
 

 

 
Abstract— Today´s production processes face an increase in 

dynamics and complexity. Therefore, production control techniques 
face a demand for continuous advancement.  Methods from the field 
of artificial intelligence, such as neural networks, have proven their 
applicability in this area. They are applied for optimization, 
prediction, classification, control and many other production related 
areas. This paper introduces an approach using Elman Networks for 
the workstation-specific prediction of inventory levels and capacity 
utilization within a shop floor environment. It includes the selection 
of the appropriate network architecture, the determination of suitable 
input variables as well as the training and validation process. The 
evaluation of the proposed approach takes place by means of a 
generic shop floor model. 

Keywords—Artificial neural networks, Elman networks, 
predictive control, shop floor production  

I. INTRODUCTION 

ulti variant and customized products with short 
lifecycles are typical for today`s market [1]. The 

corresponding production processes and material flows are 
often complex and dynamic. Consequently, established 
production planning and control (PPC) approaches need a 
continuous advancement [2] [3].  

Particularly in the field of shop floor production, prototypes 
and small series as well as the specific technical organization 
complicate the handling of control related tasks [4]. At this 
point, methods from the field of artificial intelligence, such as 
neural networks, have proven their applicability as methods 
for classification, pattern recognition or production control [5], 
[6], [7]. 

This paper introduces an approach of a neural network 
based prediction of inventory levels and capacity utilization 
for workstations within a shop floor environment. The 
approach can be seen as a contribution to the development and 
implementation of innovative decentralized and/or predictive 
control strategies [8]. 
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At this, the structure of the paper is as follows. The next 
section introduces the special production form shop floor, 
followed by a short examination of predictive control in 
Section 3. Section 4 presents neural networks in general, 
followed by a brief description of the newly developed neural 
predictors regarding their structure and training results in 
section 5. Section 6 presents the shop floor model for the 
evaluation of the new predictors and the obtained 
experimental results. Finally, the article closes with a 
conclusion that summarizes the obtained results and gives an 
outlook on future research in section 7. 

 

II. SHOP FLOOR PRODUCTION 

The prediction concept presented in this paper refers to a 
shop floor scenario. Shop floor production is characterized by 
a customer oriented production of single pieces, prototypes 
and small series with correspondingly small lot sizes [9] [10].  

Organizationally and spatial, shop floor manufacturing is 
divided into several specialized workshops such as a sawmill 
or a turnery [11] (Fig. 1). Workpieces can pass the different 
workshops in any order, depending on their individual 
machining sequence. 

 

 
Fig. 1 Shop floor organization [12] 

This leads to a high flexibility, with a fast adaption to 
changing situations and disturbances, such as machine 
downtimes, e.g. [9]. Unfortunately, this also results in a 
dynamic material flow and complex dependencies between 
machining, transportation and handling steps [4].  As this 
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conditions are difficult to handle for established production 
planning and control approaches, PPC systems need a 
continuous advancement to furthermore enable an efficient 
handling [13]. One approach in this field is the 
implementation of predictive control strategies. 

III. PREDICTIVE CONTROL 

Predictive control systems basically rely on the prediction 
of the control variables` future development [14].  Predictive 
control is also known as “model predictive control” (MPC) or 
“model based predictive control” (MBPC) [15], [16]. For this, 
a model of the controlled system acts as a kind of function to 
compute the system outputs from the system inputs [17]. The 
considered time period shifts along the time axis and has a 
range of N sampled time steps (Fig. 2, upper half). 

 

 
Figure 2 Principle of predictive control [18] 

 
 Correspondingly, the prediction horizon ends at t + N time 

steps, starting from the current time t. The number of time 
steps k, the control structure covers, denotes the control 
horizon t + k (Fig.2, bottom half). This period is usually 
shorter than the prediction horizon [15].  

From the process and the hardware perspective, the classic 
control loop is extended with a prediction component (Fig. 3). 

 

 
Fig. 3 Predictive control loop (simplified) 

Within this predictive control loop, the controller (here 
called optimizer) processes the future course of the set point 
w, the constraints Co  and predicted value of the control 
variable xp [19]. The result of the calculation is a series of 
optimal manipulated variables y. Their first element y (k) 
enters the controlled system as actual control variable. At this, 
the prediction bases on the actual values and the settings yk of 
the previous control cycle [14] [20]. 

