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Abstract— We study the problem of scheduling jobs with
release times and due-dates on a single machine with the objective
to minimize the maximal job lateness. This problem is strongly
NP-hard, however it is known to be polynomially solvable for
the case when the processing times of some jobs are restricted to
either p or 2p, for some integer p. We present a polynomial-time
algorithm based on binary search when job processing times are
less restricted; in particular, when they are mutually divisible. We
first consider the case when the following condition holds: for any
pair of jobs, if one is longer than another then the due-date of the
former job is no larger than that of the latter one. We also study
cases when a slight modification of our algorithm gives an optimal
solution for the version without the restriction on job due-dates.

Keywords– algorithm, scheduling, single processor, release
date, due-date, lateness

1 Introduction
The scheduling problems deal with a finite set of requests called
jobs or tasks which have to be performed on a finite set of re-
sources called machines or processors. A job in a factory or a
program in a computer system or a lesson in a school are exam-
ples of requests. A machine in a factory or a processor in a com-
puter system or a teacher in a school are examples of resources.
Each job has its processing requirement, i.e., it needs a prescribed
time on a machine, and usually a machine cannot handle more
than one request at a time (for example, a teacher cannot give two
lessons simultaneously). Besides, there are a limited number of
machines and also time is limited, so we need to arrange an order
in which the jobs are handled by the machines to make the total
elapsed time as small as possible. We are given a non-decreasing
time objective function which we wish to minimize.

Here we consider a problem of the above type in which ad-
ditionally each job has the release time and the due-date: a job
cannot be started before its release time and it is desirable to com-
plete it by its due-date. We may have a single machine or a set of
the parallel machines available for scheduling the jobs.

A more formal description of our problem, which, in
scheduling literature is commonly abbreviated as 1/rj/Lmax, is
as follows. We consider the case when there is a single machine
available for scheduling the jobs from the set I = {1, 2, ..., n}.
The nature of the problem is such that each job j ∈ I becomes
available at its release time rj and it needs a continuous process-
ing time pj on the machine (no job preemption is allowed). dj
is the due-date of j (these parameters are non-negative integral
numbers). A feasible schedule S assigns to each job j a starting
time tj(S), such that tj(S) ≥ rj and tj(S) ≥ tk(S) + pk, for
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any job k included earlier in S; the first inequality says that a job
cannot be started before its release time, and the second one re-
flects the restriction that the machine can handle only one job at
any time. We denote by cj(S) = tj(S) + pj the completion time
of job j. We aim to find out if there is a schedule which meets all
job due-dates, i.e., every j is completed by time dj . If there is no
such schedule then we aim to find an optimal schedule, i.e., one
minimizing the maximal lateness Lmax = max{j∣cj − dj}.

1/rj/Lmax is stronglyNP -hard Garey & Johnson [5]. Thus
there is not much hope to find an efficient algorithm for the gen-
eral setting. Baker and Zaw–Sing [1], Bratley et al [2], Carlier [3]
and McMahon and Florian [8] have suggested exponential enu-
merative algorithms. The algorithms from [8] and [3] have a good
practical performance.

Without release times, scheduling jobs in order of non-
decreasing due-dates gives an optimal schedule in O(n logn)
time Jackson [7]; similarly, if all djs are equal, then scheduling
jobs in order of non-decreasing release times is optimal. Other
restrictions concern job processing times. Garey et. al. [6] have
developed a subtle O(n logn) algorithm for the case when all
processing times are equal. In this algorithm a concept of the so-
called “forbidden region” is introduced. A forbidden region is a
time interval in a schedule in which it is forbidden to start any job.
In the algorithm the forbidden regions are defined, and a failure
is declared if there exists no feasible schedule. Otherwise, a fea-
sible schedule is generated, using the earliest deadline scheduling
heuristic and the declared forbidden regions.

