

Abstract— The paper deals with using modified type of local
search algorithm for utilization within optimization. We will test our
algorithm on some testing functions and on travelling salesman
problem. We will modify this algorithm with the principles of
parallel computing and we will show the results. The algorithm is
created with knowledge taken from basic local search algorithm,
simulated annealing algorithm and tabu search algorithm.

Keywords— Parallel computing, Travelling salesman problem,

Optimization, Local search algorithm, Testing functions

I. INTRODUCTION

Parallel computing is the computing and data management
infrastructure that will provide the electronic underpinning for
a global society in business, government, science, research and
entertainment [2], [7]. Desktop machines, engineering
workstations, and computer servers with more than one
processor connected together are becoming common platforms
for design applications. It is therefore extremely important,
from the point of view of cost, performance, and application
requirements, to understand the principles, tools, and
techniques for programming the wide variety of parallel
platforms currently available.

Development of parallel software has traditionally been
thought of as time and effort intensive. This can be largely
attributed to the inherent complexity of specifying and
coordinating concurrent tasks, a lack of portable algorithms,
standardized environments, and software development toolkits.
There are some evident trends in hardware design which
indicate that uniprocessor architecture is not possible to realize
as sustainable performance in the future.

The speed of the processor is not important for the overall
speed of computation also ability of the memory system to
feed data to it. Parallel platforms typically yield better memory
system performance because they provide larger aggregate
caches and higher aggregate bandwidth to the memory system.
Localities of data reference, as the principles that are at the
heart of parallel algorithms, also lend themselves to cache-
friendly serial algorithms.

The past few years have seen a revolution in high
performance of many scientific computing applications.
Utilization is possible in such science disciplines as
computational physics or chemistry. Advances have focused

on understanding processes ranging in scale from quantum
phenomena to macromolecular structures. It is possible to use
for designing of new materials, understanding of chemical
pathways etc. Weather modeling, mineral prospecting, floods
predictions, etc., rely heavily on parallel computer and have
very significant impact on day-to-day life.

Real problem for solving such types of problems describe in
this paper is to define when the problem is solved and what
does it mean that the problem is solved. There are only a finite
number of feasible solutions to each problems everytime. For
simple problem of summation of two one digit number there
are only n (n=2) basic operations, there are no more than n-1!
feasible sequence for travelling salesman problem, no more
than (n1!)

2 subsets to the Twenty Questions problem, 2
n

possible assignments of values to n Booleans variables in the
satisfiability problem etc. But we are not able to make an
application for solving all possible solutions we have and
compute such that we can pick up the best solution from the
list of all. Brute force approach simply will not work here. We
can suppose that the computer can be programmed to examine
feasible solution in rate of nanosecond per one basic operation
(or feasible solution). For travelling salesman problem e.g. for
problem with n=20 we have 19! all possible solutions. If we
want to use brute force approach it means 1.216451 × 1017
basic operations. This is approximately 4 years in time. The
problem we raise by one for n=21 it is almost 80 years and so
on. We can see that it is not possible to use such brute force
approach and we have to think what kind of methods we can
use.

The chalenge of combinatorial problem optimization is to
develop algorithms for which the number of elementary
computational steps is acceptably small. Sometimes this
challenge is not interest to mathematicians, it most certainly is
to computer sciences. Moreover the challenge should be met
through study of fundamental nature of combinatorial
algorithms, and not by any conceivable advance in computer
technology.

Other utilization of parallel algorithm is in graph theory [10]
that plays significant role in computer science because it
provides systematic way to model many problems. We will
focus on one type of problem from family of graph theory
which is travelling salesman problem in next paper of this
paper. We solved this problem with modified local search
algorithm which we will introduce in next chapter.

Utilization of Modified Local Search as a Tool
for Parallel Computing

Jan Panuš

Issue 3, Volume 4, 2010 66

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

II. MODIFIED LOCAL SEARCH ALGORITHM

A. Solution Features

Basic parts of modified local search (MLS) algorithm will
be show in this chapter. MLS algorithm is inspired by three
well-known methods that are used in optimization and in
analysis of networks. The first one is simulated annealing [1],
second one is basic hill-climbing [4], [8] and the last one is
tabu search [5],[6]. Fundamentals of MLS are shown below.

