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Abstract:The great complexity of the problems in phase change materials to us to develop from a fast and methods
to solve with parallel programming techniques. We consider the phase field model consisting of the system of p.d.e’
s

q(θ)φt = ∇ · (A(θ)∇φ) + f(φ, u),
ut = ∆u + [p(φ)]t,

whereφ = φ(x, y, t) is the phase indicator function,θ = arctan(φy/φx), u = u(x, y, t) is the temperature,
q, p, andf are given scalar functions, andA is a2 × 2 matrix of given functions ofθ. This system describes the
evolution of phase and temperature in a two-phase medium, and is posed fort ≥ 0 on a rectangle in thex, y plane
with appropriate boundary and initial conditions. We solve the system using two finite difference methods. The
first method is based on the explicit Euler scheme for the first equation and the Crank-Nicolson-ADI method for the
second. The other method uses for both equations the Crank-Nicolson-ADI scheme. We show results of relevant
numerical experiments, compare the errors of the two methods, and compare their speed-up when we implement
them using parallel processors. Also make comparisons between the methods as and for each method separately
and draw conclusions depending on the number of nodes and the speed of execution method in one, two and four
processors.

Key–Words:finite difference methods, simplified phase-field models, Parabolic system, explicit Euler scheme,
Crank-Nicolson-ADI method, Error estimates, parallel implementation.

1 Introduction
The traditional method for the numerical solution
of evolution equations modeling phase transition
phenomena (e.g. solidification) is to discretize the
partial differential equations (p.d.e’s) that describe
the mathematical model (e.g. the heat equation)
in the, say, two domains where the material has
different phase, and couple this discretization with
appropriate interface conditions valid on the free
boundary (interface) separating the two phases.
This is quite complicated since it requires track-
ing the unknown interface and interpolating it on a
given grid, or using space-time discretizations, for
example adaptive grids that follow the interface.
As an alternative, one could usephase-field mod-
els, [1]. These models replace tracking and ap-
proximating the free interface with the introduc-
tion of another p.d.e., which is coupled with the
energy (heat) equation in the whole domain and,

in addition to the original unknown (the tempera-
ture), of a new unknown (thephase) which is equal
to a characteristic value, e.g. 0 in the solid and 1 in
the liquid phase, and changes abruptly in a small
neighborhood of the interface. The solution of this
system of two coupled nonlinear parabolic p.d.e’s
evolves from suitable initial conditions and its so-
lution should exhibit a sharp moving front in the
phase variable that defines the interface of the two
phases of the medium, and, when appropriate, de-
scribe the development of the complex geometrical
patterns (dendrites, regions where one phase lo-
cally penetrates into the other) that occur in realis-
tic solidification problems. The accurate numerical
solution of this coupled system of p.d.e’ s requires
fine spatial discretizations around the interface and
small time steps and is quite time consuming even
in two space dimensions. In this note we consider
a specific phase field model in two space dimen-
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sions, due to McFadden, Wheeler, Sekerka, Wang
et al., [2]−[5]. The model consists of a system of
two p.d.e’s of the form

q(θ)φt = ∇ · (A(θ)∇φ) + f(φ, u),
ut = ∆u + [p(φ)]t,

(1)

whereφ = φ(x, y, t) is the phase indicator func-
tion, θ = arctan(φy/φx), andu = u(x, y, t) is
the temperature, all defined on a rectangleΩ in the
x, y plane fort ≥ 0. The functionsq, f, p are given
smooth scalar functions of their arguments andA
is the anisotropy matrix given by

A(θ) =

(

r2(θ) −r(θ)r′(θ)
r(θ)r′(θ) r2(θ)

)

.

Here we taker(θ) = 1 + δγ cos(kθ), whereδγ

is a constant measuring the anisotropy of the sur-
face tension andk > 1 is an integer describing
the direction of branching. We also haveq(θ) =
(1 + δγ cos(kθ))/m(1 + δµ cos(kθ)), wherem is
a constant andδµ a constant measuring the kinetic
coefficient anisotropy. Ifδγ = δµ = 0 the model
is isotropic. If δγ = 0 andδµ 6= 0 (A(θ) = I),
we will call the modelsemi-anisotropic. The sys-
tem (1) is supplemented by given initial condi-
tionsφ(x, y, 0) = φ0(x, y), u(x, y, 0) = u0(x, y),
(x, y) ∈ Ω, and boundary conditions of Neumann
or Dirichlet type forφ andu on the boundary∂Ω
of Ω for t ≥ 0.

