< ((t), pr(t) >¢ . (1) By minimizing the mean square distance
k=1 n
More precisely the following result holds J(x) = E[C(t) = > veax(t)* —» ming, .. (6)
Lemma 1:(Karhunen-L&ve theorem [14]) A measurable k=1
continuous in quadratic mean RP defined over a probabilityone obtains
space (2, A, P) can be represented in the form (1) (for xR (t) = E[¢(t)vg]/ o} @)

E((t) = 0). In (1) & is a sequence of uncorrelated random
variables,E(£7) = i, where),, andpy(t) are the eigenvalue
and eigenvector of the CovE(¢,7),

It remains to determine the variables Generally speaking,
v, should be such that the sum (5) must be convergent as
n — oo (see Lemma 1 fo€;). To obtain a more attractive

Ko (t, 7)or (7)dr = Aegor (D), algorithm, leto} := (vi,...,v0)", A = lay|}';=y, yf =

[0,T] (t:T)e(r) (1) (C(t1), ..., C(tn))T. Then we want to findv} aé a function
Kc(t,7) = BCOCT)] =Y Mar®pulr). (@ OF v

zk: v = Ayy’ 8

Return to the definition of the CF for the Rft). According To satisfy (4), the coefficienta;; must be determined as a
to [17], canonical form of((t) is called any representationsolution of the system
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k=23, .. (14)
AK(n)AT = D, D := diag(o3, ...,0%), (©)] .
with the mean square error
where K¢(n) := |[K¢(ti,t;)[7 ;- It is seen, for example, N
Eq. (9) is satisfied if the columns of are the eigenvectors of N o 02
K¢(n) ando?, k = 1,... are the eigenvalues di:(n). One ®) kax’“ Ke(tt) = kila’“[xk(t)]
great disadvantage of this choice is that the system (9) must B (15)

be solved each time when we want to involve more values of
¢ to construct the CF. A recursive algorithm can be obtained
by applying the LDU (Low-Diagonal-Upper) algorithm [6]. InC- Application of a canonical form for a random process in
this case, the matrid is assumed to be, far< j, control systems
. In the control systems engineering, the following class of
= 1. = 1 ; '
@i = 1,ai; = 0,5 > (10) RPs is frequently encountered

The elements;;, j < ¢ are defined now from (9). We have n

then | () = &fiult) (16)
o= S G+ i 2,50 (1) -
U1 = y U = aiiG5 + i7i: 3y e L. .

! ! = 7 herefy(t) are known deterministic functiong, are random

& variables. Considering,,k = 1,2,... as a sequence of
o2 = Z arian; K¢ (ti, b)) (12) Zzero mean random variables, applying Lemma 2 yields the

representation fog; in the form of a linear combination of

i,j=1
’ k uncorrelated variables;,
ZC”WKC t t Z (L]W.’L‘l = Opy- (13) k
é-k = Z Qk;Uj. (17)
The algorlthm (20)-(13) produces the procgss$t) which J=1

is the same ag(¢) only att = t;,i = 1,...,n (in the sense Substituting (17) into (16) gives the CE faf+
of their covariance structure). Thus in spite of the fact that g (17) (16) g at)

L) = S uz?(t) is not exactly the CF for(t), this

fne(:tzlod, %i]f[ﬁclmt I’éE]L)Jiring to solveyan eigenvaftfe) problem, ) = Z vk (t), ok (t) = Zaikfj (t). (18)
allows to approximate the initial process, when needed, to =

approximate the proceggt) at other points by different tech-  Note that the representation (16) is widely used to approxi-
niques like interpolation theory (based on different coordinaigate the RP by a linear combination of known functions with
functions () such as orthogonal polynomial, splines ...yandom coefficients (regression models). Many applications

variational-difference method ...[5]-[15]. This method is ofyith this class of RPs can be found in [11]-[13].
importance for the problem of order reduction of dynamical

systems and in some sense is closely related to the Principal

Components Analysis (or Empirical Orthogonal Function iR- Canonical form and random process with separable vari-
geodynamics, [12]). The latter creates a new set of orthogoﬁ‘@lIes

variables that contain the same information as the original setThe fact that the RR(t) has a CF implies that its CovF
It rotates the axes of variation to give a new set of orthogongs the following form

axes, ordered so that they summarize decreasing proportions of

the variance (see also the Singular Value Decomposition whic

can be thought of as decomposing a matrix into a we|ghted|2( Zvlvﬂml s (T ZJ zilt)e;(r) (19)
ordered sum of separable matrices [6]).