MLS uses features of primary objective function to
characterise solutions. These features can be any property of
founded solution that can satisfy the simple constraints that are
not trivial. This means that some solutions have the property
while others do not. Features of objective function that is
solution are depended on problem and serve as the interface
between the algorithm and a particular application.

We used some information that we have on the beginning of
local search procedure. Usually we have constraints on
objective function features and we know the course of local
search [10]. Information that involve to the problem is called
the cost of features of objective function. The cost of objective
function has the direct or indirect impact on corresponding
solution and on solution properties and on the cost of the
solution, of course. Information about the search process
involve in the solutions visited by local search and in
particular local minima. The property Ui represents whether
solution has i (means if there is any value in process of local
searching) or not. Formula is above

() Ss
otherwise

sU i ∈

= ,
,0

ihassolution ,1
. (1)

B. Increased Cost Function

The formula increases the cost function g by including a set
of penalties in the problem. We construct new cost function h
that is defined as follows:

() () (),
1

sUpsgsh i

M

i

i∑
=

××+= λ (2)

where M is the number of features defined over solutions, pi is
the penalty parameter corresponding to feature Ui and λ
(lambda) is the parameter that regulates behaviour of
algorithm. The penalty parameter pi gives the degree up to
which the solution feature Ui is constrained. The parameter λ
represents the relative importance of penalties with respect to
the solution cost and is of great significance because it
provides a means to control the influence of the information on
the search process. MLS iteratively uses local search and then
modifies the vector of penalty. Every time when local search
settles in a local minimum, algorithm takes a modification
action on the increased objective function and increases this
function by the vector of penalties. Initially, every penalty
parameter is set to zero. This situation happens every time the
algorithm settles in the local minima. The penalty parameter is
always increment by value of one. Information inserted into
these actions increases objective function.

C. Penalty Modifications

In a local minimum s*, the penalty parameters are
incremented by one for all features Ui that maximise the utility
expression:

() () .
1

,using **

i

i

ii
p

c
sUfs

+
×= (3)

It means that penalty parameter of feature fi is used when
the actions with maximum value of eq. 3 is found, selected and
then performed. We used penalty parameter pi in eq. 3 to
prevent the scheme from being totally biased towards
penalising features of high cost. The role of the penalty
parameter in eq. 3 is similar to a counter which counts how
many times a feature has been penalised. If a feature is
penalised many times another feature with the same value but
with not so high penalty parameter is giving the chance to also
be penalised. The policy implemented is that features are
penalised with a frequency proportional to their cost. Features
of high cost are penalised more frequently than those of low
cost. The effort of local search procedure is to distribute
feature costs and the already visited local minima, since only
the features of local minima are penalised.

D. Regularisation Parameter

Important parameter for local search with penalization is
regularisation parameter λ in the augmented cost function in
eq. 3. This parameter determines the degree up to which
constraints on features are going to affect local search. We test
how this parameter is going to affect the moves performed by a
local search method. A move alters the solution, adding new
features and removing existing features, whilst leaving other
features unchanged. If the parameter is larger then the selected
moves it will solely remove the penalised features from the
solution and the information will fully determine the course of
local search. Respectively, if λ is zero then local search will
not be able to escape from local minima.

E. Definition of an aspiration criterion

Aspiration criterion is an idea that comes from tabu search.
In tabu search, an aspiration criterion is any condition under
which the status of a tabu move or a tabu attribute may be
overridden. The most commonly used form of aspiration
criterion is called the improved best aspiration criterion. New
improved solution can be obtained by a tabu move when the
tabu status of that move is ignored and the move is executed
anyway, thus obtaining a new best solution.

We have set of penalties imposed on solution features,
rather than a list of tabu solution attributes or a list of tabu
moves. So the improved move in MLS is defined as aspiration
move to be such that a new best found solution that is
generated by that move, and that move would not have
otherwise been chosen by the local search using the increased
objective function. Pseudo code for local search with
aspiration moves is given below this text.