The system (1) has been solved numerically
by Wang, [4], and Wang and Sekerka, [5], in the
general,anisotropiccase (when bothδγ andδµ are
nonzero) by an ‘explicit-implicit’ finite difference
scheme that uses the explicit Euler method for ad-
vancing the phase-field over a temporal step in the
first p.d.e. of (1), and then uses an ADI (Alternat-
ing Direction Implicit) scheme for the second p.d.e
to solve for the temperature field. These two refer-
ences contain many interesting numerical compu-
tations and measurements of the efficiency of the
underlying numerical technique.

In [7]−[9] Rappaz and his collaborators have
considered similar systems to (1), for which they
have proved existence and uniqueness of weak
solutions. They have also constructed and im-
plemented fully discrete, adaptive finite element
methods and used them to simulate dendritic
growth in the anisotropic case.

In this note, we solve the system using two
numerical methods. In Section 3, we consider a
finite difference method based on the explicit Eu-
ler scheme for the first equation and the Crank-
Nicolson-ADI method for the second. In Section

4 we solve the system by another finite difference
method that employs for both equations the Crank-
Nicolson-ADI method. We show, in Section 5, re-
sults of relevant numerical experiments, compare
the errors of the two methods, and their speed-up
when they are implemented on parallel processors.
The results of this paper appeared initially in the
author’s Ph.D. thesis, [6].

2 The system.

On a squareΩ = [α, β] × [α, β] of thex, y plane,
we consider the following generalization of (1) in
the anisotropic case: For(x, y, t) ∈ Ω × [0, T ] we
consider the system

qφt = ∂x(a∂xφ) + ∂y(b∂yφ)
−∂x(d∂yφ) + ∂y(d∂xφ) + f,

ut = ∆u + ∂tp,
(2)

whereq = q(φ, ∂xφ, ∂yφ), a = a(φ, ∂xφ, ∂yφ),
b = b(φ, ∂xφ, ∂yφ), d = d(φ, ∂xφ, ∂yφ), f =
f(φ, u), p = p(φ) are given smooth functions of
their indicated arguments. The system (2) is sup-
plemented with initial conditions

φ(x, y, 0) = φ0(x, y), (x, y) ∈ Ω,
u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(3)

and, with homogeneous Dirichlet boundary condi-
tions

φ(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T ],
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T ],

(4)

or Neumann boundary conditions

∂φ

∂n
(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T ],

∂u

∂n
(x, y, t) = 0, (x, y, t) ∈ ∂Ω × [0, T ],

(5)
where ∂

∂n
denote the derivative in the direction

of the outer normal on∂Ω. We will assume
that the initial-boundary-value problems (2)-(4) or
(2),(3),(5) have unique solutions, smooth enough
for the purposes of the numerical approximation.

3 The explicit Euler-ADI method.

We consider the initial-boundary-value problem
(2)-(4) with homogeneous Dirichlet boundary con-
dition for simplicity in the notation. We discretize
(2)-(4) as follows. Leth = (β − α)/(J + 1),

Issue 4, Volume 3, 2009 62

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



where J is positive integer, andxi = α + ih,
yj = α + jh, 0 ≤ i, j ≤ J + 1. We define
Ωh := {(xi, yj), i, j = 1, . . . , J} and ∂Ωh :=
{(xi, yj), i = 0 or i = J + 1 or j = 0 or j = J + 1}.
Let N be positive integer andtn = n∆t,
n = 0, . . . ,N, where ∆t = T/N, and de-

fine tn+ 1
2 = tn + ∆t/2, xi± 1

2
= xi ± h/2,

yj± 1
2

= yj ± h/2, and

Sh :=
{

U = (U00, . . . , UJ+1,J+1)
T ∈ IR(J+2)×(J+2) :

Uij = 0 on ∂Ωh} .
We approximate the solution of (2)-(4) by

mesh functionsUn,Φn ∈ Sh, using the explicit
Euler-ADI scheme defined as follows:

