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Abstract—In  this paper we consider a problem (that follows 

directly from realization problem): how to find a possible states (even 

minimal) of a stochastic dynamic system S1 with  known outputs, 

provided it is in a certain causality relationship with another 

stochastic dynamic system S2 whose states (or some information 

about them) are given.  This paper is continuation of the papers (Gill 

and Petrović 1987),  (Petrović 1996) and (Petrović 2005). 
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I. INTRODUCTION 

In the first section of this paper we present different 

concepts of causality between flows of information that are 

represented by families of Hilbert spaces. Then we give a 

generalization of a causality relationship   is a cause of   

within   which (in terms of -algebras) was first given in [6] 

and which is based on Granger's definition of causality (see 

[3]). 

The study of Granger-causality has been mainly 

preoccupied with time series. We shall instead concentrated on 

continuous time processes. Many of systems to which it is 

natural to apply tests of causality, take place in continuous 

time. For example, this is generally the case within physics, 

medicine, finance and within economy 

 In the second section we relate concepts of causality to the 

stochastic realization problem. The approach adopted in this 

paper is that of [5].  However, since our results do not depend 

on probability distribution, we deal with arbitrary Hilbert 

spaces instead of those generated by Gaussian processes. 

The given causality concept is shown to be equivalent to a 

generalization of the notion of weak uniqueness  for weak 

solutions of stochastic differential equations (see [9] and [10]). 

Also, in [11]  it is shown that the given  causality concept is 

closely connected to extremality of measures and martingale 

problem. 

II. PRELIMINARIES AND NOTATIONS 

Let            be a family of Hilbert spaces. We shall 

think about    as about the information available at time t, or  
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as a current information. Total information     carried by   is  

defined by            , while past and future information 

of   at t is defined as            and              , 

respectively. It is to be understood that              and  

           do not have to coincide with      and      

respectively;     and      are sometimes referred to as the real 

past and real future of   at t  . Analogous notation will be used 

for families       ,        and         

If   and    are arbitrary subspaces of a Hilbert space   

then          will denote the orthogonal projection of    onto 

   and       will denote a Hilbert space generated by all 

elements           where     . If       , then       

coincides with      
  , where   

  is the orthogonal 

complement of   in  . 

Possibly the weakest form of causality can be introduced in 

the following way. 

Definition 2.1. It is said that   is submitted to    (and 

written as     ) if          for each t. 

It will be said that families   and   are equivalent (and 

written as    ) if     and    . 

 Definition 2.2. It is said that   is strictly submitted to   

(and written as    ) if       for each t. 

It is easy to see that strict submission implies submission 

and that converse does not hold. 

The notion of minimality of families of Hilbert spaces is 

specified in the following definition. 

Definition 2.3.  It will be said that   is a minimal 

(respectively, strictly minimal) family having a certain 

property if there is no family    having the same property 

which is submitted (respectively, strictly submitted) to  . 

It will be said that   is a maximal (respectively, strictly 

maximal) family having a certain property if there is no family 

    having the same property such that family   is submitted 

(respectively, strictly submitted) to   . 

It should be understood that a minimal (respectively, strictly 

minimal) and maximal (respectively, strictly maximal) family 

having a certain property are not necessarily unique. 

The following results will be used later (for the proof see 

the given reference). 

Theorem 2.1. ([5]) The space   is minimal one such that 

        if and only if           for some space   such 

that                           
 . 

 Corollary 2.1.1. ([5])  The space         is a minimal 

one such that         if           for some space   such 

that                 . 
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In this paper the following definition of markovian property 

will be used. 

Definition 2.4. ([14]) Family   will be called Markovian if 

              for each t. 

Now we give a definition of a stochastic dynamic system in 

terms of Hilbert spaces. The characterizing property is the 

condition that past informations of outputs and states and 

future informations of outputs and states are conditionally 

orthogonal given the current state. 

Definition 2.5. ([12]) A stochastic dynamic system (s.d.s.) 

is a set of two families:   (outputs) and   (states), that satisfy 

the condition 

                              .                          (1) 

For given family of outputs  , any family   satisfying (1) is 

called a realization of a s.d.s. with those outputs. 

It is clear that realization of a s.d.s. is Markovian. 

The next intuitively justifiable notion of causality has been 

proposed in [7]. 

Definition 2.6. It is said that   is a cause of   within   (and 

written as      ) if        ,     and             

for each t. 

Intuitively,       means that, for arbitrary t, information 

about     provided by     is not "bigger" than that provided 

by    , or that it is possible to reduce available information 

from     to     in order to predict    . The meaning of this 

interpretation is specified in the next result. 

Lemma 2.2. ([2])       if and only if        ,     

and                       for each t. 

A definition, analogous to Definition 2.6, formulated in 

terms of  -algebras, was first given in [6]: "It is said that   

entirely causes   within   relative to   (and written as 

       ) if    ,     and             for each t. 

However, this definition (from [6]) contains the condition 

     or equivalently for       each t, (instead of     
   ) which does not have intuitive justification. Since 

Definition 2.6 is more general than the definition given in [6], 

all results related to causality in the sense of Definition 2.6 

will be true and in the sense of the definition from [6], when 

we add the condition     to them. 