The technical implementation of predictive control 
approaches is feasible through a number of technologies such 
as fuzzy logic, artificial neural networks or agent based 
approaches [21] [22].  

IV. ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks emulate the structure and 
functionality of neural systems in nature [23]. They typically 
consist of nodes, which are arranged in at least two or more 
layers and are interconnected via weighted links [24] (Fig. 4). 
At this point, the number of layers and the direction of the 
connections depend on the type of network [25]. 

 
 

 
Fig. 4 Example of a neural network 

The nodes of a neural network act as a kind of neural 
processor [23]. In general, the sum of the input values serves 
as calculation basis for the so called activity function [26]. 
Common activity functions are the sigmoid or the tangens 
hyperbolicus [27]. The activity value is either directly 
transmitted to the subsequent nodes or a special output 
function calculates the output value based on the activity. It is 
also possible to choose the identity function for the output 
calculation. In this case, the output also corresponds to the 
activation [23]. 

Neural networks offer a fast data processing, a 
comparatively small modelling effort and the ability to learn 
from experience [28]. Further, they are able to approximate 
complex mathematical coherences that are either unknown or 
not completely describable [29]. In order to do so, neural 
networks act in a black box manner [30]. 

Depending on the type of neural network, three general 
learning procedures can be distinguished. Supervised Learning 
denotes a procedure, where pairs of input and output data are 
presented to the neural network. During the learning process, 
the network adapts its connection weights, so that the input 
leads to the desired output [25]. Reinforcement Learning only 
comprises the presentation of input data. Instead of the 
corresponding output, the network receives a feedback, 
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whether the output was correct [23]. Finally, Unsupervised or 
Self-Organized Learning takes place without any default 
values for the output or the corresponding feedback. At this 
point, the neural network tries to recognize patterns within the 
input data autonomously [31]. 

Common for all approaches is the validation of the 
learning results with a second dataset. This ensures the 
generalization of the learning process and avoids a mere 
memorization of the training data, the so called Overfitting 
[23]. 

V. THE NEURAL PREDICTORS 

A. Elman Networks 

As mentioned above, the structure of a neuronal network 
strongly depends on the application area. For prediction 
purposes, recurrent or partly recurrent architectures are 
common [32]. But in individual cases, other network types 
were successfully adapted to prediction related tasks.  

 

 
Fig. 5 Elman Network [26] 

 
In 2008 for example, Hamann introduced an intelligent 

inventory-based production control system using neural 
networks [14]. Within his approach, feed-forward networks 
come into operation both for control and for prediction. 

According to Hamann, the training effort of feed-forward 
networks is lower than the one of other network architectures 
in this field. In contrast, the prediction quality is only average, 
with a double-digit error for a prediction horizon of 7 days. 
Experiments with a longer horizon of 21 days show an 
unacceptable error rate. 

With regard to Hamann`s results, the approach presented 
in this paper focuses on Elman networks, a partially recurrent 
network architecture [33]. Elman networks are feedback 
networks, containing a special layer of so called context cells 
[34] (see Fig. 5). 

These context cells save the neural activation of previous 
states and therefore ensure that the prediction takes past events 
into account. Thus, the connection weight between the hidden 
layer and the context cells determines how much past states 
influence the prediction. A connection weight near or equal to 
1 stands for a strong influence of past states, a smaller value 
mitigates this effect. The general concept of Elman networks 
is extendable to topologies with multiple hidden layers. These 
networks contain context cells for each present hidden layer 
and are called hierarchical Elman networks [26]. 
 

B. Structure of the Neural Predictors 

The proposed concept comprises the workstation-specific 
prediction of inventory level and capacity utilization. For this 
purpose, the neural networks consider the actual state of the 
regarded workstation as well as the conditions of the 
predecessors. Correspondingly, the predictor networks` 
topology depends on the position, the considered workstation 
has within the material flow. 

In the following, a workstation with two predecessors 
serves as an example. The neural predictor for the inventory 
level is a 5:10:10:1 Elman Network (Fig.6). It processes 5 
input values, these are: 

 
1) The actual inventory level of workstation n, manufacturing 

stage m at time t (Inventory (t)n,m), 

Fig. 6 Topology of the inventory predictor (screenshot)
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2) the machining time (ten,m) and 
 

 
3) the setup time (trn,m)of all orders waiting in front of the 

workstation, 
 

4) the actual inventory level of predecessor n, production 
stage m-1 at time t (Inventory(t)n,m-1), 

 
5) the actual inventory level of predecessor n+1, production 

stage m-1 at time t (Inventory (t)n.m-1. 
 