Φ0
ij = φ0(xi, yj), U0

ij = u0(xi, yj),(xi, yj) ∈ Ωh

⋃

∂Ωh

For n = 0, 1, . . . , N − 1 :

(i) qn
ij

Φn+1

ij
−Φn

ij

∆t
− (Ln

hΦ)ij = fn
ij , (xi, yj) ∈ Ωh

Φn+1
ij = 0, (xi, yj) ∈ ∂Ωh

(ii)
2(U

n+ 1
2

ij
−Un

ij
)

∆t
− δxx̄U

n+ 1
2

ij

−δyȳUn
ij =

p
n+1

ij
−pn

ij

∆t
, (xi, yj) ∈ Ωh

(iii)
2(Un+1

ij
−U

n+1
2

ij
)

∆t
− δxx̄U

n+ 1
2

ij

−δyȳUn+1
ij =

p
n+1

ij
−pn

ij

∆t
, (xi, yj) ∈ Ωh

U
n+ 1

2

ij = Un+1
ij = 0, (xi, yj) ∈ ∂Ωh

(6)

Here,Un+ 1
2 ∈ Sh is the intermediate approxima-

tion generated by the ADI scheme. In addition we
denote:

(L
n
hv)i,j :=

{

1

h2
[δx(an

i− 1
2

,j
δx̄vn

ij
) + δy(bn

i,j− 1
2

δȳvn
ij

)

−δx(dn
i,j

δŷvn
ij

) + δy(dn
i,j

δx̂vn
ij

)], if (xi, yj) ∈ Ωh,

0, if (xi, yj) ∈ ∂Ωh,

and δxvij =
vi+1,j−vi,j

h
, δx̄vij =

vi,j−vi−1,j

h
,

δyvij =
vi,j+1−vi,j

h
, δȳvij =

vi,j−vi,j−1

h
, δxx̄vij =

vi+1,j−2vi,j+vi−1,j

h2 , δyȳvij =
vi,j+1−2vi,j+vi,j−1

h2 ,
∆hvij := δxx̄vij + δyȳvij .
Also we put

an
i+ 1

2
,j

:= a(
Φn

i+1,j+Φn
i,j

2 ,
Φn

i+1,j−Φn
i,j

h
,

(Φn
i+1,j+1+Φn

i,j+1)−(Φn
i+1,j−1+Φn

i,j−1)

4h
),

an
i− 1

2
,j

:= a(
Φn

i,j+Φn
i−1,j

2 ,
Φn

i,j−Φn
i−1,j

h
,

(Φn
i,j+1+Φn

i−1,j+1)−(Φn
i,j−1+Φn

i−1,j−1)

4h
),

bn
i,j+ 1

2

:= b(
Φn

i,j+1+Φn
i,j

2 ,

(Φn
i+1,j+1+Φn

i+1,j)−(Φn
i−1,j+1+Φn

i−1,j)

4h
,

Φn
i,j+1−Φn

i,j

h
),

bn
i,j− 1

2

:= b(
Φn

i,j+Φn
i,j−1

2 ,

(Φn
i+1,j+Φn

i+1,j−1)−(Φn
i−1,j+Φn

i−1,j−1)

4h
,

Φn
i,j−Φn

i,j−1

h
),

dn
i,j := d(Φn

i,j,
Φn

i+1,j−Φn
i−1,j

2h
,

Φn
i,j+1−Φn

i,j−1

2h
),

fn
ij := f(Φn

ij, U
n
ij), pn

ij := p(Φn
ij),

qn
ij := q(Φn

ij,
Φn

i+1,j−Φn
i−1,j

2h
,

Φn
i,j+1−Φn

i,j−1

2h
).

