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Abstract—The concept of labelled stratified graph was introduced
in order to obtain the concept of knowledge base with output and
various applications of this concept were presented ever since. This
paper studies another application of this structure: generating formal
languages by means of labelled stratified graphs. Various mechanisms
to define and generate formal languages are known and we show
that we can obtain different types of languages such as: regular
languages or context sensitive language. We also give an example of
context sensitive language, but not a context-free language (according
to Chomsky hierarchy), that can be generated by labelled stratified
graphs. The concepts introduced in this paper can initiate a possible
research line concerning the generative power of the formal languages
generated by labelled stratified graphs.
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I. INTRODUCTION

The concept of labelled stratified graph was introduced in
[10]. The application of this structure includes the domains:
• semantics of communication [10];
• image synthesis [10];
• reconstruction of a graphical image by extracting the

semantics of a linguistic spatial description given in a
natural language [7], [11];

• the modelling of the fusion action for two companies
[12], [8];

• solving the problems which can be transposed in attribute
graphs or colored graphs [12];

• knowledge bases with output and their use to the schedul-
ing problems [4].

Various mechanisms for language generation are known:
finite automata [5], regular expressions ([5], formal grammars
[5], Lindenmayer systems [1]. Formal languages may be
classified in the Chomsky hierarchy based on the expressive
power of their generative grammar as well as the complexity
of their recognizing automaton.

In this paper we show that we can generate formal languages
by means of the labelled stratified graphs. Thus we obtain a
new mechanism to generate formal languages, distinct of all
known mechanisms used to generate such entities.

This paper is organized as follows: in Section II we recall
the main concepts related to labelled stratified graphs; in
Section III we show the manner in which we can generate
formal languages by means of the labelled stratified graphs;
the last section contains the conclusions and open problems.
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II. LABELLED STRATIFIED GRAPHS: SHORT PRESENTATION

A. Definition of labelled stratified graphs

We consider a non empty set A. By a binary partial
operation on A we understand a partial mapping f from A×A
to A. This means that f is defined for the elements of some set
dom(f), where dom(f) ⊂ A × A. We shall use the notation
f : dom(f) −→ A. In the case when dom(f) = A × A we
say that f is a binary operation on A.

We shall write f ≺ g if f : dom(f) −→ A and g :
dom(g) −→ A are two functions such that dom(f) ⊆ dom(g)
and f(x) = g(x) for all x ∈ dom(f).

By a partial σ-algebra we understand a pair [2] A=(A, σA),
where A is the support set of A and σA is a partial binary
operation on A. If dom(σA) = A×A then we say that A is
a σ-algebra.

We consider a non-empty set S. If ρ1 ∈ 2S×S and ρ2 ∈
2S×S then we define ρ1◦ρ2 as the set of all pairs (x, y) ∈ S×S
for which there is z ∈ S such that (x, z) ∈ ρ1 and (z, y) ∈ ρ2.
We introduce the mapping

prodS : dom(prodS) −→ 2S×S

where prodS(ρ1, ρ2) = ρ1 ◦ ρ2 and (ρ1, ρ2) ∈ dom(prodS),
if and only if and ρ1 ◦ ρ2 6= ∅.

By a labelled graph we understand a tuple
G = (S,L0, T0, f0) where:
S is the set of nodes,
L0 is a finite set of labels,
T0 ⊆ 2S×S is a set of binary relations on S and
f0 : L0 −→ T0 is a surjective mapping.
We denote by R(prodS) the set of all restrictions of the

mapping prodS :

R(prodS) = {u | u ≺ prodS}

We observe that if u is an element of R(prodS) then the pair
(2S×S , u) is a partial algebra. This is a partial algebra used
to obtain the structure named labelled stratified graph.

Take u ∈ R(prodS) and consider the closure T = Clu(T0)
of T0 in the algebra (2S×S , u).

For each nonempty set M there is a Peano σ-algebra over
M . Two Peano σ-algebras are isomorphic algebras and for this
reason we shall use the following structure. We consider the
set B given by

B =
⋃
n≥0

Bn (1)

where {
B0 = M
Bn+1 = Bn ∪Wn

(2)
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where
Wn = {σ(x1, x2) | x1, x2 ∈ Bn}

and σ(x1, x2) is the word σx1x2 over the alphabet {σ} ∪M .
The pair PA(M) = (B, σ) is a Peano σ-algebra over M .