Issue 3, Volume 4, 2010 67

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Penalized_Local_Search_with_Aspiration (x, h, g, N)
{
 Do
 {
 If (Aspiration_Move (x,h,g,N,z))
 x=z
 else
 {
y = y in N(x) that h(y) is minimised
 ∆h = h(y) – h (x)
 If (∆h <= 0) then x = y
 If (∆h > 0) then
iteration = iteration + 1
 Else iteration = 0
 }
 If (g(x) < g(x*)) then x* = x
 }
 While (∆h <= 0) and (iteration < 2)
 Return x
}

Aspiration_Move (x,h,g,N,z)
{
 z = z v N(x) that g(z) is minimized
 if (g(z)<g(x*) and ((h(z)–h(x))>0))
 return true
 else
 return false
}

where:
x, y a z are solutions,
g() returns the cost of a solution with regard to the

original cost function,
h()returns the augmented cost of a solution,
x

* is the solution of lowest (original) cost found so far by the
algorithm,

N(x) is the neighbourhood function, giving neighbouring
solutions of x

III. TESTING

We tested the value of λ parameter at every instances of
every problem. The value of this parameter varied as reader
can see below:

λ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30,

40, 50, 60, 70, 80, 90, 100}
(4)

For testing functions was measured following values:
a) number of iterations necessary for achievement of

optimal solution (or at least sub-optimal),
b) the best found solution,
c) number of change of the best found solutions – it means

how many times we measured change of the best found
solution to next better solution in local search procedure. We
used many test functions from [3] but for this paper we used
one of these functions – Sine envelope sine wave function,
function is in eq. 5.

()
()()∑

−

= +

+ ≤≤−

+

++

−+
−

1

1
222

1

22
1

2

100100,5.0
1001.0

5.0sinn

i

i

ii

ii
x

xx

xx
(5)

We can see that MLS is pretty strong for finding global
minimum for this function even for different value of
aspiration criterion. When we connect the algorithm with this
aspiration criterion we can see better results than without
criterion aspiration. We can see this on found global minimum
because the results are flatter and it is not so fluctuating such
as MLS without aspiration criterion. One disadvantage is more
time consuming of algorithm with aspiration criterion than
without the criterion. This is because algorithm uses control
element that is looking for whether is solution in aspiration
criterion or not. Reward for this is more accurately result. The
number of found new best solutions is better with algorithm
connected with aspiration criterion.

Another problem that we focus on is to tune regularization
parameter λ in that way to get better results in some short time.
Really good results are for parameter within range of <0.4;
0.9> (see fig. 1 and fig. 4). Time consuming and flatness of
found results are really pleasure. We can say that this range of
parameter is acceptable for another calculation as a started
point. The values of parameter within the range of <1; 100>
provide satisfying results but only for time consuming. When
we measure excess from the best known results, this is not
really good results achieved. We can use this range just for
those problems where we do not need so precious results.

We can see on fig. 3 that found solution for algorithm with
aspiration criterion is better than without, especially, when λ
parameter is within values of <0.1; 9>. MLS with aspiration
criterion has better results of the number of iterations than
MLS without aspiration criterion – fig. 1 and fig. 2, that is
obvious with values of λ parameter in the range of <0.1, 0.9>.
The results are not so fluctuating and it looks more flattened
when we used MLS algorithm with aspiration criterion. This
flatness is possible to explain on the low value of parameter λ.
The less is the value the raising of penalization is smaller and
the time to consume to local searching is higher. Because the
number is low, the tendency to escape from local minima is
very weak and finding of good solution is really strong. The
higher is the value of this parameter the weaker is tendency to
escape from local minima. The lower is value of the parameter,
the really good chance to find good solution.

Issue 3, Volume 4, 2010 68

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 1 - Sine Envelope Sine Wave function, number of
iterations

Fig. 2 - Number of iterations for Sine Envelope Sine Wave

function - specific range

Fig. 3 - The best found solution for Sine Envelope Sine

Wave function

Fig. 4 - Number of changes of the best found solution for

Sine Envelope Sine Wave function

Another type of function is Styblinski – Tang function that
is used for nonconvex optimization as a stochastic
approximation function. This function is very difficult to
model and is really unstable for measuring. Number of
iterations is pretty same (see fig. 5) for both algorithm with
aspiration even without aspiration.

The best found solution (see fig. 6) is better for algorithm
not using aspiration criterion. There are a lot of values out of
profitable range of testing. We tried to make many tests with
setting of function, the results were always similar. We think
this is the problem of type of function and the problem of used
algorithm. Future work on this field should be aimed on setting
of algorithm to gain better results.

The problem was also with number of better found solution
changes (see fig. 7) with aspiration. The results were better
without aspiration criterion.