The implementation of the explicit Euler-ADI
finite difference scheme (6) is straightforward:
For n ≥ 1, given Φn

ij, U
n
ij , we computeΦn+1

ij in

stage(i). Then, we computeU
n+ 1

2
ij in stage(ii)

by solving for eachj oneJ × J tridiagonal linear
system, and thenUn+1

ij in stage(iii) by solving
again for eachi oneJ × J tridiagonal linear sys-
tem. So, the total number of operations required
to advance the solution by one time step isO(J2).
The operations may be readily accelerated using
S processors, by solving, in each one of the the
stages(ii) and (iii), J/S tridiagonal systems of
sizeJ × J on each processor (assuming thatJ is
a multiple ofS).
Using the scheme (6) is very time consuming
because of the stability condition∆t = O(h2),
which is required by the explicit Euler dis-
cretization of the first p.d.e. of (2). Hence,
in practice, we modify (6) as follows: We let
∆t = O(h) denote a (large) time step that is
used in the ADI steps (6.ii) and (6.iii) and let
tn = n∆t, 0 ≤ n ≤ N. Given Φn

ij and Un
ij ,

we first computeΦn+1
ij using the explicit Euler

scheme (6.i) repeatedly with a small time step
∆tEuler, where∆t = M∆tEuler, M = O(N),
evaluating the coefficient functionsq, a, d, andf
at tν = tn + ν∆tEuler, for ν = 0, 1, . . . ,M, Φν

ij,
andUn

ij (for f ). (We found that the accuracy of the
scheme was increased when we used the extrapo-
lated values3

2Φν
ij − 1

2Φν−1
ij in the aproximations

theφ, ∂xφ, ∂yφ variables in the coefficientb.)
Also, we solve the first equation with a different
step than the second equation, which enables
us to have a faster method than the Wang, [4],
which uses the same step for both equations,
while as seen in Table 1 the experimental order of
convergence remains the same.

4 The ADI-ADI method.

Using the same notation as in Section 3, we now
approximate the solution of (2)-(4) by mesh func-
tionsUn,Φn ∈ Sh defined as follows:
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Φ0
ij = φ0(xi, yj), (xi, yj) ∈ Ωh

⋃

∂Ωh

U0
ij = u0(xi, yj), (xi, yj) ∈ Ωh

⋃

∂Ωh

Forn = 0, 1, . . . , N − 1 :

(i)
2(Φ

n+ 1
2

ij
−Φn

ij
)

∆t
− δx(an

i− 1
2

,j
δx̄Φ

n+ 1
2

ij )

−δy(bn

i,j− 1
2

δȳΦn
ij) = fn

ij+

+δx(dn
i,jδȳΦn

ij) − δy(dn
i,jδx̄Φn

ij), (xi, yj) ∈ Ωh

(ii)
2(Φn+1

ij
−Φ

n+ 1
2

ij
)

∆t
− δx(an

i− 1
2

,j
δx̄Φ

n+ 1
2

ij )

−δy(bn

i,j− 1
2

δȳΦn+1
ij ) = f

n+ 1
2

ij

+δx(d
n+ 1

2

i,j δȳΦ
n+ 1

2

ij )

−δy(d
n+ 1

2

i,j δx̄Φ
n+ 1

2

ij ), (xi, yj) ∈ Ωh

Φ
n+ 1

2

ij = Φn+1
ij = 0 (xi, yj) ∈ ∂Ωh

(iii)
2(U

n+ 1
2

ij
−Un

ij
)

∆t
− δxx̄U

n+ 1
2

ij

−δyȳUn
ij =

p
n+1

ij
−pn

ij

∆t
, (xi, yj) ∈ Ωh

(iv)
2(Un+1

ij
−U

n+1
2

ij
)

∆t
− δxx̄U

n+ 1
2

ij

−δyȳUn+1
ij =

p
n+1

ij
−pn

ij

∆t
, (xi, yj) ∈ Ωh

U
n+ 1

2

ij = Un+1
ij = 0, (xi, yj) ∈ ∂Ωh

(7)
and

an
i+ 1

2
,j

:= a(
Φ̂n

i+1,j+Φ̂n
i,j

2 ,

Φ̂n
i+1,j−Φ̂n

i,j

h
,

(Φ̂n
i+1,j+1+Φ̂n

i,j+1)−(Φ̂n
i+1,j−1+Φ̂n

i,j−1)

4h
),

an
i− 1

2
,j

:= a(
Φ̂n

i,j+Φ̂n
i−1,j

2 ,

Φ̂n
i,j−Φ̂n

i−1,j

h
,

(Φ̂n
i,j+1+Φ̂n

i−1,j+1)−(Φ̂n
i,j−1+Φ̂n

i−1,j−1)