From (10)-(13) one can prove With the notationsK;(t) = z;(t), Ki(t) = o2x;i(r) it
Lemma 2:[17] Consider the RR (¢). Then the optimal in implies
mean square CEY(t) is given by n
1 Ke(t,m) = ZKi(t)Ki(T) (20)
Clvo-l Kﬁ(tlatl) ( ):?KC(utl)» i=1
: Thus the CovH{ (¢, T) as a function of andr is a function
ve = Cp — Zvjw?-(tk), of separable variables. The RPs with CovF of the form (20) is

investigated in [16]. We shall call (20) an CovF with separable
variables (Cov-SV). Thus when the RR) can be represented
0F = Ke(ty, tr,) Z - , in the CF, it has the CovF belonging to the class of CovF-SVs.
We note that all the results related to the CFs, CovFs of the
scalar RPs can be extended to the vector RPs [17]. General
() = Kc (t,tx) Z o t)], conditions related to the class of discontinuous Calik &, 7)
can be found in [17], [5].
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I1l. DYNAMICAL SYSTEM (DS) THEORY FOR RANDOM 0(t—7) is a Diract function. Fo, (¢, 7) of the form (26),
PROCESSES WITHCOVF-SV d o "
: C K K7V (29
It turns out that the RR(¢) having an CF, can be generated 1) = [dt DI (@) (29)
as an output of some DS. This fact is shown in this section, d

w(t) = K{V ()2 PP 0 (0) R () (30)

Comment 3.1. The COﬂdItIQh’l (0) = I can be removed.

Parallelly a numerical procedure for determining all parame-
ters of the corresponding DS will be obtained which allows
to efficiently generate RPs considered in Section Il based on
the results of [16]. We note that the DS representation exists

in the discrete and continuous form. The discrete DS yiells DS representation for a non-Markovian RP

the RP having the same CovF d&(¢,7) at the desired
discrete instant$ = ¢;,i = 1, ...,
DS produces the RP witi¢(¢,7) at all time-instantg. This

method can serve as an efficient tool for simulating samples
of the considered RP as well as for solving the estimation

problems with correlated noises as studied in [7].

A. DS representation for Gauss-Markovian RP
Theorem 1:(Discrete case) [16]. Lel{wgl)} be ann;-
dimensional RP with zero mean and CF

Q1(i,5) = KV )PV (j) (21)

where K{l)(i)

output of the DS described by the difference equation

€]

Wiy = C’i(l)wgl) + w§10)

(22)

where {w{'”} is a white RP uncorrelated with" such
that

Ew!" =0, Blw(" (w{'”)T] = (23)

2

QIO( ) ij

For a given (21), the fundamental mat(D'{l) in (23) and
the covariance matrix)1o(i) are determined by

ot = k(M + 1)KV @) (24)
Quo(i) = K3V (i + D{PM (i + DI (i + 1))t~
PV @) KT+ 1] KT (4 1) (25)

Whererl)(O) = I - the unit matrix.
Theorem 2:(Continuous case [13]) Lets;(t) be ann;-
dimentional RP with zero mean and CovF

Ql (ta T) =

WhereK(l)( t), P(l)( t) are(ny x ny) matrices having contin-
uous denvatwesK(l)( t) is non-singular&K" (0) = I. Then
(26) is a necessary and sufficient condition foy(¢) to be
represented as

’li)l (t) = Cl (t)w1

wherews(t) is a white RP unccorelated witl, (0) such
that

Elwio(t)] = 0, E[wio(t)[wiy(r)] =

KM ()P (r) (26)

(t) + wio(t) (27)

Quo(t)o(t —7) (28)

is non- smgular Then the condition (21) is
necessary and sufficient fo{rwi )} to be generated as an

Theorem 3:(Discrete case, [16]) Lef; := w? be anns-

n whereas the continuousdimensional RP with zero mean and covariance matrix

2
ST KPP )

=1

where K2 (i ) P1(2)( ) are (ny x ny) matrices, K% (i) is
non-singularf{? (i), P{? (i) - (nyxny) matrices. Letw(l) be
an output of the DS (22) which has\" (i), P") (i) satisfying
the relationship

K )P ) = PP () k(M) (32)

Then (31) is necessary and together with (32) are sufficient
for w( ) to be presented as

z(-Qi-)l C() (2)+D(2) (1)+w(20) (33)
where it is supposed that
Elw®] = 0, Ew® w®"] = Qu(i)s;  (34)

c® D® are the matrices of dimensior{s, x n;) and
g X Ny respectlvely,w is a random vector such that
0

E[ (1) (2)1T]_ [ (20) (2)’T]=O
20 T
E[EHS)] 0, Bl =0
Ew™ w7 = w6, K (0) = 1, K§P(0) = 0. (35)

W p

7

For the given (31) and (32), the matrlcé$2

and the RPsv!'” w*”) are determined by
o = KPP (i + 1)K (@)
D® = —cPKP @)V ) + K+ DK @)
M =kWi+ )[K“ (i)~
Q20(i) = K2 (i + D{PP (i + D[(KP T+ 1)) 7' =
PE @K+ 1)) KT+ 1)
Qi0(i) = KV (i + D{PM i+ DKM 0+ 1))
(

PO@GKD T (6 + 1)) KD T(z +1)
Wi1(i) = Wn(l)
K{P G+ D i+ DR (i + D) -
PUGES T+ D] G (i 41) (36)
The similar results can be obtained for the continuous RPs
and the reader is referred to [16] for more details.

Comment 3.2As shown in [16],
() The conditions in (35) are not the constraints for

K¢ (i, j)-
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(i) The case whenK (i) is singular can be overcome 2) Application of Lemma 2:Suppose it is impossible to
by introducing two matncesKéf)( ), Po(f)(z) of dimensions obtain the system of eigenvalues and eigenvectors @t, 7).