The above result was generalized in Vakhania [13] for the
case of two processing times p and 2p (for some integer p) with
an O(n2 logn log p) algorithm. The algorithm is obtained as a
consequence of two enumerative algorithms for the version of the
problem with arbitrary processing times. The first algorithm is
exponential, whereas the second one, which is a restriction of the
first one, runs in O(n2 logn) time if certain conditions during its
execution are satisfied. Otherwise, a special procedure, called the
Balancing Procedure, is to be applied to guarantee the optimal-
ity. As it is shown, there is an O(n2 logn log p) implementation
of the Balancing Procedure for the version of the problem when
job processing times can take values p and 2p, which yields an
algorithm with the same time complexity for this problem.

The multiprocessor case with m parallel identical processors
is much more complicated. However, it can also be solved poly-
nomially if job processing times are equal. Simons & Warmuth
[10] have suggested an O(n2m) algorithm which uses the earlier
mentioned forbidden regions from [6]. It applies the earliest dead-
line scheduling rule for the construction of feasible schedules,
while each time the next scheduled job fails to meet its deadline,
backtracking is performed and a new forbidden region is declared.
It is easily seen that the minimization problem can be solved by
the repeated application of an algorithm for the corresponding fea-
sibility problem: we iteratively increase the due-dates of all jobs
until we find a feasible schedule with the modified data. Since
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the maximum tardiness will depend on the job processing time
and the number of jobs, we may need to apply such an algorithm
np/m times (p is the job processing time). This number can be
reduced to log(np/m) if we use a binary search.

Vakhania [11] has proposed an O(mn logn) algorithm for
the same problem when the maximal job due-date dmax has a
given upper limit. The practical performance of this algorithm
remains good when there is no restriction on the maximal job due-
date: based on the computational experiments, for arbitrarily large
due-dates, the running time of the algorithm, in practice, does not
depend on dmax. The algorithm from Vakhania [12] has the time
complexity of O(dmaxmn logn+O(m�n)) (for the case of un-
restricted due-dates), where � < n is a parameter which is known
only after the termination of the algorithm; in practice, � turns out
to be a small positive integer. This algorithm enumerates a spe-
cial type of feasible schedules called the complementary sched-
ules on a search tree. A complementary schedule is constructed
by the earliest due-date heuristic (ED-heuristic), proposed earlier
in citeJ and [9]. This heuristic is repeatedly applied to the iter-
atively modified problem instances and different complementary
schedules are produced. In each generated complementary sched-
ule a new gap (a time interval in a schedule, not occupied by a
job) arises. These gaps are similar to the earlier mentioned for-
bidden regions, though we spend no special computational effort
for their construction. The so called overflow job realizes the max-
imal value of our objective function in a schedule. The behavior
alternatives reflect all possible ways of altering of the overflow
job in a newly generated complementary schedule. The algorithm
is based on a special analysis of behavior alternatives.

In this paper we consider the single-machine version relax-
ing restrictions on job processing times: we deal with the case
when job processing times are mutually divisible, that is, they can
be ordered in a non-decreasing sequence such that for each two
neighboring elements, the second exactly divides the first. First
we restrict our attention to problem instances such that for jobs
i, j with pi ≥ pj , di ≤ dj . In other words, longer jobs are more
urgent than shorter ones. This might well be the case in some in-
dustries where the manufacturer gives a higher priority to larger
orders wishing to complete them ahead smaller ones (as larger
orders give more profit). An example of a practical problem in
which item sizes are mutually divisible is a computer memory al-
location in which block sizes are restricted to powers of 2.

We present an efficient polynomialO(n2 logn log pmax) al-
gorithm, where pmax = max{pj ∣j = 1, 2, . . . , n}. The algo-
rithm uses some concepts introduced earlier in references [11],
[12] and [13] incorporating though a different type of a search. In
particular, the algorithm does not conduct the search on a solution
tree and uses binary search. The whole set of jobs is partitioned
into two kinds of subsets, non-critical and critical. The non-
critical subsets contain jobs that might be flexibly moved within
the schedule, whereas the critical sets contain the subsets of jobs
which form tight sequences in the sense that the delay of the earli-
est scheduled job from the subset cannot exceed some calculated
parameter between (including) 0 and pmax. Whenever the delay
of the latter job is 0, the lateness of the latest scheduled job from
the set defines a valid lower bound on the optimal value.