4h
),

bn
i,j+ 1

2

:= b(
Φ̂n

i,j+1+Φ̂n
i,j

2 ,

(Φ̂n
i+1,j+1+Φ̂n

i+1,j)−(Φ̂n
i−1,j+1+Φ̂n

i−1,j)

4h
,

Φ̂n
i,j+1−Φ̂n

i,j

h
),

bn
i,j− 1

2

:= b(
Φ̂n

i,j+Φ̂n
i,j−1

2 ,

(Φ̂n
i+1,j+Φ̂n

i+1,j−1)−(Φ̂n
i−1,j+Φ̂n

i−1,j−1)

4h
,

Φ̂n
i,j−Φ̂n

i,j−1

h
),

dn
ij := d(Φ̂n

ij ,
Φ̂n

i+1,j−Φ̂n
i−1,j

2h
,

Φ̂n
i,j+1−Φ̂n

i,j−1

2h
), fn

ij := f(Φ̂n
ij, U

n
ij),

qn
ij := q(Φ̂n

ij,
Φ̂n

i+1,j−Φ̂n
i−1,j

2h
,

Φ̂n
i,j+1−Φ̂n

i,j−1

2h
),

where Φ̂n
ij := 3

2Φn
ij − 1

2Φn−1
ij , and for n ≥ 1

Φ̂0
ij := Φ0

ij.

The implementation of this ADI-ADI finite
difference scheme is straightforward: Forn ≥ 1,

givenΦn
ij, U

n
ij ,Φ

n−1
ij , Un−1

ij , we computeΦ
n+ 1

2
ij in

stage(i) by solving for eachj one J × J tridi-
agonal linear system, and thenΦn+1

ij in stage(ii)
by solving again for eachi oneJ × J tridiagonal
linear system. A similar procedure is subsequently
followed for the U equations in stages(iii) and
(iv). So, the total number of operations required

to advance the solution by one time step isO(J2).
The operations may be readily accelerated using M
processors, by solving, in each one of the 4 stages,
J/S tridiagonal systems of sizeJ×J on each pro-
cessor (assuming thatJ is a multiple ofS).

5 Numerical experiments

In the sequel, we will solve the system (2) un-
der Neumann boundary condition on∂Ω. We first
determine the experimental order of convergence
of the two finite deference schemes. We took
Ω = [0, 1]×[0, 1], T = 0.1, r(θ) = 1+δγ cos(4θ),
θ = arctan(φxφy), (in order to avoid singularities
at zeros ofφx) a = d = r2(θ), b = −r(θ)r′(θ),
q = (1 + δγ cos(4θ)/(m(1 + δµ cos(4θ))) f =
φ(1−φ)u/(1+ 0.25u), p = φ3(10− 15φ+ 6φ2),
and constantsm = 1, δγ = 0.03, δµ = 0.03.
We added a suitable nonhomogeneous term so
that the solution of the associated initial-boundary-
value problem with Neumann boundary condi-
tions was(φ, u) = (e−t cos(x(x − 1)) cos(y(y −
1)), e−t cos(πx) cos(πy)).

‖ · ‖∞ ‖ · ‖2

J errors order errors order
φ : 1.906e − 04 −−− 8.627e − 05 −−−

50 u : 7.856e − 04 −−− 4.082e − 04 −−−

φ : 8.448e − 05 2.01 3.650e − 05 2.12
75 u : 3.732e − 04 1.84 1.915e − 04 1.87

φ : 3.926e − 05 1.89 1.702e − 05 1.88
112 u : 1.607e − 04 2.08 8.181e − 05 2.10

φ : 1.760e − 05 1.98 7.408e − 06 2.05
168 u : 7.367e − 05 1.93 3.727e − 05 1.94

φ : 8.125e − 06 1.95 3.407e − 06 1.92
252 u : 3.161e − 05 2.09 1.593e − 05 2.10

φ : 3.715e − 06 1.93 1.510e − 06 2.01
378 u : 1.424e − 05 1.97 7.161e − 06 1.97

φ : 1.740e − 06 1.87 6.871e − 07 1.94
567 u : 6.285e − 06 2.02 3.153e − 06 2.02

Table 1: Errors and order of convergence of the
modified explicit Euler-ADI scheme.