(n2 X ny), with K(gl (i) being non-singular. Then one canTo construct a model fo¢(¢) to generate its samples, let us
write follow Lemma 2 to obtair(,(t) whose CovF matches exactly

the CovF of((t) at the pointst, = (k — 1)At,k =1,...,n.
2)
ZKO Pél

For p := e~ #At we have
K6 = [~ Ké?() K@’() K$P(9)]

(t) =D wnai(t)
k=1

Fgy (i) = [Py (), Py (0), P27 ()] (37) o = af(t) = M,
1
2 201 2\ 00 —Blt—Aat| =Bt
By this way one can construct the DS foft). We note 72~ € (1=p7),22(t) = 1—p? le pe
the interesting fact that from (37) it is truR[Pé?’T(’)] C . 2 , ,
RIK$2(i)],Vi which is equivalent to the requirement (32) o3 = =Y oplaR(ta)]’,
where R[A] denotes a linear space spanned by the columns of k=1
the matrix A. |
(iii) Let mg(t) = ?[6 Pli—2adl _ fo%ﬁvg(t)wi(tsf],
3 k=1
0 _ —2BAt 2
xl(tS) =€ =0
K¢(i,5) = Qali, ) ZK‘N> )P () (38) 0 L _par_pone
- w(ts) = T le S —p PN =

(41)
(compared (38) with (20)), where for simplicinN) is non-

singular. Putting : i
be computed in the similar manner fér = 4,5,.... The
Kfz)(‘) ( ) ( )= PI(N (4), coefficientso? are the covariances af;, which are of zero
K(2 (i ) [ 2( ) K(N)( . mean and uncorrelated. The algorithm (41) is written out here
(2 _ ip(N),T (N), T to see its complexity when dealing with an arbitrary RP. If the
By () = [Py (i), s Py (4))], . o . ;
values of((¢) are given atty, it is possible to write out the
we obtain again the DS (31) or (33) for the RR). formula for v, as a function of¢(¢;) as done in Lemma 2.
Note that in this particular example, it is possible to present
these elements in a more compact form as

The coefficientss; and coordinate functions:?(¢) can

IV. COMPARISON BETWEENCF AND DS APPROACHES

EXAMPLES o = c(1-p%),
1
0/ _ —Blt—(k—1)At| t—B|t—(k—2)At|
r(t) = e - pe . (42
A. Stationary process W) =12 p2[ P . (42)
1) Application of Lemma 1:Consider the RP with zero Similarly one can write out the formulas (15) for estimation
errors.

mean and CovF o ) )
3) Application of Theorem 1:Consider the problem in

Ke(t,r) = Ke(t—7) = e BlIt=Tl ¢ - ¢ 0, 7] (39) (ii) and let us apply Theorem 1 to obtain the algorithm for
simulating the proces§(t) atty, k= 1,2, .... It is easy to see

Generally speaking, it is impossible to find analyticall)tlhat (39) is equivalent to (21) subject to

the system of eigenvalues\,} and eigenvector§xy(¢)} of t> 1K (t) = e P Pi(r) = e,

[Ii%t,f). However, in this particular case one can prove that b Ki(t) = P, Py(r) = e P (43)
This choice ensure&; (0) = 1. Itis seen that it is sufficient
t)=> veak(t), to consider the case> . We have then from Theorem 1,
k
(0 info(t — =) + 2] O = et — p,
x = sin|wg(t — = —,
g TN TR Qio(k) = c*(1 — e~ “% 2(1—p"). (44)
2
*)\k(T + Ak)s Ak 2ﬁ2 fw (40)  Thus we have the following recursive equation for simulat-
ing G = ((tx),

vgr;grewk are thepositive roots of the equationgnwT = Corr = pCi + Wi, (45)

— 2. Thus onecan simulate the realizations fo(t) using
the formula (40) subject to, having zero mean and variance wy is an uncorrelated sequence of zero mean and variance
o3 Q10(k) defined in (44).

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



Issue 4, Volume 6, 2012 166

4) Applicationof Theorem 2: 1) Application of Lemma 2Fort;, = (k—1)At, application
; of Lemma 2 subject to (51) yields
C(t) = —BC(t) + w,

1 1
C1(t) = =B, Quo(t) = 2¢°B, (46) ot = 6,29(t) = Q[m + 1_’_7152]7
wherewt) is a noise sequence with zero mean and intensity 05 = K¢(ta, ta) — oi[2(t2)]?,
Q10(1). _ 1 1
One sees here that the DS-representations (43)-(45) and (46) E(ta,t2) = 2[(1 + At)? ™ (1+ A2)?
are very simple compared to the CFs expressed by (40) and 1
(41). The result (42) says that all coordinate functionst) +(1 TAN1+ AtQ)]’
participate in the CF with the same weight sinceo; = 1
¢(1 — p?) is constant for allk. Thus generally speaking a zy(t) = —alKc(t t2) = 4z (t)2} (t2)),
large amount of coordinate functiong (¢) must be computed 2 1
to well approximate the required RP in the CF (see (41)). 2V (ty) = 3[1 AL + I AtQ},etc

(52)
B. Non-stationary random process
y P 2) Application of Theorem 3: To make the choice of

