
 

 

  
Abstract - The paper purpose is to present some aspects regarding 

the calculus model and technical solutions for multistage sounding 
rockets used to test spatial equipment and scientific measurements. 
The calculus methodology consists in numerical simulation of 
sounding rocket evolution for different start conditions. The rocket 
model presented will be with six DOF and variable mass.  At this item, 
as novelty of the work we will use simultaneously the rotation angles 
and the attitude angles for describing the kinematical equations of the 
movement.  The results analyzed will be the flight parameters and the 
ballistic performances. The conclusions will focus technical 
possibilities to realize sounding multi-stage rocket recycling military 
rocket engines.  
 

Keywords— Multi-stage, Mathematic model, Sounding rocket, 
Simulation, Rotation angles  

NOMENCLATURE 

α  - Attack angle (tangent definition); 
β  - Sideslip angle (tangent definition);  

pβ  - Azimuth angle;  

pλ - Geocentric latitude; 
ψ  - Azimuth angle; 
θ  - Inclination angle; 
φ  - Bank angle; 
ρ  - Air density; 
Ω  - Body angular velocity;  

pΩ Earth spin:  
ECBA ,,,  - Inertia moments;  

A
z

A
y

A
x CCC ;;  -  Aerodynamic coefficients of force  

in the mobile frame; 
A
n

A
m

A
l CCC ;; , - Aerodynamic coefficients of momentum  

in the mobile frame; 
T
z

T
y

T
x CCC ;;  - Thrust coefficients in the mobile frame; 

T
n

T
m

T
l CCC ;;  - Thrust momentum coefficients in  

the mobile frame. 
ζηξ ,,  - Rotation angles 
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0 ρ=  - Reference aerodynamic force; 

lFH A
o 0=  - Reference aerodynamic couple; 

0T - Reference thrust force  

lTH T
o 0=  Reference couple thrust 

l - Reference length; 
m  - Mass;   

im  - Initial mass 

fm  - Final mass 
rqp ,,  - Angular velocity components along the axes of mobile 

frame;  
S  - Reference area; 
T - Thrust;  

ΣI  - Total impulse; 
t  - Time; 
V  - Velocity;  

wvu ,,  - Rocket velocity components in mobile frame;   

zpypxp VVV Velocity components in Earth frame; 

ppp ZYOX  - Normal Earth-fixed frame;  
Oxyz  – Body frame (mobile frame);  

ppp zyx  - Mobile coordinates in Earth-fixed frame;  
r - The distance between rocket and Earth center: 

pR  - Earth radius:  

I. INTRODUCTION 
 

t is indisputable that today, the spatial program involves 
many collateral activities, like preliminary tests for 

equipment and qualifications. It is well known that those 
auxiliary activities suppose huge technical and financial effort 
and this increases the total cost for any space program. Starting 
from this idea, the paper proposes an economical solution for 
preliminary tests using small multistage sounding rockets by 
recycling military rocket engines. The sounding rockets are 
commonly used to take readings or carry instruments from 50 
to 150 km above the surface of the Earth, the altitude generally 
between weather balloons and satellites. The region above the 
maximum altitude for balloons is about 40 km and the 
minimum for satellites is approximately 120 km. A common 
sounding rocket consists of a solid-fuel rocket motor and a 
payload. The freefall part of the flight is an elliptic trajectory 
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with vertical major axis, allowing the payload to appear to 
hover near its apogee. The average flight time is less than 40 
minutes, usually between 5 and 20 minutes. The rocket 
consumes its fuel on the first part of the flight, leaving the 
payload to complete the arc and return to the ground with a 
parachute.  Sounding rockets are advantageous for some 
research due to their low cost, short lead time (sometimes less 
than six months) and their ability to conduct research in areas 
inaccessible to either balloons or satellites. They are also used 
as test beds for equipment that will be used in more expensive 
and risky orbital spaceflight missions. The smaller size of a 
sounding rocket also makes launching from temporary sites 
possible, allowing for field studies at remote locations, even in 
the middle of the ocean, if fired from a ship. Finally, they allow 
us to recycle military subsystems, like rocket engine with solid 
propellant. Sounding rockets are commonly used for: 

- Research in Aeronomy, which requires this tool for in situ 
measurements in the upper atmosphere;  

- Ultraviolet and X-Ray astronomy, which require being 
above the bulk of the Earth's atmosphere;  