We first define the above job partition. Then we determine
the above lower bounds yielded by each critical partition. The
maximum among them is a valid lower bound for the problem,
and it also determines a delay that might be imposed to other crit-
ical subsets without increasing the maximum lateness. Having at
hand all the above magnitudes, we try to distribute jobs from the

non-critical subsets in order to utilize the intervals in between the
critical sequences, we call them bins, in the optimal way.

In this way a variation of a bin packing problem with differ-
ent bin capacities when the objective is to find whether there exists
a packing (solution) which includes all the items arises. Using the
binary search, we find the minimal possible delay for the critical
sequences that results in an optimal schedule.

A venerable paper by Coffman, Garey & Johnson [4] stud-
ies different versions of bin packing problem when the item sizes
(job processing times in our case) are mutually divisible. Coff-
man, Garey & Johnson show that these versions can be solved in
polynomial time.

As already noted, the case when job processing times are
mutually divisible turns out also useful for our scheduling prob-
lem 1/rj/Lmax. In fact, it is sufficient to consider the version
of our general problem in which the jobs from only non-critical
subsets have mutually divisible processing times. We abbreviate
the corresponding problem as 1/pj : divisible, rj/Lmax.

We stress again that the processing times of the jobs from
the critical subsets can be arbitrary. In some applications it is
predictable which jobs will form a critical sequence so that the
processing times of such jobs can be set without any restriction.

Finally, we study some cases when a slight modification of
our above algorithm gives an optimal solution for the version
without the restriction on job due-dates.

The paper is organized as follows. In section 2 we give basic
concepts and notions and some useful properties of ED-schedules
which are beneficially used later on in our derivations. Section 3
is devoted to the description of our algorithm. First we define the
basis for the binary search procedure. In Section 3.1. we describe
the AED-Algorithm which we use for scheduling each bin. In
Section 3.1. we describe the overall algorithm and prove its cor-
rectness. Section 4 deals with the general setting with mutually
divisible job processing times. We study a number of cases when
a slight modification of our main algorithm still gives an optimal
solution for this version without the restriction on job due-dates.

2 Some relevant properties of ED-
schedules

We denote by f(S) (fS(j), respectively) the maximal lateness in
the schedule S (the lateness of j ∈ S, respectively). We construct
our first and further feasible schedules using Earliest Due-date
heuristic (ED-heuristic) suggested by Jackson [7] in early 1955
and later also used by Schrage [9]. The preemptive (on-line) ver-
sion of this heuristic optimally solves the preemptive version of
our (general) problem: Starting from time 0, at any time t, among
all available jobs, schedule next one with the smallest due-date; if
a job with a due-date, smaller than the currently processed job be-
comes available, interrupt the latter job and schedule the former
job (note that the resulting schedule will have no machine idle
time unless no job is available).

Assume job i is processed at time rj , where dj < di. If i
cannot be preempted then it will delay the starting of job j. Note
however that this delay will be less than pi. The delay of job j
in S (equal to the magnitude tSj − rj) may result a non-optimal
schedule. Indeed, it may turn out that job j has a tight due-date
and had to be scheduled without or with a less delay in an optimal
schedule.

Let t be the maximum between the minimal release time of
yet unscheduled job and the time when the machine completes
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the latest scheduled job (0 if no job is yet scheduled). Initially,
we have no scheduled jobs. Iteratively, ED-heuristic (the non-
preemptive version of the above mentioned preemptive heuris-
tic), among all available jobs at time t, schedules a job with the
smallest due-date breaking ties by selecting a longest job. The
initial ED-schedule � is the one, generated by ED-heuristic for
the originally given problem instance. As we have noted, the
value of our objective function for the latter ED-schedule may
be pmax = max{pi∣i = 1, 2, ..., n} − 1 more than the optimal
value (although this absolute error may seem to be not so essen-
tial, it delineates the frontier between the polynomial solvability
and strong NP-completeness).

A gap in a schedule is a maximal consecutive time interval
in which no job is processed by the machine. By our convention,
there occurs a 0-length gap (cj , ti) whenever job i starts at its
release time immediately after the completion of job j. A block in
an ED-schedule S is its consecutive part preceded and succeeded
by a (possibly a 0-length) gap.