Fig. 5 - Number of iterations Styblinsky – Tang function

Issue 3, Volume 4, 2010 69

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 6 – The best found solution for Styblinsky – Tang

function

Fig. 7 – Number of changes of best found solution for

Styblinsky – Tang function

Another type of function is Master cosine wave function. As
you can see on fig. 8 number of iterations is better when we
didn’t used aspiration with values of λ within the range of
<0,1;1>. When is the value of λ higher than 2 the results
changed for aspiration used algorithm. But these results are not
so different that the algorithm could get better results. We
recommend to use λ parameter within the range of <0,4;100>
because the value of this number is pretty good for our aim,
that is to get results as fast as possible.

Fig. 8 – Number of iterations for Master cosine wave

function

Best found solution is a criterion that gives us good
information about our algorithm. We can see this on fig. 9 for
Master cosine wave function. The best solution for this
function is 0. As you can see we got these results for algorithm
used aspiration within range of <0,1;1>. The results are pretty
fluctuated on higher value and for algorithm without aspiration
the results are fluctuated on all range of λ parameter. We
recommend to use the value of λ parameter within the range of
<0,1;1>. When we compare this resolution with the resolution
on fig. 8 we can recommend using the value of λ within the
range of <0,4;1>.

The problem is with the accuracy of our results. Sometimes
we don’t want to have exact result. The reason could be the
time spends on computing or range of inputs variables used in
our problem. If are able to have not so accura1 results we can
set the λ parameter on higher value. It means that we will have
the result faster but little bit out of the best known value.

Fig. 9 – The best found solution for Master cosine wave

function

Issue 3, Volume 4, 2010 70

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 10 – Number of changes of the better found solution for

Master cosine wave function

Number of changes of the better found solution means that
we count how many times the algorithm found solution that is
better than previous found solution. Sometimes we want to get
this number to have confirmation that our algorithm work fast
and properly and the algorithm always found good solution in
advance. As you can see on fig. 10 the number of changes is
better for algorithm with aspiration criterion. This value is
always so low that we don’t have to set some range.

The time spend on solution is on fig. 11. This criterion is
not so valuable because it depends on the machine that we
used for our computing. But we can compare these results with
number of iterations. The results are similar.

As we can see, modified algorithm is useful for computing
with these type of problems and gives better results with
aspiration criterion. This criterion is set within range of
<0.4;4> when gives better results.

Fig. 11 – Time in seconds spent by computing for Master

cosine wave function

IV. GRAPH ALGORITHM AND PARALLEL COMPUTING

Graph theory plays an important role in computer science
because it provides an easy and systematic way to model many
types of problems [12],[13]. An undirected graph G is a pair
(V,E), where V is finite set of points, called vertices and E is a
finite set of edges. Directed graph G is a pair (V,E), where V is
set of vertices as we just defined, but an edge (u,v) E is an
ordered pair. It means that it defines connection between u a v.

A path from a vertex v to vertex u is a sequence (v0, v1,

v2,..., vk) of vertices. The length of a path is defined as the
number of edges in the path. The length can be representing as
distance between the first vertices and the last one or it can be
a time that should be reached to get from the beginning to the
end of path.

Graphs of digraphs are not sufficient to adequately specify
the system of many applications in biological, social or
engineering sciences. Some numerical values (e.g. distance,
time etc.) could be attached to the edges or vertices of a graph.
These values represent construction costs, flow capacities,
probabilities of destruction. The network is called any graph to
which such additional structure has been added.

Usually we represent graph by a drawing in which vertices
are points (or circles) and edges are drawn as lines connecting
pairs of vertices. It the graph is directed, the lines are drawn
with arrow heads. Drawings are useful for people but don´t for
computers. Some of the representations of graphs that are
appropriate for computers are list of matrix of values. If there
is connection between two vertices, we say that there is
incident and this matrix we call incidence matrix. The value of
variable in matrix is 1 if there is connection, 0 otherwise. This
is possible for undirected graph. We set negative value of 1 for
incidence from vertices (positive value of 1 for incidence to
vertices).

If there exists an edge (u,v) we say that vertices i and j are
adjacent. No node is adjacent to itself. If there is an edge
between (u,v) the variable of matrix is represent by 1 (Auv=1),
otherwise 0.

Graph theory is said to have been founded in 1736 when
Euler settled a problem known as the Konigsberg Bridge
Problem.