We consider some collection of subsets of B, denoted by
Initial(M). Namely, we say that L ∈ Initial(M) if the
following conditions are fulfilled:
• M ⊆ L ⊆ B
• if σ(u, v) ∈ L then u ∈ L and v ∈ L

Generally speaking, if L ∈ Initial(M) then the pair (L, σL),
where
• dom(σL) = {(x, y) ∈ L× L | σ(x, y) ∈ L}
• σL(x, y) = σ(x, y) for every (x, y) ∈ dom(σL)

is a partial σ-algebra.
We consider the Peano σ-algebra PA(L0) = (B, σ) over

L0, where B is given by (1) and (2) for M = L0.
A labelled stratified graph G over G (shortly, stratified

graph or LSG) is a tuple (G,L, T, u, f) where:
• G = (S,L0, T0, f0) is a labelled graph
• L ∈ Initial(L0)
• u ∈ R(prodS) and T = Clu(T0)
• f : (L, σL) −→ (2S×S , u) is a morphism of par-

tial algebras such that f0 ≺ f , f(L) = T and if
(f(x), f(y)) ∈ dom(u) then (x, y) ∈ dom(σL)

We denote by Strat(G) the set of all LSGs over G. As we
proved in [6] we have Strat(G) 6= ∅. Moreover, we proved
in [12] that for every u ∈ R(prodS) there is just one stratified
graph G = (G,L, T, u, f) over G and this structure is obtained
applying the following steps [12]:
• Take a labelled graph G = (S,L0, T0, f0)
• Take u ∈ R(prodS)
• Compute T = Clu(T0)
• Take {Bn}n≥0 as in (2) for M = L0

• Take D0 = L0 and define for every natural number n ≥ 0
the entities (3), (4) and (5):

Dn+1 = {σ(p, q) ∈ Bn+1 \Bn | p, q ∈ dom(fn),

(fn(p), fn(q)) ∈ dom(u)} (3)

dom(fn+1) = dom(fn) ∪Dn+1 (4)

fn+1(x) =

 fn(x) if x ∈ dom(fn)
u(fn(p), fn(q)) if

x = σ(p, q) ∈ Dn+1

(5)

• Define the mapping f : dom(f) −→ T as follows:
dom(f) =

⋃
n≥0 dom(fn) =

⋃
k≥0Dk

f(x) = fk(x) if x ∈ Dk, k ≥ 0

• Take L = dom(f)

B. Structured path and accepted structured path

We consider a path d = ([x1, ..., xn+1], [a1, ..., an]) in a
labelled graph G = (S,L0, T0, f0).

Consider the least set STR(d) satisfying the following
conditions:
• ([xi, xi+1], ai) ∈ STR(d), i ∈ {1, ..., n}

• if ([xi, ..., xk], b1) ∈ STR(d) and ([xk, ..., xr], b2) ∈
STR(d), where 1 ≤ i < k < r ≤ n + 1, then
([xi, ..., xr], [b1, b2]) ∈ STR(d)

The maximal length elements of STR(d), namely, the ele-
ments of the form ([x1, ..., xn+1], c) ∈ STR(d) are called
structured paths over d.

Let d be a path. We define the mapping h : STR2(d) −→ B
where B is defined in (1), as follows:
• h(x) = x for x ∈ L0

• h([u, v]) = σ(h(u), h(v))

The structured path ds ∈ STR(d) is named an accepted
structured path over G if ds = ([x1, ..., xn+1], c) and
h(c) ∈ L.

We denote by ASP (G) the set of all accepted structured
paths over G. We denote by R a set of conditions imposed
on the accepted structured paths. An element of ASP (G) that
satisfies R is named R-accepted structured path. We denote
by ASPR(G) the set of all R-accepted structured paths.

For every accepted structured path d =
([x1, . . . , xn+1], σ(v1, v2)) ∈ ASP (G), where n ≥ 2, there is
one and only one i ∈ {2, . . . , n} such that ([x1, . . . , xi], v1) ∈
ASP (G) and ([xi, . . . , xn+1], v2) ∈ ASP (G) [10]. In other
words, this property states that every accepted structured path
over G can be broken into two accepted structured paths over
G. The number i stated in this property is named the break
index for the path ds and is denoted by ind(d).

C. Interpretations of labelled stratified graphs

An interpretation for G is a tuple

Σ = (Ob, i,D,P)

where:
• Ob is a finite set of objects such that Card(Ob) =
Card(S)

• i : S −→ Ob is a bijective mapping
• D = (Y, ∗) is a partial algebra, Y is called the domain

of Σ and ∗ is a partial binary operation on Y
• P = {Alga}a∈L0 , where Alga : Ob×Ob −→ Y

The valuation mapping generated by Σ is the mapping
valΣ : ASPR(G) −→ Y defined inductively as follows:

valΣ([x, y], a) = Alga(i(x), i(y))

valΣ(x(1;n+ 1), σ(v1, v2)) = valΣ(x(1; i), v1)∗
valΣ(x(i;n+ 1), v2)

where i = ind([x1, ..., xn+1], σ(v1, v2)) and
x(i; j) = [xi, ..., xj ].