Table 1 shows the errors and the experimen-
tal orders of convergence of the numerical solu-
tion computed by the Euler-ADI scheme (modi-
fied as described in the last paragraph of Section
3) at T = 0.1 in the discrete maximum norm
‖ · ‖∞ and also in the discreteℓ2 norm ‖ · ‖2.
We computed withh = 1/(J + 1), whereJ =
50, 75, . . . , 567. The large time step∆t was taken
equal to0.01h (i.e. N = 100(J + 1)), while the
small time step∆tEuler was computed with a fac-
tor of safety as∆tEuler = 10∆t/(J + 1). (Hence
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‖ · ‖∞ ‖ · ‖h

J errors order errors order
50 φ : 1.920e − 04 −− 8.664e − 05 −−

u : 1.047e − 04 −− 4.762e − 05 −−

75 φ : 8.708e − 05 1.95 3.851e − 05 1.99
u : 4.725e − 05 1.96 2.119e − 05 1.99

112 φ : 3.979e − 05 1.93 1.731e − 05 1.97
u : 2.143e − 05 1.94 9.513e − 06 1.97

168 φ : 1.806e − 05 1.94 7.747e − 06 1.98
u : 9.622e − 06 1.97 4.231e − 06 1.99

252 φ : 8.254e − 06 1.93 3.486e − 06 1.96
u : 4.320e − 06 1.97 1.883e − 06 1.99

378 φ : 3.814e − 06 1.90 1.582e − 06 1.94
u : 1.944e − 06 1.96 8.383e − 07 1.99

567 φ : 1.795e − 06 1.85 7.300e − 07 1.90
u : 8.783e − 07 1.95 3.736e − 07 1.99

Table 2: Errors and order of convergence of the
modified ADI-ADI scheme.

∆tEuler = 0.1h2). For two consecutive runs with
valuesh1, h2 of h, giving errorse1, e2, respec-
tively, the rate of convergence was computed as
log(e2/e1)/ log(h2/h1). It is evident that the or-
ders of convergence are close to 2 for both vari-
ablesφ andu.

In Table 2 we record the analogous errors and
rate of convergence for the ADI-ADI scheme for
the same problem, using∆t = 0.01h. Again, the
orders of convergence are approximately equal to
2 for both variables.

Both finite difference schemes are quite time
consuming. For example, in the above problem
for J = 378, the Euler-ADI scheme required
about 6.27 hrs while the ADI-ADI scheme about
36 mins. For this reason we tried implementing the
se algorithms in arrays of parallel processors. The
partitioning of the computational effect is done as
follows: At every time step for both the explicit
Euler and the ADI-ADI steps we create linear sys-
tems of the form

AX = B

whereA, X andB are(J +2)× (J +2) matrices.
For the explicit Euler scheme A is diagonal, while
in the ADI-ADI steps (for solving linear systems
either in the x and the y-direction) A is tridiago-
nal. We partition the columns of B in(J + 2)/S
groups of columns, whereS is the number of pro-
cessors. Hence, each processor for an Euler step
computes a right hand side with(J+2)/S columns
and solves for the corresponding columns ofX in-
vesting the diagonal A. For an ADI-ADI sub-step
each processor computers a right-hand side with
(J +2)/S columns and solves(J +2)/S tridiago-
nal systems of size(J +2)×(J +2) with the same

matrix to compute the corresponding columns of
X.

We use the parallel computer system Pega-
sus with 16 dual-processors (32 cpu’s in total)
at the Computer Center of the Dept. of Chem-
ical Engineering, National Technical University,
Athens, Greece (http://febui.chemeng.ntua.gr/pe-
gasus.htm). Each mode consists of two Xeon pro-
cessors running at 3GHz with 2GB of RAM. The
nodes are interconnected with a Myrinet and a Gi-
gabit Ethernet network. The Gigabit Ethernet is
used for administering the system (NFS, monitor-
ing, file transfer, etc.), while the Myrinet, which is
considerably faster, is devoted to message-passing
with MPI. The operating system is Rock Linux 4.1
(http://www.rocksclusters.org). The algorithms
have been implemented inC using MPI for paral-
lelization. Job submission is done with the batch-
queuing system SGE (Sun Grid Engine).