The general question, for given graph G, is whether there
exists a closed path which contains each vertices exactly ones.
Such a path we call it an Euler path in Euler graph or Eulerian.
William Hamilton investigated the existence of a cycle passing
through each vertex of a dodecahedron once. We call a cycle
that passes through each vertex exactly once a Hamilton cycle
and this graph we call Hamilton graph or Hamiltonian.
Hamilton graph defies to have more effective characterization
then Euler graph.

The travelling salesman problem is one of the most famous
problems in combinatorial optimization. Recall that the
traveling salesman problem is to find a minimum-length cycle
in Hamilton graph. We replace some vertex of the network by
two vertices s and t, where s has incident from it all of the
edges which were directed out of previous vertex (which we

Issue 3, Volume 4, 2010 71

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

replaced). And t has incident into all of the arcs which were
directed into this vertex. Then travelling salesman problem
becomes that of finding a shortest path from s to t, subject to
restriction that the path passes through each of the vertices
exactly ones.

The network has negative directed cycles what is difficulty
for finding shortest path. The problem of finding shortest path
is perfectly well-defined problem and there are a lot of
methods for solution such problem. This problem has special
structure and it takes a lot of time to solve it for all variables.

We will examine how MLS with aspiration criterion can be
applied to the problem and what results we will reach. We will
examine classic symmetric travelling salesman problem, that is
defined by N cities and a symmetric matrix D=[dij]. This
matrix gives the distance between any two cities i and j. The
goal is to find a tour which visits each city exactly once and is
of minimum length. A tour can be represented as a cyclic
permutation π on N cities if we interpret π(i) to be the city
visited after city i, i=1,...N. The cost of a permutation is
defined as:

()∑
=

=
N

i

iidg
1

)(ππ (6)

Procedure for paralleling of the problem can be described as
follows: The initial configuration is a tour that is defined as a
sequence of cities. The length of the tour is represent by value
of g(π). Each move at a given λ parameter involves the
following steps: (1) Generate a new tour by permutations of
visiting order of cities, (2) Calculate the length difference
between the new and old permutations of cities, (3) Accept of
new permutation if the difference less than zero.
Parallelization of the problem was in dividing the problem to
the groups of smaller problems and computing the problems
for each of this problem. It means that we decide to use just a
few small groups of permutations to compute. Simulation was
set off for two sources each of them computed in the range of
permutation given in the beginning. Results were comparing
with basic simulated annealing method and with tabu search
method.

MLS, simulated annealing and tabu search were tested on 8
instances from TSPLIB [11]. The results are shown in Table 1
where simulated annealing and tabu search are compared with
MLS. MLS were set with aspiration criterion and with
parameter λ on value of 0.4 because it is best value taken from
testing functions.

Table 1 - MLS, Simulated Annealing, and Tabu Search
performance on TSPLIB instances.

Problem

MLS with
aspiration

Simulated
annealing

Tabu search

Aver.
excess

(%)

Aver.
time
(s)

Aver.
excess

(%)

Aver.
time
(s)

Aver.
excess

(%)

Aver.
time
(s)

eil51 0 10.46 0.73 6.34 0.00 1.14
eil76 0 10.97 1.21 18.00 0.00 5.24
kroA100 0 12.37 0.42 37.36 0.00 21.34
kroC100 0 11.25 0.80 36.58 0.25 4.80
eil101 0 10.74 1.76 33.29 0.00 61.41
kroA150 0 17.03 1.86 103.32 0.03 413.06
kroA200 0 150.16 1.04 229.38 0.72 776.93
lin318 0.005 346.44 1.34 829.46 1.31 2672.8

As we can see, the superiority of MLS with aspiration

criterion over the tabu search variant and simulated annealing
is evident. The tabu search variant easily found the optimal
solutions for small problems and it scaled pretty well for larger
problems. However, it was much slower than PLP and
moreover failed to reach the solution quality of PLP in the
larger problems. Simulated annealing had a consistent
behavior finding good solutions for all problems but
sometimes it failed to reach the optimal solutions.

V. CONLUSION

We introduced the concept of parallel local search
procedures to help understand what effect the created
algorithm is having on the search in a defined space. By doing
this, we can better evaluate if an algorithm works well as we
expect, or if something different is happening. This helps to
remove the ad hoc trial and error testing of meta-heuristics,
which has become common in the literature. By doing it this
way, we have also gained some understanding in how this
algorithm works for each problem type we tested.