- Microgravity Research, which benefit from a few minutes 
of weightlessness on rockets launched to altitudes of a few 
hundred kilometers.  
 To approach these problems and in general for evaluating the 
launching capabilities is necessary to elaborate a complex 
mathematical model that ensures the rigorous and accuracy 
evaluation of the flight data and ballistic parameters. The 
mathematical model presented below, developed with 
maximum of accuracy, seeks to answer these needs. To solve 
this we use simultaneously the rotation angles, which presents a 
number of advantages which will be outlined in section III of 
the paper and the attitude angles (Euler angles). This model, 
allows us to evaluate two technical solutions, one of them based 
on three stages sounding rocket using the engines of short 
rocket 122 mm (fig. 4), and the second using four boosters, also 
from short 122 mm rocket around a central body obtained from 
long rocket 122 mm (fig. 5). These two technical solutions will 
be evaluated and the flight parameters and ballistic 
performances will be analyzed 

II. THE GRAVITY ACCELERATION, COMPLEMENTARY 
ACCELERATION, CONNECTION BETWEEN EARTH FRAME AND 

BODY FRAME 
In the beginning we will start by analyzing the influence of 

the secondary parameters like the variation of the gravity 
acceleration with latitude and altitude and the influence of 
Earth spine about the sounding rocket trajectory.  
 
The gravity acceleration and complementary acceleration 

In order to write the movement equations we will use a 
geodesic frame [8] connected to the Earth. Due to diurnal spin, 
beside attraction force, we must consider two supplementary 
accelerations: carrying acceleration given by: 

  
)( rΩΩ ××− pp  

and complementary acceleration (Coriolis acceleration) given 
by:  

VΩ ×− p2 , 
where Earth spin has the value:  

15102921,7 −−⋅=Ω sp . 
 If we designate r - the distance between rocket and Earth 

center : 
222 )( pppp zyRxr +++=     (1) 

where: ppp zyx ;;   are the rocket coordinates in the Earth frame 
and the Earth radius can be approximated by:  

)sin1( 2
pp aR λα−≅ , 

 then the gravity acceleration components in the  Earth frame 
are:  

p

xpp
rxp g

r
x

gg
Ω

Ω
−−= ω ; 

p

yppp
ryp g

r
Ry

gg
Ω

Ω
−

+
−= ω ; 

p

zpp
rzp g

r
z

gg
Ω

Ω
−−= ω ,      (2) 

where the radials and polar components of  the gravity 
acceleration [8], [3] are:  
 

rgg pArr
2Ω−= ;      ppA rgg λΩ+= ωω sin2 .            (3) 

and zpypxp ΩΩΩ ;; - the spin components are given by: 

pppxp βλΩ=Ω coscos ;   ppyp λΩ=Ω sin ; 
 pppzp βλΩ−=Ω sincos ,     (4) 

 
where the two angles used are: pβ  - azimuth angle and pλ - 
geocentric latitude. 
On another hand, complementary acceleration is: 
 

VΩa ×−= pc 2 ,       (5) 
with the Earth frame components given by: 
 

)(2 ypzpzpypcxp VVa Ω−Ω= ; )(2 zpxpxpzpcyp VVa Ω−Ω= ; 
)(2 xpypypxpczp VVa Ω−Ω= ,    (6) 

where zpypxp VVV ;;  are the Earth frame velocity components.  

The connection between Earth frame and body frame 
The Earth frame ( ppp ZYOX ) is a geocentric frame with the 
origin in the mass center of the Earth with pY  axis orientated 
upward (fig. 1).  The Earth can be considerate an ellipsoid of 
revolution [2],[3], [8].  In order to overlapping Earth frame 
over body frame we are passing through three intermediary 
frames. The first one is the starting frame )( sss zyOx , which has 

sy  axis normal to the tangent plane at the Earth’s surface, 
orientated upward (fig.1). Both frames participant in Earth 
rotation are not inertial frames. But, if we introduce as 
corrections the Earth spin influence by transport and 
complementary acceleration, previous defined, we can consider 
them as inertial frame. 
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Fig.1 Connection between Earth frame and starting frame 
 

If we denote pγ  the angle between geodesic normal and 
geocentric normal: 

pgp λ−λ=γ ,          (7) 
the connection between frames is given by: 

[ ] [ ]Tpppp
T

sss zyxzyx γ= A .    (8) 
Overlap of the Earth frame above starting frame can be done by 
the rotation matrix:   
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with the elements: 

pp
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a
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In order to obtain the angle pγ  between geocentric and 
geodesic normal we must start from the relation [8]:  

gp ba λ=λ tgtg 22 ,       (10) 
where ba,  are the Earth semi-axis.   
From relation: 25,2981)( =−=α aba  which defines Earth 
flattering we can obtain the relation: 

 
p

p
p λα−α−

λα−α
=γ 2cos)2/1(21

2sin)2/1(
tg .   (11) 

Obviously, if the start frame origin is on the Equator or on 
North or South Pole the angle pγ  is null and the matrix pγA  
became unitary matrix.  