Now we define critical and non-critical jobs introduced in-
formally in the introduction. Our primary goal now is to deter-
mine rigid (critical) segments in our initial ED-schedule �. This
we do by simply verifying f�(j) for each included j. In gen-
eral, we call a job o in an ED-schedule S an overflow job if
fS(o) = max{f(j)∣j ∈ S} (we note that fS(o) might be pos-
itive or non-positive magnitude: in the former case there arises a
late job in S).

We call a kernel the maximal job sequence/set in S ending
with an overflow job o such that no job from this sequence has a
due-date more than do (if there are several successively scheduled
overflow jobs then o is the latest one).

Let us make the following easily seen but important observa-
tion: if the earliest scheduled kernel job in � starts at its release
time then there is no feasible schedule S′ with f(S′) < f�(o)
and � is an optimal schedule:

Observation 1 � is optimal if it contains a kernel with its earliest
scheduled job starting at its release time.

Assume in this rest of the paper that the condition in the
above Observation does not hold. Then there might be possible
to restart kernel jobs earlier and decrease f(�). We dedicate to
this task the rest of the paper. We introduce some necessary defi-
nitions first. Suppose i precedes j in an ED-schedule S. We will
say that i pushes j in S if job j gets rescheduled earlier whenever
i is removed and the succeeding jobs from S are rescheduled as
early as possible respecting the order in S.

It follows from our assumption and definitions that the ear-
liest scheduled job of every kernel is immediately preceded and
pushed by a job l with dl > do. In general, we may have more
than one such an l scheduled before kernel K in the block con-
taining K. We call such a job an emerging job for K, and the
latest scheduled emerging job (one scheduled immediately before
the earliest kernel job) the delaying emerging job for that kernel.

Although the emerging jobs are initially non-critical, they
may become critical if their scheduling is postponed for an “in-
admissible” amount of time. With the simplest scenario, we may
just postpone the scheduling of every delaying job. However, this
may not result in an optimal way of using the intervals in between
the kernels, and as a consequence, some of these delaying jobs
may become critical. We concern this question little later in more
details. Thus in aggregated terms, we aim to distribute emerging
jobs in between the kernels in an optimal way. We shall post-
pone the scheduling of an emerging job e rescheduling it after K

and call it the activation of e for K. Two or more emerging jobs
might be activated for K and the same emerging job might also
be activated for two or more successive kernels.

It easily follows from ED-heuristic that if we activate the
delaying job and will not include any other non-urgent job be-
fore K, then the earliest scheduled kernel job will start it its re-
lease time (we denote this magnitude by r(K) = mini∈K{ri}).
Let us re-calculate the values f(i) in the resultant partial ED-
schedule containing only the kernel jobs, for each i ∈ K, and let
L(K) = maxi∈K{f(i)}. Then clearly, L(K) is a valid lower
bound on the value of the optimal schedule.

Let K1,K2, . . . ,Kk be all the formed kernels while gener-
ating �. For any feasible S, f(S) ≥ Lmax = max�{L(K�)} is
a valid lower bound. Furthermore, if �(K�) = Lmax − L(K�),
then clearly, in any feasible S we may allow the delay of �(K�) ≥
0 without increasing the maximal lateness, for every K�; i.e.,
the earliest scheduled job of every K can be started at time
r(K) + �(K).

Note that f(o) is an obvious upper bound, where o is an over-
flow job in �. Let us now define the trial interval of the length
Δ = f(o) − L� , [r(K�) + �(K�), r(K�) + �(K�) + Δ], for
every kernel K�. Either there exists an optimal schedule Sopt in
which each kernel K� starts no later than at time r(K�) + �(K�)
or not. In the former case, the lower bound L� is attainable, and
in the latter case it is not. We shall carry out a binary search within
the trial intervals for all kernels to determine the minimal � such
that each kernelK starts no later than at time r(K)+�(K)+� in
Sopt. To each � its own set of kernels denoted by K� corresponds
(obtained from the earlier set by a possible addition of new ker-
nel(s)). We respectively redefine the delaying job for K ∈ K�
as one that completes after time r(K) + �(K) + � and will refer
to that job as the �-delaying job for K. Respecting a complete
feasible ED-schedule, a total order can be defined on the set K�:
we will write K ≺ K′ if kernel K′ immediately succeeds K.