We have shown some basic heuristic used in local search
procedures that can help us understand how this is working.
We have shown some methods based on random, population,
local searching, and weights.

We also have shown how the algorithm MLS was made by
using a basic local searching procedure, plus aspiration
criterion from tabu search method, and with penalization. We
show by some simple examination of the original objective
function whether a new and better solution, than previously
found, exists in the current neighborhood. We have shown
how MLS algorithm works on some parameter settings and
problems.

Finally we can conclude that aspiration criterion works
better when it makes the overriding aspiration moves, namely
when a new better-than-previous found solution exists in the
local search neighborhood. It means that the algorithm could
not miss these solutions. We have backed this up by
performing a control experiment which performed local search

Issue 3, Volume 4, 2010 72

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

procedure according to the primary objective function, which
during the next steps minimizes the increased objective
function.

REFERENCES

[1] Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Chichester: J.
Wiley and Sons, ISBN 0-471-92146-7 (1989)

[2] Čech, P., Bureš, V.: Advanced Technologies in e-Tourism, The 9th WSEAS
International Conference on Applied Computer Science, Genova, WSEAS Press,
pp.85-92, ISBN 978-960-474-127-4 (2009)

[3] Hedar, A. R.: Test Functions for Unconstrained Global Optimization, http://www-
optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar_files/
TestGO_files/Page364.htm

[4] Gass, S.I., Harris, C.M.: Encyclopedia of Operations Research and Management
Science centennial edition, Dodrecht, Kluwer AP. ISBN 0-7923-7827-X (2004)

[5] Glover, F.: Tabu search Part I. In: Journal on Computing, Vol. 1, Operations
Research Society of America (ORSA), pp. 109-206. (1989)

[6] Glover, F.: Tabu search Part II. In: Journal on Computing, Vol. 2, Operations
Research Society of America (ORSA), pp. 4 - 32, (1990)

[7] Jirava, P., Krupka, J. Information System Classification. In Proceedings of the 8th
WSEAS International Conference on Systems Theory and Scientific Computation
(ISTAC'08). Rhodes, Greece, WSEAS Press, pp. 94-98. ISBN: 978-960-6766-96-
1(2008).

[8] Mladenovic, N., Hansen, P.: Variable Neighborhood Search. In: Computers in
Operations Research, Vol. 24, No. 11, pp. 1097-1100 (1997).

[9] Panuš, J., Šimonová, S.: Measurability of evaluative criteria used by optimization
methods. In: Proceedings of Conference on Computional, Intelligence, Man-
Machine Systems and Cybernetics. 1st edition. Dallas, Texas: Wseas Press. pp.
451-455. ISBN 960-8457-55-6. (2007)

[10] Panuš, J., Šimonová, S.: Pre-Computiation of Regional Data for Optimization
Analysis. In: Eurocon 2005: IEEE Catalog Number 05EX1255C. 1st edition.
Beograd, Serbia and Montenegro: School of Electrical Engineering, Beograd. pp.
1–4. ISBN 1–4224–0050–3. (2005)

[11] Reinelt, G.: A Travelling Salesman Problem Library. In: ORSA Journal on
Computing. pp. 376-384. (1991)

[12] Sukstrienwong, A.: Genetic Algorithms for Multi-Objectives Problems under Its
Objective Boundary. In Selected Topics in Applied Science (ACS’ 10). Iwate,
Japan, WSEAS Press, pp. 38-43. ISBN: 978-960-474-231-8(2010)

[13] Trudeau, R.J. An Introduction to Graph Theory. New York: Dover Publications,
Inc. ISBN – 9-486-67870-9 (1993)

Jan Panuš born at Kutna Hora, Czech republic on 22nd of May, 1976.
Graduated at University of Pardubice in 2000 on Faculty of Economics and
Administration. Ph.D. thesis finished in University of Pardubice, Czech
republic on 2008, subject of thesis was Utilization of evolutionary algorithms
for public administration problems. The author’s major field of study is
evolutionary computing and social networks.
Author job is lecturer at University of Pardubice, Faculty of economics and
administration. Current research interests are evolutionary computing, social
networks, database, parallel computing, and algorithms.

Issue 3, Volume 4, 2010 73

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