Consider the non-stationary RP with zero mean and covaﬂ»u (1), P(l)( t) easier (sincek (¢, 7) = K(l)( t) P} 1 )( ) must

ance be a covariance function and satisfy (32)), represent (50) in

Kc(t,7) = e Prle=h = K\ (t)Py(7), the equivalent form
Ki(t) =e P P (1) =cPe P, 47) 2

. ) => K0P ()
which ensureds; (0) = 1. -

1) Application of Lemma 2The optimal in mean square K® (t) = P(g)(t) =2(t),l=1,2
CF based on the values ¢ft) at the points; = (i—1)At, i = ! ! ’ o

a a a
1,...,n is expressed by (p(t) :=e=#+4Y), 1(t) = 1 -1|_1t Hit?’@( )= ﬁmt?’
eiﬁtt a1l = 1,414, ajg = 0, asy = 0, 707, aoo = 1.225. (53)
o? =% 20t) = 5 . . . .
c The representation (53) is obtained by applying the
02 = (2 — 1) (1), 20(t) = (2 +1)p(ta)e P! Cholesky algorithm to= which results in= = AAT (see
’ P2 (t1) Section II.C). Then from Theorem 3 one obtains the following

etc  (48) equations for simulating of(t) := wa), noticing that by the
h0|ceK1( )( t) = Pl(l) = 1 the condition (32) is automatically

For this simple example, write out here the formulas fof
satisfied,

ok, 29(t) for all k = 3,4, ... is a hard task, not to say on a

possible inability to realize this procedure. wP), = CPw® + DPwiV,
2) Application of Theorem 1From Theorem 1 one obtains @  m(k+1) @ @

the following simple difference equation for simulation of Cy T(k)aDk; = —Cy w2(k) + 22k + 1),
C(ty) = wl(cl)' 21 (k) . a1

1 = — — PR

wiy = Ckwﬂ k=0,1,2,.. (k= DAt 71+ [(k - 1)A]
G = €=, o, = KAy + i, W TG DA
A= s — P = B Q0.0 = (89) W+ 1) = w0,k = 1,2,

, E[w§?wi’] = 0,Q1(0,0) = 1,Q2(0,0) = 6. (54)
C. Non-Markovian random process ' . ' . Q@ '
Consider the RR(#) It is seen that/(¢) is not Markovian sincev, ' = w,’,Vk is

not an uncorelated sequence.

() =>_&hi), V. SIMULATION STUDIES
A. Simulation of process (50)

Let us consider the process (50) and assume ¢hi
normally distributed with the statistics given in (50). In this

n/?\
—
Iy
1 =
I
[\v]
H \/

filt) = ——, f2(t) 5. (50) experiment the following three algorithms will be applied to
1+t 1+t simulate the realizations of (50):
Thusthe proces<(¢) has the covariance (|) Simulate the realizations fof and hence(;(tx) =
Kc(t 7_) _ Zl 1§lfl (tk) (k - I)Ak k=1, 1007A =
’ Concretely, we S|mulate Av whereA is g|ven in (53). As
@) 2f1(7) + fo(T)] + f2(B)[2f2(7) + f1(7)] (51)  towv = (v1,v2)7, itis normally distributed with zero mean and
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the unitcovariance (Algorithm 1 - Al). These realizations ca 25
serve as "true” and will be used as references to be compa 2
with realizations produced by other algorithms. 5 15
(i) Apply the algorithm (52) to construct the basis function: g 1
x{(t) and to simulate the process as (Lemma 2) E 0-2
n 0 E -0.5
G(t) = Z exTy(t), e = oxUE, (G5 5 4

k=1 g 45 * _

subject to covariance function (51). Mention that the realiz 20 T
-2.5

tions of v = (v1,v,)7 are taken to be that obtained in (i)
(Algorithm 2 - A2).

(iii) Apply the algorithm (53)-(54) (Dynamical approach).
The resulting realizations are denoted @gt;). Here the Fig. 1. Realizations produced by Al and A2. The realizatitifs 5", 8t
realizations Of(wé,wg)T are taken aiw(l),w%)T — v, vis of A2 are far too much from the true Al.
given in (i) (Algorithm 3 - A3).

The simulation results are shown partly in Fig. 1. Here A o4
realizations produced by each of three algorithms Al, A2 ai 2 A3 x

0 100 200 300 400 500 600 700 800
ith realization at [1+100(i-1),100i]

2.5 T T T T T

A3 are shown. To facilitate visualization, th& realization é 1'? : * " * :

is displayed at the point§l00(i — 1) + 1,...,100i] on the & 5| " * i

horizontal axis. All three algorithms have the same initi¢ 2 ok %% i

realization(,(1),k = 1,2,3. One sees from Fig. 2 that the ; -05 —fwfw ¥

algorithms A1, A3 have produced almost the same realizatic % 15 g

whereas the realizationg”, 5t", 8t of A2 in Fig. 1 are far = 151 7

away from that of Al, especially at the beginning. In A2 _2'2 L

only two coordinate functions are involved. Notice that th “ 0 100 200 300 400 500 600 700 800
variances? = 0.00328 hence it has no sense to involve mor: ith realization at [1+100(i-1),100i]

coordinate functions in simulation of RP. Asf = 6, the

first component accounts for 9% of the variability in the Fig. 2. Realizations produced by Al and A3 : All realizations of &&are
. . . 9 : close to that of Al.