 
The output value of the network represents the predicted 

inventory level at time t+1. At this point, the prediction 
horizon amounts four hours, depending on the shift plan of the 
underlying shop floor model.  

The capacity predictor has a similar 4:10:10:1 topology. 
While the number of hidden neurons and context cells is 
identical, the network needs only four input neurons. These 
neurons process the following values: 

 
1) The capacity of workstation n, production stage m at 

time t (Capacity (t)n,m), 
 
2) the occupancy of workstation n, production stage m at 

time t (Occupancy (t)n,m), 
 
3) the current inventory level of workstation n, 

production stage m at time t (Inventory (t)n,m) and 
 
4) the waiting time of workstation n, production stage m 

at time t (Waiting (t)n,m). 
 

At this point, capacity defines the maximum number of 
workpieces that can be produced within the prediction horizon 
of 4 hours (half a work shift). The determination of the 
corresponding period length is described in section 4. Finally, 
the waiting time denotes the amount of time, the workstation 

pauses due to disturbances, breaks, etc. 
 

C. Training and Validation 

The initial training and validation process of both prediction 
networks  is carried out using the Java Neural Network 
Simulator (JNNS), a Java based simulation platform [35]. This 
simulation program is the successor of the Stuttgart Neural 
Network Simulator (SNNS) that comes into operation in the 
experimental validation (see section 6) [36].  

The neural predictors` training process uses the supervised 
learning method following the Resilient Propagation 
algorithm. Previous Experiments with other training 
algorithms, such as Quick Propagation and Backpropagation 
with Momentum term show inadequate results. Figure 7 
depicts two exemplary results from these experiments, 
covering 500 training cycles each. The lower line represents 
the results (summed square error) of the training dataset, while 
the upper line denotes the same for the validation data. 

Regarding the learning and training curves, both learning 
algorithms show an inadequate learning behavior. For the 
Quickpropagation approach (Fig. 7(a)), the training curve 
oscillates during the whole learning process. At this, the 
prediction error is between 100 % for the first 200 cycles and 
10 to 20% for the 300 following cycles. Further, the 
corresponding validation curve is nearly zero during the first 
200 cycles and skips in two steps to a prediction error of 
almost 60% for the remaining 300 cycles. 

The Backpropagation algorithm with Momentum term also 
leads to oscillation training and validation curves with 
inadequately high prediction errors (Fig. 7(b)). In Contrast to 
the Quickpropagation approach, Backpropagation reaches 
error levels between 20 and 40% with three high peaks 
reaching an error of 100%. The validation data leads to an 
error of 40% for the first 100 cycles and 50% for the last 200 
cycles. Between these two peaks, the neural network reaches 
an error of 0 %.  

These results can be reduced to the inner structure of the 
datasets used for learning. Obviously, both learning methods 

(a) (b)
Fig. 7 Exemplary training results; (a) Quickprop (b) Backpropagation with Momentum term 
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are not able to determine a suitable weight matrix for the 
network. As mentioned above, the Resilient Propagation 
algorithm obtains adequate results and therefore comes into 
operation for the following experiments. 

The necessary learning and validation datasets result from 
test runs of the shop floor model that is also used for 
evaluation purposes in the next section. The test runs take 
approximately 30 days with an average of 1770 orders. At this 
point, the recording of input/output pairs takes place every 
four hours. Fig. 8 depicts the learning curve of the network for 
capacity prediction. The training process converges after 
approximately 700 cycles, when both curves reach their 
minimum.  

 

 
 

Fig. 8 Learning process of the capacity predictor 

 
A further training would lead to an increasing error for the 

validation data and a slight improvement for the initial training 
set. This is a typical indication for an overfitting of the neural 
network [36].  

The minimal error during the training process is less than 
0,1 (1≈100%). Transferred to the original prediction task, this 
implies an average prediction error of approximately 5%. The 
learning process of the inventory predictor converges after 
approximately 400 cycles (Fig. 9). At this point, the minimal 
error is again less than 0,1, but slightly higher than the 
capacity predictor`s result.  
 