Consider a labelled stratified graph G = (G0, L, T, u, f)
over G0 = (S,L0, T0, f0) and Σ = (Ob, i,D,P) an interpre-
tation for G. A pair (x, y) ∈ S × S is called interrogation.
For a given interrogation (x, y) we designate by ASPR(x, y)
the set of all R-accepted structured paths from x to y in G.
The answer mapping is the mapping

Ans : S × S −→ Y ∪ {no}

defined as follows:
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
Ans(x, y) = no if ASPR(x, y) = ∅
Ans(x, y) = {valΣ(d) | d ∈ ASPR(x, y)} if

ASPR(x, y) 6= ∅

III. LANGUAGES GENERATED BY A GIVEN
LABELLED STRATIFIED GRAPH

A formal language is a set of words, finite strings of letters,
symbols or tokens. The set from which these letters are taken
is the alphabet over which the language is defined.

In what follows we consider:

• An alphabet V .
• A stratified graph G = (G,L, T, u, f), where G =

(S,L0, T0, f0) is a labelled graph.
• An interpretation Σ = (V ∗, i,D,P), where
◦ V ∗ is the free monoid generated by V ;
◦ i : S −→ V ∗

◦ D = (V ∗, ∗) is a partial algebra, where ∗ : V ∗ ×
V ∗ −→ V ∗ is a partial binary operation;
◦ For each a ∈ L0 we have Alga : V ∗ × V ∗ −→ V ∗

and P = {Alga}a∈L0

• A subset M ⊆ S × S
• The set R of restrictions to build the R-accepted

structured paths.

Remark 3.1: Because D = (V ∗, ∗) is a partial algebra we
can say that valΣ(x(1; i), v1) ∗ valΣ(x(i;n + 1), v2) ∈ V ∗

if and only if m1 = valΣ(x(1; i), v1) ∈ V ∗,
m2 = valΣ(x(i;n+ 1), v2) ∈ V ∗ and (m1,m2) ∈ dom(∗).

By definition, the language defined by the sets M and R is
the following collection

L(M,R) =
⋃

(x,y)∈M

Ans(x, y)

Remark 3.2: We observe that for each (x, y) ∈ M the
set Ans(x, y) ⊆ V ∗ is a formal language over V , therefore
L(M,R) ⊆ V ∗ is a formal language over V .

In order to exemplify the computations we consider the
alphabet V = {d, e} and the following labelled stratified graph
G = (G,L, T, u, f), where G has the graphical representation
from Fig. 1.

a
x1

x3

x2
b

c

Figure 1. A labelled graph

In order to obtain the components of G we take S =
{x1, x2, x3} and L0 = {a, b, c}. We consider the binary
relations:

ρ1 = {(x1, x2)}
ρ2 = {(x2, x1)}
ρ3 = {(x1, x3)}.

We take T0 = {ρ1, ρ2, ρ3} and we have to define the mapping
u which defines uniquely the components of G. We consider
the mapping u = prodS defined in Table I, where:

ρ4 = {(x1, x1)}
ρ5 = {(x2, x2)}
ρ6 = {(x2, x3)}.

u ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
ρ1 ρ4 ρ1 ρ3
ρ2 ρ5 ρ6 ρ2
ρ3
ρ4 ρ1 ρ3 ρ4
ρ5 ρ2 ρ5 ρ6
ρ6

Table I
THE MAPPING u

We obtain T = Clu(T0) = {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}. We shall
suppose that ASPR(G) = ASP (G). In other words, every
accepted structured path is an R-accepted structured path.

Consider the interpretation Σ = (V ∗, i,D,P) for G, where:
i(x1) = d, i(x2) = e, i(x3) = de.
P = {Alga, Algb, Algc}, where:
Alga(x, y) = xy
Algb(x, y) = yx
Algc(x, y) = y.

We define the operation ∗ in the following manner: if x, y are
two words from V ∗, then x ∗ y is the word xy.

Because the set L of this labelled stratified graph is infinite,
the language defined by the labelled stratified graph using the
interpretation Σ is the infinite set {(de)n | n ≥ 1}, where
(de)n is de repeated n times.