The next intermediary frame is the initial starting 
frame )( 0000 ZYXO , which overlap above the starting frame in 
the launching moment (fig. 2). The starting frame, which is 
attached to the Earth, is rotating around the polar axe related to 
the initial starting frame, considerate fix, with an angle equal 
with rotation angle of the Earth at this time. 
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Fig. 2 Connection between starting frame and initial starting 
frame 

The connection between these two frames is given by:  
[ ] [ ]Tsssp

T zyxZYX Ω= A000    (12) 
where the rotation matrix is: 
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with the elements:  

tta ppgp Ω+Ω−λβ= cos)cos1(coscos 22
11 ; 

tta pgppggp Ωλβ+Ω−λλβ= sincossin)cos1(cossincos12 ; 
tta pgpgpp Ωλ+Ω−λββ−= sinsin)cos1(coscossin 2

13 ; 
tta pgppggp Ωλβ−Ω−λλβ= sincossin)cos1(cossincos21  

tta ppg Ω+Ω−λ= cos)cos1(sin 2
22 ; 

tta pgppggp Ωλβ−Ω−λλβ−= sincoscos)cos1(cossinsin23 ; 
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tta pgpgpp Ωλ−Ω−λββ−= sinsin)cos1(coscossin 2
31 ; 

tta pgppggp Ωλβ+Ω−λλβ−= sincoscos)cos1(cossinsin32 ; 
tta ppgp Ω+Ω−λβ= cos)cos1(cossin 22

33 . 
  

Obviously, if the flight time is short, the matrix pΩA becomes 
unitary matrix.  

Finally, using Euler angle ),,( φθψ  or Euler modified angle 

),,( ∗∗∗ φψθ  or Hamilton’s quaternion ),,,( 4321 qqqq  or 
rotation angles ζηξ ,,  [10], we can overlap the initial start 
frame over the body frame. The rotation matrix iA , which 
makes this transformation, will be shown afterwards.  

To sum up, in order to pass some elements from Earth frame 
to the body frame we need three rotations, which can be 
concentrated in a single matrix: 

ppip γΩ= AAAA ,       (14) 
which is the rotation matrix between Earth frame and body 
frame.  

III. GENERAL MOVEMENT EQUATIONS  

Kinematical equations   
Unlike paper [4], which covers the regular ballistic rockets, 

where the kinematical equations use Euler angles, in our case, 
when we have almost vertical initial launching direction,  the 
papers [3], [5], [6], [7], [8] recommend modified Euler angles, 
which have first rotation in vertical plane. Using kinematical 
equations written with Euler angles, in addition to benefits 
related to the significance of physical measurable sizes, the 
following drawback is involved: the use of trigonometric 
functions in program algorithms. Although complications 
related to solve the kinematical equations, the rotation  angles 
can be used for trajectory control, as it will be shown next. So, 
using partial rotation matrix:  
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the complete rotation matrix becomes: 
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== AAAAA i          (15) 
where, the elements are: 
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In order to obtain the connection between the derivatives of 
Euler angles and components of rotation velocity in the body 
frame, starting with relation:   

∗∗∗ φ++= &&& ψθΩ ,           (16) 
we can write: 
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Because the rotation matrix is:  

0,,, ∗∗∗∗ ψφψφ
≡ AA , 

we obtain:  
[ ] [ ]TA

Trqp ∗∗∗ θψφ= &&&*U .    
where: 
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Denoting ∗

AW  the connection matrix: 

⎥
⎥
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⎢
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ψφψφ
φ−φ

ψφψφ
==
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we can finally write: 
[ ] [ ]TA

T
rqp∗∗∗∗ =θψφ W&&& ,  (19) 

 
Besides the kinematical relations with the attitude angles 

described above in the model we use the rotation angles that we 
will introduce next. 

In paper [10] a group of three angles, called the rotation 
angles, were first introduced.  The sizes were used to describe 
the aircraft movement.  