If    and   are such that      , we shall say that    is its 

own cause within   (compare [6]). It should be mentioned that 

the notion of subordination (as introduced in [14]) is  

equivalent to the notion of being one's own cause, as defined 

here. 

If   and   are such that          (where      is a 

family determined by             ), we shall say that   

does not cause   . It is clear that the interpretation of Granger-

causality is now that   does not cause   if         (see 

[6]). Without difficulty, it can be shown that this term and the 

term "   does not anticipate   " (as introduced in[14]) are 

identical. 

These definitions can be applied to stochastic processes if 

we are talking about the corresponding induced Hilbert spaces. 

Definition 2.7. It will be said that second order stochastic 

processes are in a certain relationship if and only if the Hilbert 

spaces they generate are in this relationship. 

Remark 1. If stochastic process          is a realization 

of a stochastic dynamic system with outputs     , then there 

exists a stochastic process      with orthogonal increments 

which is a realization of the same system. Stochastic process 

     is not uniquely determined, but its spectral type is 

uniquely determined. This follows from the fact that 

realization of a stochastic dynamic system is Markovian, i. e. 

process with multiplicity one, so process      is equivalent (in 

the sense that    
     

     )  to some process with 

orthogonal increments. 

III. CAUSALITY AND STOCHASTIC DYNAMIC SYSTEMS 

Suppose that a stochastic dynamic system    causes, in a 

certain sense, changes of another stochastic dynamic system 

  . It is natural to assume that outputs   of system    can be 

registered and that some information   about the states (or 

perhaps states themselves) of system    is given. Results that 

we shall prove will tell us under which conditions concerning 

the relationships between   and   it is possible to find states   

(i.e. Markovian representations) of system    having certain 

causality relationship in the sense of Definition 2.6 with   and 

 .  

     More precisely, the following cases will be considered: 

    states of a s.d.s.     are a cause of outputs of the same 

system within available information about s.d.s.   ; 

   the available information about    is a cause of outputs 

of    within states of   . 

We consider different kinds of causality between families 

 ,   and  , while   and   are in the same relationship, that is, 

  is a realization of an s.d.s. with outputs   in all cases. 

The first two theorems deal with case   ,  and the next two 

ones with case   . 

The solutions of these problems follow from the next more 

general result which gives conditions under which it is 

possible to find minimal realizations of a s.d.s.   , that is a 

cause for   within a family       . 

 

Theorem 3.1. Let   and   be such that               

and                                 for each t. If the 

family        is Markovian, then the family  , defined 

by 

                                                                 (2) 

is a minimal realization (of a s.d.s. with outputs  ) that causes 

  within   . 

Proof. From                    it follows that 

                . Also, the definition of   and the 

assumption               imply            , which 

together with the previous orthogonality relation means 

      . The minimality of   follows from Theorem 2.1 and 

Corollary 2.1.1. 

From        
 , the fact that                 

       

which follows from        , equation (2) and the 

assumption that    is Markovian, we get 

                
              

     
        

    
                                                                    (3)                               
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The relation        (because of        ,) becomes 

               
           

           which means 

that   is Markovian. This fact with the assumption     

       gives               . However, since     

    (which is an obvious consequence of       ), the last 

relation implies that   is a realization of a s.d.s. with outputs 

 . 

The next example shows that family   defined by (2) is not 

strictly minimal realization of a s. d. s. with outputs   such 

that       . 

Example 3.1. Let A and B be arbitrary Hilbert spaces and 

let         and E     , t          be defined by 

    ,          ,        , 

    ,          ,        . 

Then the family       , is given by 

  
   ,        

             
   . 

If the family   is defined by (2 ), then 

    ,            ,        . 

According to Theorem 3.1,   is a minimal realization (of a 

s. d. s. with outputs  ) and       . However, family 

      
              defined by 

  
   ,        

   ,        
     , 

is another realization of the same s.d.s. and        . 

Obviously,     . 

The following corollary to Theorem 3.1 gives a partial 

solution (under the condition that   is Markovian) of the 

problem    defined above. 

Corollary 3.1.1. Let   and   be such that     as well as 

              and                          for each 

t. If the family   is Markovian, then the family  , defined by 

                 

is a minimal realization (of a s.d.s. with outputs  ) that causes 

  within  . 

The next example illustrates the last result. 

Example 3.2. Let              ,  be a sequence of 

uncorrelated random variables with the mean zero and let 

                            . Then    
     

    

   and 

        
    

                            
                         

   , 

 

      
      

               
        

    ; 

i.e. all conditions of Corollary 3.1.1. are satisfied. 

Therefore, the stochastic process 

           
   

is a minimal realization (of a s.d.s. with outputs   ) that 

causes    within   . 

 

If    is its own cause within  , we obtain a simpler version 

of the last result. 

Corollary 3.1.2. Let   is its own cause within   and let for 

each t holds                         . If    is Markovian, 

then the family  , defined by 

                                      

 is a minimal realization (of a s.d.s. with outputs  ) that causes 

  within   . 