data. To be convinced that; is small in general, as? is a

function of only At, in Fig. 3 the values3(At) are displayed 0.012

againstAt. We have also computed the (average) differen:

(in absolute value) between the tré& (;,#;) (51) and that « 0.01

resulting from K¢, (t;,t),Co(t) = vi2f(t) in (52) (v isa g o.o008

random variable with zero mean and variange= 6) and 2 406

found that this difference is almost the same as that presen E

in Fig. 3. It justifies once more that the first component? (¢) £ 0004

has the covariance structure almost identical to thaf(of. £ oo

On average, the difference between two covariance valt = 0

|K¢(ti,t;) — K¢, (ti, t5)],4,5 = 1,...,100 is equal to 0.1706. -0.002 T
To have the idea on how the algorithms A2, A3 wel 0o 1 2 3 4 5 6 7 8 9

simulate the "true” realizations, Figs 4-5 show two curve Deltat

"RMS-A2" and "RMS-A3" corresponding to the sample RMSF_ N ) tth d coefficient in the CF: it i " h
between the "true” realizations and simulated by A2, A3, 9 > [1°Varance ol f1e sseond coetlicien:in e L F 1 Smal enougn.

the proof that there is no need to involve more components in the CF.
1 Nr N 2
RMS — Ak = NrN Zr:l i:l(CIZ(ti) - Clr(ti))

. N . 1.4
where(? (t;) is thert® realization of¢y(¢;). In Figs 4-5,Nr = " ‘ " " " RMs-a2 |+
1000, N = 100. It is evident that in average, the realization: 125 T
of ¢5(t;) are much closer to that @f (¢;) than those of3 (¢;). 1% .

%) 08 t -
B. Estimation of random process (50) 2 o6l i

+
"
v
. . . 1
Let the following observation model be available o4l &

=l w J
Z(tio) = C(t’LO) + V(tio)aio = 1a 27 eeey 0 | | 1

tio =14 (io — 1)AT, AT = 106t, 6t = 0.1, (56) 0 10 20 30 40 50 60 70 80 90 100

iteration i, time = 1+(i-1)*Deltat, Deltat = 0.1

with {(¢;,) being given by (50) and(t;,) is an uncorrelated
sequence of observational error with zero mean and variarit® 4. Sample RMS between realizations produced by Al and A2.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



Issue 4, Volume 6, 2012 168
0.08 — — 0.26
RMS-A3  +
0.07 [t 0.24
0.06 —+Z — 0'022
+ - H
0.05 | —
%) n 1 E 0.18
= o004 . ¢ 0186
i Y 2 g4
003 - 4 . T : ;
h A
002 [ - 012 &%
0.1
0.01 | =
i 0.08
o] | | | | | | | | | 0.06 | | | | | | |
0 10 20 30 40 50 60 70 80 90 100 20 40 60 80 100 120 140

teration i, time = 1+(i-1)*Deltat, Deltat = 0.1 number of samples

Fig. 5. Sample RMS between realizations produced by Al and A3. Tiég. 6. Ensemble averaged RMSs of the PE produced by Al, A2 and A3.

curve RMS-A3 shows that compared to RMS-A2 in Fig. 4, the realization§he predictionis made overAt = 1. The errors are stabilized after about

of the A3 are much closer to the "true” Al. 100 realizations. The algorithm A3 has produced the better estimates. A1l and
A2 are of nearly the same performance.

o2 = 1. Assume further that(¢;,) and¢ in (50) is uncorre-
lated. The problem we want to solve here is to estimate tifgpossible since the sequencé” is not uncorrelated. Intro-
value of ¢(t;). It is evident that if we desire to obtain theducingy(t;) = (w'®,w!")T leads to the filtering problem in
estimate of¢(¢;,—i,r) given by z(t;,),i0 = 1,...,30' then we state-space form
have the filtering problem. Analogously one can consider the
smoothing or prediction problems. For example, the prediction
concerns the estimation af(¢;),t; > t;,, ... Note that the
above estimation problem is encountered frequently in data
assimilation wheredt represents a model time step in the
numerical model integration (for example, in minutes) aid
symbolizes the interval between two observations (in hours*?(tm) = HY(tio) +v(tio), H* = [I,0],i0 = 1,2, ..,
days). (60)
1) Filtering problem: . i _
(i.1) Algorithm Al. From (50)(56) one has the following The MMS filter can be written out as
observation model

(< 2 1
Y(tior1) = Coy(tio) y(tr) = (wi® w7,
C(tio) = |021|i,1=17

€ — (1) € J— (1) € — € _
‘11 = Ctio yC12 = th?CQl =0,c5, =1,

J(tior1) = CLG(tio) +

K (tior1)[2(tior1) — HCigp(tio)], 4(t1)(t1) = 0,
K(tios1) = M (tiop1) HOT[H M (tio41)HET]T,
M(tips1) = CE P(tin)CT, P(ty) = diag[6, 1],

P(tiot1) =[I — K(tfo+1)He]JV[(tio+1)7
C(tio) = [Iv O}g(tio)- (61)