3 The binary search procedure
Let us call a �-balanced schedule a feasible schedule with the
value of at most Lmax + � (the so-called �-boundary), where
0 ≤ � ≤ Δ (we already know that there exists a Δ-balanced
schedule). Our binary search procedure finds the minimal such �.
It is easy to see that � might be set equal for all the kernels. As � <
pmax, the number of iterations for the binary search procedure
is bounded by log pmax. Then roughly, the running time of the
overall algorithm is estimated to be log pmax multiplied by the
cost for the generation of a �-balanced schedule or the verification
that it does not exist.

While scheduling the jobs with the current �, respecting the
early starting time of each kernel determined by � we try to fill in
maximally the space in between each neighboring pair of kernels
and that before the first kernel. We will give a bit later a detailed
description of our algorithm distributing emerging (non-kernel)
jobs within the intervals in between the kernels when job process-
ing times of these jobs are mutually divisible (we don’t have such
an optimal procedure for the arbitrary processing times: not sur-
prising as the respective problem is NP-hard). For now assume
we already have this algorithm that schedules emerging jobs in
between the kernels.

At an iteration with current � in the binary search procedure,
no job from any K ∈ K� will surpass the �-boundary if K starts
exactly at time r(K) + �(K) + �. Besides, no gap may occur in
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between the jobs of K in this case. Suppose the earliest job of K
starts earlier at moment r(K) + �(K) + � − �, for some integer
� ≥ 1. Then while scheduling jobs of K by ED-heuristic, there
may occur a time moment at which some kernel job completes but
no yet unscheduled job from K is released. Then some external
job might be included at that (or later) moment. We may put a
restriction on the total length of such external jobs which might be
included in between the jobs of K (more formally, in any feasible
S with f(S) ≤ L(K) + �(K) + � the above length is to be
restricted as follows): clearly, if no gap in between jobs of K
occurs then this magnitude cannot be more than �, otherwise it
cannot exceed � minus the total length of the gap(s) occurred. We
call this restriction the fitness rule for K. The following lemma is
now apparent:

Lemma 2 For any � in the binary search, the fitness rule for any
kernel K is to be respected. In this case no job from K can sur-
pass the �-boundary.

Defining new kernels. From now on, assume the fitness rule
is respected while constructing our next �-balanced schedule for
the current set of kernels from K� . Let K be the latest scheduled
so far kernel from K� , and there occurs a job l surpassing the �-
boundary before the scheduling of the next to K kernel K′, K ≺
K′, is started. l does not belong to any kernel from the currentK� .
Furthermore, if l is scheduled immediately after (the latest job of)
K then it must be a (former) emerging/delaying job activated for
K and/or some preceding kernel(s) from K� . Obviously, l cannot
be scheduled after K in any �-balanced schedule in this case.

Now in general, suppose while we apply ED-heuristic, there
arises a non-kernel job j surpassing the current �-boundary. If
there are two or more such jobs arisen in a row, let j be the lat-
est one. Obviously, either j is of type l or a job scheduled after
all jobs of K must be pushing j. Furthermore, that job is one
activated for K. So either j is an activated former emerging job
or/and it is pushed by such a job e. For the latter case, consider
the longest sequence of jobs containing j among which none is
an activated job (a segment from the current ED-schedule). As
we have observed, job e immediately preceding the earliest job
from the sequence is an activating job. If e is also an emerging
job for j then the latter sequence defines a new kernel for the cur-
rent � and e is the �-delaying job for this new kernel. Otherwise
no new kernel can be defined: either e is not an emerging job for
j, or j itself is an activated former emerging job. In these cases
will say that an instance of alternative (b) (IA(b) for short) with
job e (job j) occurs. Thus intuitively, IA(b) covers the situation
when while scheduling the next bin the due-date of an activated
(former) emerging job turns out to be “insufficiently small”.

Whenever a new (non-kernel and non-emerging) job sur-
passes the current �-boundary and a new kernel can be defined (no
IA(b) occurs) it is added to the current K� (its parameters being
defined according the the earlier specified riles) and the construc-
tion is resumed respecting the newly added kernel for the current
�. The other case we treat in Lemma 3 and Theorem 6.