Angles of rotation have the advantage that they can be 
measured easily on board of the aircraft or rocket. They retain 
the advantages of quaternion, removing singularity from 
kinematical equations written with the attitude angles (19). 
Also, allow the polynomial expression of the kinematical 
equations, an important advantage in building high-speed 
algorithms and easily implemented on hardware support. 
Angles of rotation retain the advantage of angles Euler type, 
that of being quantities directly measurable with a concrete 
physical meaning. 

   
It is well known that a sequence of rotations of a rigid body 

with a fixed point can be replaced by a single rotation σ around 
an axis through the fixed point. 
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Fig. 3 Single rotation from fixed frame to mobile frame 

 In order to build kinematical equations we will use two 
frames: 

 000 ZYOX - The fixed frame with unitary vectors: KJI ,,  ; 
 Oxyz – The mobile frame, linked by body with unitary 
vectors kji ,,  ; 
  
 
We suppose that the body has angular velocity Ω  with the 
components (p, q, r) in mobile frame Oxyz: 

rqp kjiΩ ++= .      (20) 
Axis  E is the axis around which a single rotation σ  is 

necessary to overlap frame 000 ZYOX  over frame Oxyz (fig 3 ). 
Unitary vector for axis E is σe :  

  nml KJIe ++=σ ,      (21) 
 

Taken into account the notations from figure 3, we can write: 
 BRCReeBReA −=⋅⋅=×= σσσ 000 );(; .     (22) 

     In this case, the relation between the position vectors of the 
point P and the point 0P  became successively: 

;cossin σ+σ+= CABR    
;cos)]([sin)()( 0000 σ⋅⋅−+σ×+⋅⋅= σσσσσ ReeRReReeR  

 
.sin)()cos1)((cos 000 σ×+σ−⋅⋅+σ= σσσ ReReeRR   (23) 

 
 If the point 0P  is located initially on the axis 0X , the point P 
will be finally on-axis x. 
 Because the vectors R  and 0R  are equal in module, we  can 
substitute in relation (23): 

.; 0 IRiR →→  
 Similarly, if the point P  is located on the axis y or z , we can 
substitute: 

.;;; 00 KRkRJRjR →→→→  
 Finally we obtain the system:  

.sin)()cos1()(cos
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(24) 
 If we note σ=σ= sin;cos sc , we obtain the relation:  

[ ] [ ]Ti
T KJIAkji = , 

where, iA  is the direct rotation matrix: 
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which coincides with that defined by the relation (15) using 
attitude angles. 

 
Thus, the overall rotation angle can be expressed by the 

superposition of three simultaneous rotations along the mobile 
frame axes: 

nml σ=ζσ=ησ=ξ ;;        (26) 
The sizes are called the rotation angles: 
  ξ   - Rotation angle around x  axis; 
  η - Rotation angle around y  axis;         
  ζ - Rotation angle around z  axis. 
The angles check the relation:  

 2222 ζ+η+ξ=σ  .      (27) 
Using rotation angles, from (25) the rotation matrix 

becomes:  
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where: 

σ=σ=
σ

=
σ
−

= sin;cos;;1
2

scsbca     (29) 

Using the inverse of this matrix  
        T

ppp AAB == −1             (30) 
we can obtain the components of acceleration in the Earth 
frame from components of acceleration in the body frame, used 
in dynamical equations.  
Like the kinematical equations we can write the relation: 

[ ] [ ]Tzpypxp
T

ppp VVVzyx =&&& ,       (31) 

where [ ]Tzpypxp VVV  are components of the velocity in the 
Earth frame.  

Because the rotation matrix (15) and (28) is the same 
regardless of the variables used, we obtain the following 
relationships between different variables (Euler angles, rotation 
angles) 

The attitude angles from the rotation angles are given by:: 

ca
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a
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   (32) 

Also, we can obtain the rotation angles from attitude 
angles using the relations: 

b
aa

2
2,33,2 −

=ξ ; 
b
aa

2
3,11,3 −

=η  
b
aa

2
1,22,1 −

=ζ    (33) 

where: 
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σ
σ

=
sinb  ; carccos=σ  ( ) 2/13,32,21,1 −++= aaac .    (34) 