2) Numerical results:In Fig. 6 we show the ensemble
averaged RMSs of the prediction error (PE) produced by
three algorithms Al, A2, A3. The same RMSs but for the
filtered error (FE) are displayed in Fig. 7. It is undoubted
that the DS approach (A3) produces the best estimates. The
algorithm A1 is slightly better than A2 especially at the
beginning, but in general they behave in the same way. If
A3 is capable of improving considerably the filtered estimate

Thus the MMS filtered estimaté(t;,) can be obtained as compared to the predicted estimate (see Fig. 8), only non-
Eltio) = H(tio)0(ts0). significant improvement of the filtered estimates compared to

(.2) Algorithm A2. For the model (52) the algorithm rejcheir predicted estimates is observed for A1 and A2. Noticing
mains the same as A1l with the differences that all three algorithms have filtered well the observation
noise since its variance is equal 1. It means that the algorithms
reduce about 99; noise level in the estimates. The reason of
the better performance of A3 may be explained by the fact that
the filter A3 estimates directly the proce$&) whereas two

(1.3) Algorithm A3. Direct application of the Kalman filterfilters A1, A2 estimate indirectly(¢) (through the estimation
(KF) to the DS (54) subject to the observation system (57) @f the coefficients in decompositions).

2(tio) = H(ti0)0 + v(tin),i0 = 1,2, ...,
H (tio) = [f1(tio), f2(tio)], 0 := (61,62)",
E)=0,E(00") =Z=. (57)

The optimal in minimum mean square (MMS) estimation
procedure is

Otiot1) = O(tio) + K (tiot1)[2(tior1) — H(tio+1)0(tio)],

9(751) =0,i0=1,2,...,

K(tior1) = P(tiot1

HT (tios1)[H (tiot1) P(tios1)H (tior1) + Lo2] 71,
P(tioy1) = [I = K(tiog1) H" (tio41)|P(tio), P(t1) = E (58)

H(tio) = [2%(tio), 25(ti0)], P(t1) = diag[o?,03].  (59)
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0.22 observations (contaminated with noise) for the process,
0.2 hence estimating the matrid is required first before being
018 able to make the prediction. One way to obtain an optirhal
L 016 ?s to require thatd,, will minimize the mean prediction error,
L o4 ie.
o2
01 )" . J(A,) = ming J(A),
008 | T i J(A) == E[(X(t) — AX(t — 1))T(X(t) — AX(t — 1))] (64)
006 ;_LO 4‘0 6|0 8|0 1‘00 1120 1‘40 Taking a derivative ofJ(A) with respect toA leads to
number of samples f[(X(t) —A,X(t—1))XT(t—1)] = 0 (orthogonal principle)
ence

Fig. 7. The same as in Fig. 6 but for the FE.

0.125 Ao = Kx(t,t = 1)K (t - 1),

012 | Kx(t,t—1):= E[X(t )XT(t—l)L

0.115 Kx(t—1):=E[X(t—-1)XT(t-1)]. (65)
0 o1t NG M Mention that (65) constltutes a basis for the derivation of
= 0105 7 T the fundamental matric") in Theorem 1.

0.1 . Inversely, suppose we are given a DS

0.095

0.0 X(t)=AX({t-1),t=1,2, ..,

0085 L X(t) = [o(t), -t —n+ 1)), (66)

100 150 200 250 300

where A may be any unknown matrix. We will show now
that the optimal estimatel,, determined by (65), will have

Fig. 8. Ensemble averaged RMSs of the PE and FE produced by Al dfwe structure (63) with
A3. Onesees here there is a significant decrease of FE compared to that of
the PE in A3. In contrast, only a non-significant improvement of the FE is
observed (compared to PE) in Al. The same performance is produced by A2
and it is not shown here.

number of samples

al = Kpx(t,t — 1)K (t —1). (67)

Really from the definition of (¢), if we represen& % (¢, t—
. _ , 1) = [b,BT],b € R", B € R"~Y*" then KX (t — 1) has the
C. Prediction of time series structureKT(t - 1) = [BT,cT],c € R™. If we denote by
1) Construction of DS:Let z(t) be a random process andK ;! (t — 1) = [B, ¢ then fromK % (t,t — 1)K '(t — 1) =1
consider the problem of optimal linear predictieft). This it fo||ows
happens, for example, when one wants to estiméteas the
daily rainfall, wind speed, temperature ... at instagiven a . T
series of historical data(t—1), ..., z(¢—n). Then the problem BB=1I1,c8=0, (68)
of construction of a dynamical model far(¢) is of the first  Consider (67) using the introduced definitions for
Importance. K.x(t,t — 1), Kx(t — 1) one comes to
Let us introduce the following dynamical model

A, = K,x(t,t — 1)K (t —1) = [b, BT)[B,
2(t) = izt — 1)+ o+ anz(t—n) +w(t)  (62) * i DT}q’f’d B D= (10 (69

First for simplicity, let w(¢) = 0. Introduce X (t) =

hich proves thatd, has the structure (63) with = a, =
[z(t),...,z(t —n + 1)]T. We have then a state-space repre; WHICT Proves mha S structure (63) wi “