The first iteration in our binary search is carried out for
� = Δ when we generate our initial ED-schedule � and obtain
our first lower and upper bounds. We try to start each K ∈ K�
no later than at time r(K) + �(K) on the second iteration with
� = 0. To achieve this, the total processing time of jobs scheduled
before K is to be reduced compared to that on the first iteration.
In general, this is the case whenever � is reduced from one iter-
ation to the next one. If � is increased, then the total processing
time of jobs scheduled before K can be increased correspond-

ingly. The change from larger to smaller value of � is carried out
if we have succeeded to generate a �-balance schedule. Other-
wise, we switch to the next iteration with a larger � given that
no �-balance schedule exists. We will first describe how we try
to generate a �-balanced schedule, and then give some conditions
when we can assert that no such a schedule may exist.

We may just brutally postpone the scheduling of the delaying
job of each kernel while applying ED-heuristic. But evidently,
one cannot guarantee that the obtained schedule is �-balanced: we
might be left with a batch of the rescheduled emerging jobs which
no more can be completed at a due-time. That is why we need
to use the space before every kernel (between two neighboring
kernels) as much as possible, i.e., include non-kernel jobs with the
maximal total length. We shall call the corresponding interval in
between the preceding to K kernel and kernel K the bin defined
by kernel K and denote it by BK (the space before K if it is the
earliest kernel in K�).

Thus we came to a version of bin packing problem: we have a
fixed number of bins of different capacities and we wish to know
if the given items can be distributed into these bins (our task is
more complicated though: due to the release and due-dates, not
all items can be placed into all the bins). A simplest instance of
this problem is a well-known NP-complete subset sum problem.
And it is clear why we do not expect to obtain a precise criterion
for non-existence of a �-balance schedule for the general setting.
Coffman, Garey & Johnson [4] have shown that some versions
of bin packing problem can be efficiently solved whenever item
sizes are mutually divisible. We find such a restriction on job
processing times also useful for our problem. From now on, we
restrict the processing times of (only) non-kernel jobs to mutually
divisible times. As powers of 2 is the most “dance” such a set,
without loss of generality, we assume that the processing times of
non-kernel jobs are powers of 2.

3.1 The AED-Algorithm
We apply two passes for scheduling each bin. On the first pass we
use ED-heuristic, and we use some its extension on the second
pass. Suppose e is the �-delaying job for K ∈ K� that occurs
on the first pass, and let c be the length of the interval between
the completion time of the job immediately preceding e and time
moment r(K) + �(K) + �. No job from K will surpass the
current �-boundary if this interval is completely filled in. For this
reason, we call it a pseudo gap. From the mutual divisibility of
job processing times, this pseudo-gap can be reduced by at most p,
where p is the largest job processing time such that p ≤ c (recall
that c < pmax). Then while rescheduling bin BK , we may allow
the gaps with the total length of at most c − p between the jobs
scheduled in BK , whereas we might be able to increase the total
length of the jobs scheduled in BK by at most p.

We call jobs with processing time 2p or more long. As longer
jobs are more urgent, every long job lmight be delayed by at most
one shorter job k. Suppose l does not fit into the bin, i.e., cannot
be completed before time r(K) + �(K) + �. Then we postpone
the inclusion of job k incorporating a waiting strategy into ED-
heuristic: The Augmented ED-algorithm (AED-algorithm) post-
pones the scheduling of k and waits for at most c − p time units
for l. If l is released within that interval and it fits intoBK , then it
is scheduled. Otherwise, the inclusion of l inBK will yield a non-
�-balanced schedule. In other words, in no �-balanced schedule
l can be included into BK . Hence, l might only be included into
one of the following bins. In this case AED-algorithm does not
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include l in Bk and does not postpone the scheduling of k, i.e., it
proceeds as ED-algorithm.