 
Fig. 9 Learning process of the inventory predictor 

VI. EXPERIMENTS 

A. Settings  

The evaluation of the neural predictors takes place by 
means of a generic shop floor model. As software platform, 
the material flow simulation “Plant Simulation” comes into 
operation [37]. The Plant Simulation model comprises eight 
workstations on four production stages (Fig 10). Every 
workstation has an input buffer in front of it. The workpieces 
pass the buffer following the FIFO principle (First-In-First-
Out). The shop floor operates in three shifts of eight hours 
each. To enable a quick reaction to changing production 
situations, the prediction horizon is set to the half of a shift 
(four hours). 

During the simulated period of 30 days, six different 
workpiece types run through the shop floor. The order release 
takes place piecewise the setup and processing times differ for 
every type of workpiece, depending on the technical properties 
of the workstations. Hence the processing and setup times are 
in the range of one up to 40 minutes. 

The processing order is sequential, so that every workpiece 
passes all four production stages. The distribution of 
workpieces between the production stages follows an 
inventory based control approach. A finished workpiece is 
always transferred to the successor at the following production 
stage with the comparatively lowest inventory level. 

 

 
Fig. 10 Layout of the shop floor model 

While the shop floor model runs in Plant Simulation, the 
simulation of the neural predictors takes place by means of  
the Stuttgart Neural Network Simulator (SNNS), a C++ based 
simulation platform for neural networks [38]. The connection 
to the shop floor model in Plant Simulation is implemented via 
network (Ethernet), using the TCP/IP protocol. For this, the 
data flow is as follows.  

The input data for the neural networks is recorded within 
Plant Simulation and send via a TCP/IP socket to the running 
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SNNS instance. The answer contains the prediction results of 
the networks. 

B. Results 

In the following, the prediction results of workstation ws13 
serve as an example for the whole shop floor. This workstation 
is located at production stage 3 and has two predecessors as 
well as two successors. 

 Figure 11 depicts the comparison between the actual and 
the predicted capacity utilization for this workstation over a 
period of 20 hours. This timeframe contains five predictions 
with a horizon of four hours each. At this point, the curve for 
the actual values represents continuously recorded data. The 
prediction curve depicts an approximation between the 
performed five predictions. This results in a relatively uneven 
curve shape.  

 
Fig. 11 Actual and predicted capacity utilization for WS13 

The evaluation further shows an average workload scarcely 
above 34%. The time of inactivity is attributable to 
disturbances, breaks, setup times and maintenance. The 
predicted capacity utilization is close to the actual data, with a 
deviation of 3.2% maximum (Fig.12). 

 
Fig. 12 Deviation of the prediction error for the inventory levels 

The course of the inventory prediction is similar, with an 
error between nearly zero and a maximum of approximately 
6% (Fig. 13). As it is for the capacity prediction, the actual 
values represent continuous and event-oriented data. In 
contrast, the predicted values depict an approximation of the 
inventory development.  

 
Fig. 13 Actual and predicted inventory level for WS13 

The predicted values differ from the real inventories averagely 
2.5% (Fig. 14). Nevertheless, the prediction deviates up to 40 
minutes from the recorded inventory level. Due to the setup 
and processing times, deviation can correspond to 1-4 
workpieces. 

 
Fig. 14 Deviation of the prediction error for the capacity utilization 

VII. CONCLUSION 

This paper introduces an approach for the workstation-specific 
prediction of capacity utilization and inventory levels in a 
shop floor environment using partially recurrent Elman 
networks. The experimental results render a low monadic 
prediction error with a maximum of 6% for a prediction 
horizon of four hours. This is sufficient in the case of capacity 
utilization. For the inventory levels, an even more precise 
prediction is desirable. At this point, the deviation between the 
real and predicted values can correspond to multiple 
workpieces.  

Therefore, future research should focus on the reduction of 
prediction errors in coordination with an increase of the 
prediction horizon. A possible starting point is the evaluation 
of other network architectures or topologies. Another point of 
interest should be the practical integration of the introduced 
prediction approach into modern production control strategies, 
e.g. Model Predictive Control (MPC). Further, the preparation 
of training and validation data should be systemized, as the 
choice of an adequate training method is difficult and often 
based on a trial and error proceeding. 

In the field of neural network research, there is a 
fundamental interest in making continuous adaptations to 
changing shop floor situations, such as shifting setup- and 
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processing times and the varying number of workpiece types. 
At this point, the long-time application of neural networks in 
practical environments is an important field. The remaining 
question is now: Is it possible to implement a continuously 
learning production control system using neural networks? 
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