The following result does not require        to be 

Markovian, but provides a realization whose present 

information at t is equal to its total information accumulated 

up to t.  

Theorem 3.2. Let   and   be such that             for 

each t where S is some space such that  

                   
    

Family   is a minimal realization (of a s.d.s. with outputs  ) 

that causes   within        if and only if it is defined by 

                                                   (4) 

 

The next corollary gives all solutions to the problem 

   formulated above. 

Corollary 3.2.1. Let   and   be such that         as 

well as             for each t where S is some space such 

that                        Family   is a minimal 

realization (of a s.d.s. with outputs  ) that causes   within   

if and only if it is defined by 

                 . 

The next example illustrates the above result. 

Example 3.3. Let 

                               
 

 

 

   

 

be a proper canonical representation of the process         
       and let the process                 be defined by 

                         
 

 
. 

Then    
     

   for each t. Further, for   

               
                          

 

 

 

we have that     
     

 . According to Corollary 3.2.1 it 

follows that family    
       

     
             is a minimal 

realization (of a s.d.s. with outputs    
 ) that causes    

  within 

Z(t). 

 

In the remaining part of paper we consider the problem    

formulated above. The next theorem considers the problem of 

determining the possible states   (of a s.d.s. with outputs  ) 

such that the family        is a cause of outputs    within 

 . 

Theorem 3.3. 1) Each Markovian family   such that  

             and               for each t is a 

realization (of a s. d. s. with outputs  ) and the family     is 

a cause of   within  . 

2) If   is a Markovian family such that             and 

                                  for each t, then family 

 , defined by 

                                                                     (5) 

is minimal among the realizations (of a s. d. s. with outputs  ) 

such that the family     is a cause of   within  . 

3) If families   and   are submitted to some given 

”framework” family    and if              holds, then the 

family G, defined by 
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                                                   (6) 

is strictly maximal among the realizations (of a s. d. s. with 

outputs  ) such that     is a cause of   within  . 

Proof. 1) According to Lemma 2.2, the assumption 

           is equivalent to              . From that 

and the assumption that   is Markovian family, we get 

                             

which is equivalent to               . However, since 

        (which is an obvious consequence of 

            the last relation means that   is a realization 

of a s. d. s. with outputs  . From             it follows 

that           holds. 

2) From (5) it follows that             and immediately 

we get           and        . According to Definition 2.6, 

it is clear that the family  , defined by (5), is a minimal family 

such that          . From the assumptions 

that             and the fact that   is Markovian we get 

                                                

                  
which means that   is Markovian. Now, according to part 1) 

of this theorem, it follows that the family  , defined by (5) is a 

realization (of a s. d. s. with outputs  ) such that            

3) Since         the assumption             is 

equivalent to            , so it follows         . 

From       , and     immediately follows that   is a 

realization of a s. d. s. with outputs  . 

From the fact that   is a framework family (i.e.,    ) it is 

clear that   is a strictly maximal realization with given 

properties. 

It is easy to see that for given outputs   of a s.d.s.    and 

information   about a s.d.s.   , the family  , defined by (5), is 

not an unique minimal realization (of a s. d. s.   ) such that 

          . For each family       which satisfies 

conditions from part 2) of Theorem 3.3, with  t
  

   t
    t E t  t    is defined a minimal realization (of a s. 

d.s.   )  such that           . All these minimal realizations 

have the past information equivalent to   t E t t   , but 

their present information at t is different. 

The problem of determining a strictly minimal realization   

(of a s.d.s. with outputs  ) such that           is still open. 

If it would be possible to find a strictly minimal family    

between families         that satisfy conditions from part 2) 

of Theorem 3.3, this strictly minimal family    would define a 

strictly minimal family    (with (5)) among all families    of 

part 2) of Theorem 3.3. It is clear that if there exists such 

strictly minimal family, it cannot be necessarily unique, so that 

a strictly minimal realization with given properties is not 

necessarily unique. 

Especially, if    , Theorem 3.3. gives realizations of a 

s.d.s. with outputs   such that the family   is a cause of 

outputs   within  . More precisely, the next corollary to 

Theorem 3.3. gives a partial solution of the problem     

formulated above. 

Corollary 3.3.1. 1) Let   and   be such that    . Each 

Markovian family   such that         and          t for 

each t is a realization (of a s. d. s. with outputs  ) and   is a 

cause of    within  . 

2) Let  ,   and     be such that     , as well as          
and       E t         t E t  for each t. If   is Markovian, 

then the family  , defined by 

 t     t E t        t    

is minimal among the realizations (of a s. d. s. with outputs  ) 

such that   is a cause of   within  . 

3) If      and if given ”framework” family   is such that 

       , then the family  , defined by 

              

is strictly maximal among the realizations (of a s. d. s. with 

outputs  ) such that   is a cause of   within  . 

Remark 2. It is clear that all results from this paper can be 

extended on the   -algebras generated by finite dimensional 

Gaussian random variables. But, in the case that  -algebras 

are arbitrary, the extensions of the proofs from this paper is 

nontrivial because one can not take an orthogonal complement 

with respect to a   -algebra as one can with respect to 

subspaces in Hilbert space 
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