Suppose while scheduling one of the following bins job l sur-
passes the current �-boundary. By ED-heuristic, all jobs that have
been scheduled in these bins are more urgent than l. Then it fol-
lows that no �-balanced schedule including job l together with
all the other jobs exists. Hence, we can cease the binary search
procedure for the current � and switch to the next iteration with
the next larger value of �. We summarize our derivations in the
following lemma:

Lemma 3 Suppose AED-algorithm did not include a long job l
into BK . Then l cannot be scheduled in BK in any �-balanced
schedule. Moreover, if while scheduling one of the following bins
IA(b) with job l occurs then there exists no �-balanced schedule.

We need another auxiliary lemma. It shows that the current
gap in a partial schedule forBK cannot be reduced by replacing a
long job with shorter but also long jobs. Suppose AED-Algorithm
leaves the (pseudo) gaps with the total length c′ > c−p such that
c ≥ pmin (if the latter inequality does not hold then c′ cannot be
further reduced). And let, similarly as before, p′ be the maximal
job processing time such that p′ ≤ c′. Suppose we have no short
jobs, i.e., ones with processing time p′ or less. So, we cannot
reduce the (pseudo) gap by including a short job. In general, one
could expect to reduce the gap by selecting another sequence of
jobs in BK . This would yield the replacement of a long job l
by a sequence of shorter jobs having the processing times larger
than p′. But such a replacement cannot exist if jobs are mutually
divisible. This is stated in the next lemma which straightforwardly
follows:

Lemma 4 Suppose we have a collection of jobs with processing
times 2p′, 4p′, 8p′, . . . , kp′, where k ≥ 2 is a power of 2. Then no
sequence containing some subset of these jobs scheduled without
a gap can be completed at time (k − 1)p′, more generally, at any
time moment �p′, for an odd �.

Theorem 5 Among all feasible assignments of the available jobs
toBK , AED-Algorithm leaves the (pseudo) gaps with the minimal
total length.

Proof. Let p′ be defined as above. We know that jobs with the
total length no more than p′ can potentially be appended to the
partial schedule for BK constructed by AED-algorithm (one job
with the duration p′, or two jobs with the duration p′/2, etc.).
No such a job j was available once the latest included job in BK
was completed as otherwise either it would have been included or
would have define a new kernel. It follows that no j with pj ≤ p′
could remain available for scheduling in BK . But from Lemma
4, no feasible partial schedule for BK can reduce the existing c′

without including j with pj ≤ p′, which proves the theorem. ⊓⊔

3.2 Summarizing the algorithm
Let us first summarize our algorithm and its soundness proof. As
we already know, the binary search procedure starts with � = 0
and the initial set of kernels and bins determined in �. These sets
are updated while the next bin from the current set of bins is being
scheduled during the first pass, as earlier described. In general, if
there are left untested trial values for �, it is decreased whenever
a �-balanced schedule was generated for the latest �. Otherwise,
there exists no �-balanced schedule (see the proof of the theorem
below) and the current � is increased on the next iteration.

Theorem 6 The algorithm above finds an optimal schedule in
time O(n2 logn log pmax).

Proof. For the soundness part, it clearly suffices to show that there
exists no �-balanced schedule if AED-algorithm did not generate
it for the current �. Indeed, suppose binBK could not be success-
fully scheduled, i.e., there arises some job o surpassing the current
�-boundary. Either job o was available while one of the preced-
ing kernels was scheduled or not. In the latter case it immediately
follows from Lemma 5 that o cannot be restarted earlier for the
current � and hence no �-balanced schedule may exist. In the
former case, if o is a long job then we just apply Lemma 3. Oth-
erwise, letBK′ be any preceding (already scheduled) bin (if there
is no such a bin then we are clearly done). At least one j ∈ BK′

is to be removed in order to include job o in BK′ . Moreover, by
AED-Algorithm, pj > po, hence dj ≤ do. Then clearly, the
maximal lateness cannot be reduced by rescheduling job o to an
earlier bin. This completes the soundness part.