Next, we will try to obtain the connection between the 
derivatives of rotation angles and components of rotation 
velocity in the body frame. 
Thus, as rotation around axis E  is an equivalent 
transformation in terms of the two systems, it follows that 
the vector σe projections are identical:  

nmlnml kjiKJIe ++=++=σ  .     (35) 
 If this relationship is derived with respect to time we 
obtaine: 
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thus:
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or otherwise: 
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Introducing the matrix iA  given by (25), the left member of 
the relationship becomes:  
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where we noted )2/tg(σ=t  
 Since the projections of unitar vector σe  satisfying the 
relationship: 

,1222 =++ nml         (41) 
results from differentiation: 

0=++ nnmmll &&& ,       (42) 
making the last term of the previous development to be 
null. 
On the other hand reverse matrix of the first term of 
relation (40) is 
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Multiplying by inverse matrix thus defined, relation (39) 
becomes: 
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which leads to algebraic relations: 
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where: 
rnqmpl ++=⋅=σ σeΩ&  .       (46) 

By derivation of the definition relations (26) we obtaine: 
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where derivatives of the angles of rotation can be put in the 
form: 
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or, in compact form:  
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Relation (31) together with the relation (48) represents 
kinematical equations written using rotation angles. The 
relation (48) is equivalent with relation (18) which is written 
using attitude angles.  

Dynamical  equations 
Developing cross products from paper [3], with the 

supplementary notations from [3], [4] we can obtain matrix 
representations of the dynamical equations:  
- Force equations in the Earth frame 
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- Moment equations in the body frame 
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where we denoted: 
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The inertial moment inverse matrix, where the inertial 
moments are given by: 

∫∫∫ +=+=+= myxCmxzBmzyA d)(;d)(;d)( 222222 .   

 (55) 
and the matrix T

pp AB =  is given  by relation (30).  
For the aerodynamic coefficients we used the method 

indicated in [4] and [9], based on polynomial series expanding: 
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  (55) 
where, by definition [9]  
 

)/arctan( uv−=α , )/arctan( uw=β .    (56) 
 
The following notations are used for the non dimensional 
angular velocities: 
 

Vlpp =ˆ ; Vlqq =ˆ ; Vlrr =ˆ ;          (57) 
 
Through the thrust coefficients we insert the commands: 
 

),,( nmlxT
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T
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T
z CC δ= δ  
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T
l CC δ= δ ; mmT

T
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T
n CC δ= δ         (58) 

IV. GUIDANCE COMMAND 
 Although the sounding missiles do not require a guided fly, 
we suppose a guided system which maintain the angle of 
inclination close to 90 degrees (vertical trajectory) and cancel 
lateral deviations. Also it maintains the roll angle at a 
prescribed value (45 deg). Although the core of calculation 
used angles of rotation, applying relations (32) we get as 
secondary size the attitude angles, which we can use to build 
the guidance command. 

Resuming [3], the guidance commands for the ballistic 
guided rocket are the simple form: 
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where the main control signals are:  

 
 

∗φ∗φ
Φ

φ+φ== ∗

&&~~; uuz
h
uz kkuhku  

∗ψ∗ψ
ψθ

∗θ∗θ
Θ

ψ+ψ=+θ+θ= ∗∗
θ

∗
&& && ~~;~~

uu
I
uuu kkuIkkku  , (60) 

 
The matrix PA  and *

AU , were the previously presented and the 
signification of 1K  is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=
010
100

000

1K ,       (61) 

The parameters relative zh;~;~;~ ∗∗∗ φψθ  are given by: 

ppdzddd zzh −=φ−φ=φψ−ψ=ψθ−θ=θ ∗∗∗∗∗∗∗∗∗ ;~;~;~  

where pdddd z;; ∗∗∗ φψθ  are input reference values. 
The integrals term are defined hereby:  
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The connection  between derivatives of Euler angles and the 

body angular velocity components are given by (19) where the 
matrix ∗

AW  is given by (18), and his inverse by (17). On 
another hand, the matrix pA  used in relation (59) can be 
approximated by matrix iA  which is given directly by relation 
(15). In this case, the relation (59) can be written in the scalar 
form:  
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The guidance commands are applied to the actuators which 

are approximated in the paper [3] by the matrix form:  
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    (65) 
where nml δδδ τττ ;;  are time constants and u

n
u
m

u
l kkk δδδ ;;  gain  

constants. 
 
In the next item of the presentation, using the simulation 
results,  we will show that the benefit in performance of the 
guidance system does not justify the technical effort to use such 
system for sounding missile.     