In order to compare the performance of the
two difference schemes on the chosen test prob-
lem, the order of magnitude of the errors of both
schemes should be the same. For this purpose we
ran again the modified explicit Euler-ADI scheme
up to T = 0.1 using new∆t = 0.005h and
∆tEuler = 0.1h2. With the new steps, the modi-
fied explicit Euler-ADI scheme gave the errors of
Table 3 which are quite close to those of the ADI-
ADI scheme of Table 2. Table 5 shows the comput-
ing times (in seconds) required by the two schemes
to achieve the error levels shown in Tables 2 and 3
on one, two and four cpu’s. The data of Table 5 is
shown in graphical form in Figure 1. Note that the
processors exchange data at every time step and,
since they reside on different computers, they do
not share the same memory. We observe that the
speed-up due to the increase of the number of pro-
cessors is being slowed down due to the increase
in communication time. For example, asJ in-
creases, the ratios of computing time achieved by
the explicit Euler-ADI scheme on one cpu derived
by the computing time on two cpu’s approaches
a value of about 1.66 while the same ratio of the
time required by two cpu’s over the time required
by four cpu’s approaches 1.16. The same ratios for
the ADI-ADI method approach 1.64 and 1.23 re-
spectively. Overall, for the larger valueJ = 567
the ADI-ADI scheme is about 16 times faster than
the explicit Euler-ADI scheme, independently of
the (same) number of cpu’s.

Then we look in more detail some comparative
results for the efficiency of parallel algorithms: (a)
as altering the number of processors on the same
method, and (b), changing the method the same
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‖ · ‖∞ ‖ · ‖2

J errors order errors order
φ : 1.920e − 04 −−− 8.755e − 05 −−−

50 u : 8.670e − 05 −−− 4.505e − 05 −−−

φ : 8.692e − 05 1.95 3.880e − 05 2.01
75 u : 3.904e − 05 1.97 2.003e − 05 2.00

φ : 3.964e − 05 1.94 1.737e − 05 1.98
112 u : 1.766e − 05 1.96 8.985e − 06 1.98

φ : 1.794e − 05 1.95 7.720e − 06 2.00
168 u : 7.894e − 06 1.99 3.994e − 06 2.00

φ : 8.161e − 06 1.94 3.439e − 06 1.99
252 u : 3.522e − 06 1.99 1.775e − 06 2.00

φ : 3.747e − 06 1.92 1.538e − 06 1.98
378 u : 1.570e − 06 1.99 7.890e − 07 2.00

φ : 1.749e − 06 1.88 6.945e − 07 1.96
567 u : 6.988e − 07 2.00 3.507e − 07 2.00

Table 3: Errors and order of convergence of the
modified explicit Euler-ADI scheme.

J Euler-ADI Euler-ADI Euler-ADI ADI-ADI ADI-ADI ADI-ADI
Cpu 1 Cpu 2 Cpu 4 Cpu 1 Cpu 2 Cpu 4

50 9 9 20 5 4 8
75 38 33 62 16 12 17
112 179 139 220 52 37 47
168 874 605 800 177 115 126
252 4384 2800 3181 609 378 369
378 22559 13907 13525 2155 1541 1286
567 111202 66821 57504 6934 4221 3435

Table 4: Computing time (in seconds) to obtain the
results of Tables 2 and 3 on 1,2, and 4 cpu’s.
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Figure 1:Graph of computing time versus J Data of Table

5.

number of processors.
Tables 5 and 6 shows the ratios of computa-

tion time depending on the choice of the number of
processors on the method of Euler-ADI and ADI-
ADI, respectively. Watching the column 1 and 3
of these tables show that when doubled the num-
ber of processors, the time for solving the problem

J Cpu 1 / Cpu 2 Cpu 1 / Cpu 4 Cpu 2 / Cpu 4
50 1.00 0.45 0.45
75 1.15 0.61 0.53
112 1.29 0.81 0.63
168 1.44 1.09 0.76
252 1.57 1.38 0.88
378 1.62 1.67 1.03
567 1.66 1.93 1.16

Table 5: Comparison of time to process differences
Euler-ADI.