As to the time complexity, we already have noted that the
number of iterations for the binary search procedure is bounded
by log pmax. For each of these iterations we use AED-Algorithm
for scheduling bins with a possible update of the current set of
kernels K� . The running time of AED-Algorithm applied to all
bins isO(n logn) (that of ED-heuristic) multiplied by the number
of times a new kernel arises. The latter is clearly bounded by n.
Hence, AED-Algorithm needs time O(n2 logn) and the overall
time complexity is O(n2 logn log pmax). ⊓⊔

4 The general setting with mutually
divisible job processing times

Throughout this section we relax our restriction that pi ≥ pj im-
plies di ≤ dj , i.e., we consider the version of the general set-
ting 1/rj/Lmax with mutually divisible processing times 1/pj :
divisible, rj/Lmax.

We first observe that Lemmas 4 and 5 still hold. However,
Lemma 3 and hence Theorem 6 may not hold. Indeed, a long job
l might be pushed not by a single (as before) but by 2 or more
shorter jobs (since all of them might be more urgent that l). Then,
if we postpone just one such a short job, the long job l still may
not be restarted early enough by its release time.

Now we formulate a sufficient condition when the algorithm
from the previous section will still produce an optimal solution
for this extended case.

Theorem 7 The algorithm from the previous section is optimal if
no IA(b) during its execution occurs.

Proof. From the condition and the definition of the algorithm it
immediately follows that it will find the minimal � for which there
exists a �-balanced schedule, and the theorem follows. ⊓⊔

In the rest of the paper we study the case when the condition
in the above theorem does not hold. Remind that while schedul-
ing a bin B, longer jobs are included in B ahead shorter ones by
AED-heuristic (the ED-rule is no more conserved). In this way
shorter jobs are forced to be rescheduled later, may be still within
B or after B within some succeeding bin. Although such a short
job i might be more urgent than a longer job l already included in
B. Whenever this is the case, we will say that l is a big brother of
i. Job i may have one or more big brothers, have been scheduled
in B or in some successively scheduled bin B′ ≻ B.
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Whenever i cannot be included properly (without surpassing
the current �-boundary) IA(b) with i will occur. The following
lemma is obvious:

Lemma 8 Suppose IA(b) with job i occurs. Then there exists no
�-balanced schedule if i has no big bother.

Thus assume that i has at least one big brother l. Suppose
l is the only big brother of i. Then clearly, if there exists a �-
balanced schedule, job l is to be rescheduled after job i in that
schedule. I.e., it will suffice to consider feasible schedules with
this property:

Lemma 9 Suppose IA(b) with job i occurs and l ∈ B is the only
big brother of i. Then in any �-balanced schedule i is to be in-
cluded ahead job l in B.

Thus the above lemma imposes some corrections in AED-
heuristic. In particular, we modify it so that, whenever the job
selected next by AED-heuristic is l, its scheduling is postponed
until i gets included. This rule is conserved, in general, for any
pair (l, i). We shall refer to that modification of AED-heuristic as
AED-algorithm 1. The next lemma follows from earlier lemmas
and definitions:

Lemma 10 Suppose, while AED-algorithm 1 is applied for
scheduling each bin, there occurs IA(b) with a (former) big bother
l. Then there exists no �-balanced schedule.

Recall that whenever we know that no �-balanced schedule
for the current � exists, we can switch to the next larger value for
� in our binary search procedure thus continuing our search for an
optimal solution.

If i has two or more big brothers then we need to determine
which of them are to be postponed. In this way, the number of
possible rearrangements that our algorithm may need to consider
will somehow depend on the number of big brothers of i. It might
be possible to discard some possibilities to come to a polynomial-
time solution. This can be a subject of a further research (see also
Section 5).

5 Conclusions
We have proposed an exact polynomial-time algorithm for finding
an optimal solution for a version of a classical NP-hard schedul-
ing problem with a single-machine when jobs have release times
and due-dates and the objective is to minimize the maximum late-
ness. To came to a polynomial-time solution of the problem, we
have restricted job processing times to mutually divisible times
and have tied job due-dates with job processing times. We have
also studied some cases when the proposed algorithm remains op-
timal for the version in which job due-dates and processing times
are not tied.

Two main research directions remain. First, does there exist
a polynomial-time solution for the version in which job process-
ing times are mutually divisible but job due-dates and processing
times are not tied? Second, if an answer on the latter question
is positive, is the corresponding problem a maximal polynomially
solvable case with restricted job processing times (i.e., any setting
with a less restricted times becomes NP-hard)?
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