. Thus if we are given a series of datél), ..., z(t — 1) then

sentation the optimal MMS prediction for:(¢) can be obtained by first
estimatinga, and next to integrate the model (63).
X(t)=AX(t—-1), 2) Numerical experimentfig. 9 displays the values of a
o 05 an, - typical time seriesc(t) at 100 first time instants (the curve
1 0 0 0 a "true”) whose observations(¢t) = z(¢) + v(¢) (the curve
A=1 9 1 o=l 7 (63) "obs”) are obtained by adding the noisét) with zero mean
0 1 0 I,_1, 0O and unit variances. In the experiment we will assume, how-

ever, that is unknown. Let us be given the observations at 300

Thus if A is given, an optimal predictorf((t) can be time instants and the experiment consists in using the set of
obtained by integration of (63) fronX (¢ — 1). In practice, 100 first observationg;.100) := [2(1), ..., 2(100)] to estimate

usually we are given a series(t — 1),...z(t — n),... of the system dynamics; the 200 last observations will be used
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TABLE | T T 1 T T T
ESTIMATED DYNAMICS PARAMETERS L per5|stence _
14 DS -———--
dimension al a2 as a4 as
n=1 -0.415 1.2 - —

n=2 -0.508 | -0.226 -
n=3 -0.53 | -0.273 | -0.091 -
n=4 -0.543 | -0.305| -0.148 | -0.103 -
n=>5 -0.546 | -0.308 | -0.1457 | -0.093 | 0.0207

average rms of PE

40 T T T T T T T T T
true

45 + obs +

20 40 60 80 100120140160 180 200
Time instant

Fig. 10. Time average RMS of the prediction error (PE) resulting ftben
DS approach subject ta = 2 and that of PER(1). It is seen that the DS
has produced the performance much better than the persistence.

validity of the Kalman Filter (KF) (the underlying system is

10 20 30 40 50 60 70 80 90 100 a linear dynamical system, all error terms and measurements
Time instant have a Gaussian distribution ...), the RS represents a white

sequence (hence it is an innovation sequence). Thus, a time-

Fig. 9. Typical time series "true” and its observations "obs” contaminategorrelation of the RS signifies that the designed filter is non-
with an uncorrelated noise sequence of zero mean and unknown vananceoptimal

In this situation, one possible and efficient way (see below)

to validate the performance of the estimation algorithm. Tﬁtg improve the filter' performance is to impose a Markovian or

matricesK, x (t—1,t) and K x (t—1) in (67) are approximated non-Markov structure (see Theorems 1,2 for example) for the

from Z Applving the described above algorithm for esti-RS in order to reduce as much as possible its time correlation.
[1:100)- APPYYING 9 More concretely, consider the filtering problem

matinga, subject ton = 2 yieldsa; = —0.508, a; = —0.226
(see also Table I). In Fig. 10 we show the RMS of PE produced
?y the( I)D)S apprlcl)aﬁh ahnd tEat gf one-step persisten(cci error z(t+1) = x(t) + w(t),
PER(1)). Recall that thep-ahead persistence err®FE R(p . .

is defined asPER(p) = z(t + p) — z(t). The Fig. 10 can be At+1) = Halt+1) +v(t+1),t =012, (70)
considered as a validation test which justifies that the modelwherex(t) € R”, 2(t) € RP,w(t),v(t) are the system and
largely outperforms persistence. Using the models of lowgbservational noise. Suppose the filter used in the assimilation
and higher dimensions results in the estimates for the dynamig®f the form

parameters displayed in Table I. Experiments carried out by

models withn > 2 cannot lead to a noticeable decrease of

RMS, compared to the case= 2. The worse performance is (t+1)=@2(t) + K+ 1)t +1),

observed fom = 1 (its RMS is higher about% compared to Ct+1):=2(t+1)— H{t+1)Pz(t), (71)

the casen = 2).
) where((t) is an RS. Under the standard conditions related

to the distributions ofz(0), w(t),v(¢), the gain K(¢) can
be computed using the KF formalism and the resuliiiig

1) Adaptive filter based on DS representation for PE sysepresents a time uncorrelated sequence. However when the
tem output: The objective of oceanic data assimilation igain K (¢) is obtained using different approximations (from
to estimate the ocean state and to produce its best foregasisical considerations, order reduction of system state, wrong
for the period of interest (10 days, for example) using @oise statistics, without involving a time-consuming Ricatti
numerical model (NM) and available observations. Last yeagguation ...), the filter is not optimal and the sequeq(@¢ is
the satellite sea surface height (SSH) is one of the maghe correlated.
important sources of observations. Due to very high dimensionOne simple approximation for better representirg) is to
of the NM (order of 10°~7) and large set of observationsassume that (t) is a Markov RP. This assumption leads to
(order of 10*~?), its non-linearities ... at the present onlythe following equation foK(¢) (see Eq. (22)),
approximate filters of simplified structure can be implemented.
As a consequence, the resulting PE for the system output (a
residual sequence - R8)t) remains usually time-correlated.  $(t) = W1 (t)¢(t = 1) + W (1)¢(t —2) + ... +
It is worth of noticing that under standard conditions of Ui(t)C(t—d)+v(t) (72)

D. Data assimilation in oceanic model
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componentgu(i, 3, k), v(i, j, k)]. The system state consisting
of (h,u,v) has the dimension = 302400.