V.  INPUT DATA, CALCULUS ALGORITHM AND RESULTS 

Input data for the model 
Figure 4 shows the first model, called „VLS T3”, and main 
characteristics are included in Table 1. 
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Fig. 4 VLS T3 configuration 
 
Fig. 5 shows the second model, called „VLS B4”, and main 
characteristics are included in Table II. 

 

Fig. 5 VLS B4 configuration 
 

Calculus algorithm 
The calculus algorithm consists in multi-step method 

Adams' predictor-corrector with variable step integration 
method: [1] [17]. Absolute numerical error was 1.e-12, and 
relative error was 1.e-10.  
   

Test calculus 
For the test calculus the following initial conditions were 

used: 
Geographic orientation:  
- Azimuth angle °=β 90p  (towards the East);  

- Geocentric latitude °=λ 45p  (Romania latitude);  

- Altitude: ][10 my =  
 
Initial velocity ]/[400 smV = ;  
 
Initial inclination angle °=θ 850  

Results 
 First item consists in choosing between two possible 
integration models: first performs a separate integration for 
each stage, and the second performs continuum integration 
along entire trajectory. For the first model the final moving 
conditions for the previous work stage became initial 
conditions for the next work stage. First approach provides us a 
better model for the mass variation in the moment of stage 
separation, when the rocket mass has a decreasing jump. 
Contrary, the second model gives us wrong simulation of the 
mass jump as we can see in fig 6. 
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Fig. 6 Mass diagram – different integration model VLST3 
 
 Second item consists in the advantage and disadvantage of 
using a guidance system for fly control. From the figure 7 we 
can see a comparison between guided and unguided trajectory. 
We can observe that the difference in altitude is insignificant 
related to technical effort due for trajectory control. 
Accordingly, in the next development we will use unguided 
trajectory.  
 

TABLE I. VLS T3 CHARACTERISTICS   
VLS T3  im  [kg] fm [kg] Length 

[m] 
 I Stage 96 85 4.2 

II Stage 69 58 3.0 

 III Stage 42 31 1.8 

Final stage 16 16 0.6 

Three stage  launcher using the engines of short 
rocket 122 mm. Total impulse of the short 
engine: kNsI 5.2=Σ  

Table II. VLS B4 Characteristics 
VLS B4  im  [kg] fm [kg] Lengt

h [m] 

 I Stage 
(with 
boosters) 

164 120 2,4 

 II Stage 57 31 2,4 

Final 
stage 

16 16 0,6 

Central body from long rocket 122 
mm and four boosters, from short 
rocket around. Total impulse of the 
long engine: kNsI 2.6=Σ  
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Fig. 7 Comparison between guided and unguided trajectory  
VLS B4 
 

In the figures 8-11 are comparatively shown the flight 
parameters and the ballistic performances of the two models.    
 
Fig. 8 shows the mass variation in time along the trajectory. 
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Fig. 8 Mass comparison between VLST3 and VLSB4 
 

We can see a quickly mass decrease, followed by constant 
period, after burnout. In fig 9 is presented the velocity diagram. 
It can be observed the difference between the models, the 
velocity of the second being greater.  
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Fig. 9 Velocity comparison between VLST3 and VLSB4  
 
 
 
Consequently, due to the velocity difference the trajectory 

of the second is higher (fig. 10). Finally, in fig. 11 we have 
shown the inclination angle in time. It can be observed that at 
trajectory apex we have increase instability especially for the 
second model which attend higher trajectory.   
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Fig. 10 Ballistic trajectory 
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Fig. 11 Inclination angle diagram  

VI.  CONCLUSIONS  
The paper presents synthesis aspects of the simulation model, 
developed for the calculation of an operational rocket - which 
will launch equipment that will be tested with the aim of 
integrating them into complex spatial systems. The application 
is made for two variants of the sounding rockets, which will be 
tested in the national projects. We considered more possible 
solutions and we presented and analyzed the flight parameters 
for two sounding rockets that can be used. Since the major 
objective of the sounding rockets consists of testing solutions 
for assembling and detachment of multi-stage rockets and to 
launch at large angles, to eliminate the additional risk, it will be 
used the rocket motors in current production connected in 
parallel or in tandem, solutions what where presented during 
the work. In conclusion, the main sub-assemblies of the 
sounding rockets, will be provided from current production, the 
engine being developed in Romania and being in significant 
amounts in deposits.   Assembly and testing of the ground will 
be made at the plant where usually such systems are 
manufactured, and finally the sounding rockets will be tested 
by firing in an area at the Black Sea. 
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