J Cpu 1 / Cpu 2 Cpu 1 / Cpu 4 Cpu 2 / Cpu 4
50 1.25 0.63 0.50
75 1.33 0.94 0.71
112 1.41 1.11 0.79
168 1.54 1.40 0.91
252 1.61 1.65 1.02
378 1.40 1.68 1.20
567 1.64 2.02 1.23

Table 6: Comparison of time to process differences
ADI-ADI.

is not halved. Indeed, for small size problems, the
tables show that instead of gaining time, losing,
due to the big time communications between pro-
cessors. We note that in both tables the maximum
ratio (when doubling the processor) is about 1.65.
Table 7 shows the ratio of years of various direct

J Cpu 1 Cpu 2 Cpu 4
50 1.80 2.25 2.50
75 2.38 2.75 3.65
112 3.44 3.76 4.68
168 4.94 5.26 6.35
252 7.20 7.41 8.62
378 10.47 9.02 10.52
567 16.04 15.83 16.74

Table 7: Reasons for years of litigation methods
to Euler-ADI ADI-ADI as a function ofJ and the
number of processors.

methods of Euler-ADI for ADI-ADI for 1,2, and
4 processors. We note that for sufficiently smallh
the ADI-ADI method is about 16 times faster than
the method Euler-ADI.

To simulate real anisotropic problems, one of
the parameters involved in defining how fine the
partition will choose us in the thickness of the in-
terfacee which usually ranges from1

200 to 1
800 .

noticed that for the sake of accuracy the thickness
should be at least four intervals. This forces us to
choose theJ from 600 to 2500. With this scheme
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we performed two numerical solidification exper-
iments integrationg the system (1) (cf. Wang,[4])
onΩ = [0, 1] × [0, 1], taking

φ0(x, y) =
1

2

[

1 + tanh
ρ − R0

2
√

2ε

]

,

u0(x, y) =























ts ρ < R0
[

ln

(

ρ
R0

)

+ts ln

(

ρ
R00

)]

ln

(

R0
R00

) R0 ≤ R00

−1 ρ ≥ R00

,

with ρ =
√

x2 + y2, q = 1/(m(1 + δµ cos(4θ))),
and r(θ) = 1 + δγ cos(4θ), where θ =

arctan(φy/φx), f = 1
ε2 (φ(1 − φ)(φ − 1

2 +

30εαS u
1+0.25u

φ(1 − φ)), p = φ3(10 − 15φ +

6φ2)/S, S is the dimensionless supercooling of the
melt, m is the ratio of the capillary to the kinetic
length andε is the ratio of the average interface
thickness parameter. In the numerical experiments
the values of the various physical parameters were
ts = 0.01, R0 = 0.1, R00 = 2R0, S = 0.8,
m = 0.1, α = 70, andε = 1/400. All computa-
tions were done with the ADI-ADI scheme taking
h = 10−3, ∆t = 2 · 10−5.
We first consider a semi-anisotropic case with
δγ = 0.03, δµ = 0. Figure 2.a shows the trace
of the phase functionφ on the diagonalx = y
of the squareΩ at t = 0.6. Figure 2.b shows
successive positions of the interface ofφ starting
from the almost circular contour att = 0.52. (For
t < 0.52 the evolution does not deviate much from
the isotropic case in which the interface is circu-
lar.) The subsequent successive positions were
plotted every 400 time steps. The last contour
shown is att = 0.72. The formation of a dendrite
is quite clear.
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Figure 2: Semi-anisotropic case withδγ =
0.03, δµ = 0. (a):Trace ofφ on x = y at t = 0.6.
(b): Evolution of the interface ofφ. Shown are suc-
cessive contours for0.52 ≤ t ≤ 0.72 every 400
time steps.

Figure 3 and Figure 4 shows a similar evo-
lution in the fully anisotropic case withδγ =
0.03, δµ = 0.03. There are slight differences,
mainly in the speed of the evolving interface.

Figure 3: Anisotropic case withδγ = 0.03, δµ =
0.03 evolution of the interface ofφ. Shown are suc-
cessive contours for0.52 ≤ t ≤ 0.72 every 400
time steps.
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(a)

(b)

Figure 4: Anisotropic case withδγ = 0.03, δµ =
0.03 (a):The surface ofφ on 3D att = 0.6. (b):
Evolution of the interface ofφ. Shown are succes-
sive contours for0.52 ≤ t ≤ 0.72 every 400 time
steps.
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