In Fig. 11 we show the time averaged RMS of the SSH
PE, which are produced by three filters: CHF, CHF-MRK1

& 55 | in which the RS is modelled by the DS (72) subjectdte=
z 1 and CHF-MRK2 (subject tal = 2). It is seen that after
51 about 30 iterations while the error becomes to grow in the
45 CHF, the CHF-MRK1 allows to stabilize the estimation error.

. . . . . . | Moreover, the CHF-MRK2 is capable of decreasing the PE in
4 1o 2 30 40 50 80 70 a continuous way. The PEs prodL!ced by these. three flltgrs for
Sesimilation instant the _to_tal velocity(u,v) are also d|sp_layed in Fig. 12 which
exhibits a great advantage of two filters CHF-MRK1, CHF-
Fig. 11. The time average RMS of PE for the SSH resulting from the filtdYIRK2 over the CHF.
CHF (thecurve "CHF”), CHF-MRK1 (the curve "MRK1") and CHF-MRK2 |t js seen that by introducing a simple Markov or non-
(the curve "MRK2). Markov structure for the RS, it is possible to improve sig-
nificantly the filter’ performance if the original filter is still
far from an optimal one. We have applied this approach, with
nearly the same success, to a so called Prediction Error Filter
(PEF) (developed in [8]) for the MICOM model in the North
Atlantic domain as well as for a much more complex ocean
model HYCOM (HYbrid Coordinate Ocean Model) with the
coastal Bay of Biscay configuration [1]. Notice that the PEF
outperforms largely the CHF in terms of its (much) lower
estimation error. It is hoped that the presented approach will
certainly find practitioners who wish to adopt it for yielding

55 ' ‘ L L I 1 : . i .
16 20 3 40 50 e 70 more accurate solutions to practical engineering problems.

assimilation instant

RMSE

VI. CONCLUSIONS
Fig. 12. The time average RMS of PE for the total velogity v) resilting
from the filter CHF (the curve "CHF"), CHF-MRK1 (the curve "MRK1") and  In this paper an algorithm for the construction of a DS

CHF-MRK2 (the curve "MRK2"). model for a random process given CovF-SV is described. It is
shown that this approach is applicable to a wide class of RPs
having canonical forms. As seen from numerical examples

wherev(t) is a white sequence. However in this equatiognd simulation studies, compared to the CF approach, the
the matricesly(t), k = 1,...,d are unknown; That is true alsoproposed algorithm is simpler to implement and generates
for the statistics of/(¢). Notice that Eq. (72) is of the form (62) samples closer to the references (samples of the "true” RP).
hence we can apply the results in Section 5.D to estimate ¥@reover, application of DS model is proved to be beneficial
elements of¥,(¢),k = 1,...,d. In the experiment to follow, in solving the estimation problems like filtering, smoothing ...
for simplicity it is assumed thax(t) = vx,k = 1,...d of Markov or non-Markov RPs yielding better performance
where ¢, are time-invariant scalar parameter. The equatigfbmpared to the CF approach. When solving estimation prob-
for estimatingyy. is given by (67). lems with correlated noises (see [2], [10], [7] ...), the DS

2) Experiment: We have tested the described above apaodels, formulated in Theorems 1-3, are usually assumed
proach in the experiment with the Cooper-Haines Filter (CHR) be given. That is why it is of primary importance to be
which is developed by Cooper and Haines [4] for assimilatirmwvare of how one can construct the DS models for Markov
the SSH observations in the oceanic models. The objectiwed non-Markov RPs, from the knowledge on statistics of
of this test is to verify whether it is possible to obtain bettahe correlated noise sequences. Time correlation is present
results by imposing new DS structures for the RS. Remembera majority of engineering problems, in particular for the
that the gain in the CHF is constructed on the basis of tli¢mospheric and oceanographic observations [3]. Even with
principle of conservation of potential velocity. The experimemoise-free observations, the models in Theorems 1-3 can still
has been carried out using the noise-free SSH data (3 yeaes)ve as an useful tool for improving the filter’ performance.
and the NM Micom [9] to model the circulation in theThis fact has been demonstrated in Section V.D where the

North Atlantic. The observations are simulated as along-traekperiment has been carried out on assimilation of noise-

altimetric observations hence are sparsly located. An optinfede SSH observations in the ocean model MICOM for the

interpolation has been applied to generate a smooth setNafrth Atlantic. The major difficulties we have in solving
observations, making possible the calculation of the horizontateanic assimilation problems are due to very high dimension
velocity from the layer thickness estimates. This model ha$ numerical models, its non-linearities, sparse observations ...
the horizontal grid (140« 180), 4 vertical layers with three which do not allow to apply an optimal filter like the Kalman
variables: SSH, layer thickneds(i, j, k) and two velocity filter. Consequently only simplified, sub-optimal filters are
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feasible inpractice. Whitening the RS in the filter is a natural
and logic way to improve the filter’ performance. This can
be done efficiently, as shown in this paper, by means of
introducing a Markov or non-Markov model structure for
the RS and estimating the unknown system parameters based (SHOM/CMO) Toulouse, France. His research interests are in the
on realizations of the RS during filtering process. Numerical
results from the experiment with SSH data assimilation in the
oceanic MICOM model show that by this way it is possible
to reduce the estimation error up to abdéts compared to
the level of the initial error.
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