Computing the valuation mapping for the accepted
structured path ([x1, x2, x1, x3], σ(σ(a, b), c)), we obtain:

valΣ([x1, x2, x1, x3], σ(σ(a, b), c)) =
valΣ([x1, x2, x1], σ(a, b)) ∗ valΣ([x1, x3], c) =
(valΣ([x1, x2], a) ∗ valΣ([x2, x1], b)) ∗ valΣ([x1, x3], c) =
(Alga(i(x1), i(x2)) ∗Algb(i(x2), i(x1))) ∗
Algc(i(x1), i(x3)) = (Alga(d, e)∗Algb(e, d))∗Algc(d, de) =
(de ∗ de) ∗ de = dede ∗ de = dedede = (de)3.

If we consider the accepted structured path
([x2, x1, x2, x1, x3], σ(σ(b, a), σ(b, c))), we obtain:

valΣ([x2, x1, x2, x1, x3], σ(σ(b, a), σ(b, c))) =
(Algb(i(x2), i(x1)) ∗Alga(i(x1), i(x2))) ∗
(Algb(i(x2), i(x1)) ∗Algc(i(x1), i(x3))) =
(Algb(e, d) ∗Alga(d, e)) ∗ (Algb(e, d) ∗Algc(d, de)) =
(de ∗ de) ∗ (de ∗ de) = dede ∗ dede = dededede = (de)4.
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For this interpretation and the language generated by it we
observe that the number of times the sequence ”de” is repeated
is given by the number of arcs covered by each accepted
structured path computed.

Finally we obtain the answering mapping:
Ans(x1, x2) = Ans(x2, x1) = Ans(x1, x3) = {(de)2k+1 |
k ≥ 0}; Ans(x1, x1) = Ans(x2, x2) = Ans(x2, x3) =
{(de)2k | k ≥ 1} and therefore we have

L(M,R) = {(de)n | n ≥ 1}

for the case M = {(x1, x2), (x2, x1), (x1, x3), (x1, x1),
(x2, x2), (x2, x3)}.

We can also see that Ans(x3, x1) = Ans(x3, x2) =
Ans(x3, x3) = {no} because ASP (x3, x1) =
ASP (x3, x2) = ASP (x3, x3) = ∅ as no arc is leaving
the node x3.

If we consider the interpretation: Σ1 = (V ∗, i,D1,P1),
where:
i(x1) = d, i(x2) = dd, i(x3) = e,
P1 = P
and the operation ∗ defined for the previous interpretation,

when we compute the accepted structured path that we
considered in the previous example we obtain:

valΣ1
([x2, x1, x2, x1, x3], σ(σ(b, a), σ(b, c))) =

(Algb(i(x2), i(x1)) ∗Alga(i(x1), i(x2))) ∗
(Algb(i(x2), i(x1)) ∗Algc(i(x1), i(x3))) =
(Algb(dd, d) ∗Alga(d, dd)) ∗ (Algb(dd, d) ∗Algc(d, e)) =
(ddd∗ddd)∗(ddd∗e) = dddddd∗ddde = ddddddddde = d9e.

The answering mapping is:
Ans(x1, x2) = Ans(x2, x1) = {d3(2k+1) | k ≥ 0}
Ans(x1, x1) = Ans(x2, x2) = {d3(2k) | k ≥ 1}
Ans(x1, x3) = {d3(2k)e | k ≥ 0}
Ans(x2, x3) = {d3(2k+1)e | k ≥ 0}
Just like the previous case, for the node x3 we have

Ans(x3, x1) = Ans(x3, x2) = Ans(x3, x3) = {no} because
ASP (x3, x1) = ASP (x3, x2) = ASP (x3, x3) = ∅

So we obtain the following language for the interpretation
Σ1:

L(M,R) = {d3k | k ≥ 1} ∪ {d3ie | i ≥ 0}.

We emphasize now an essential aspect of the representation
proposed in this paper: the use of the set M and the definition
of the partial operation ∗. In order to treat this aspect we
consider the labelled graph drawn in Fig. 2.

x1 x2 x3
- -�

a b

a

Figure 2. Labelled graph

We take L0 = {a, b}, T0 = {ρ1, ρ2}, where:
ρ1 = {(x1, x2), (x2, x1)},
ρ2 = {(x2, x3)}.
Consider u = prodS , where S = {x1, x2, x3}.

We denote by G the labelled stratified graph generated by
u. We obtain the new binary relations:
ρ3 = {(x1, x1), (x2, x2)} and
ρ4 = {(x1, x3)}.
So we have: T = {ρ1, ρ2, ρ3, ρ4}.
u(ρ1, ρ1) = ρ3, u(ρ1, ρ2) = ρ4, u(ρ1, ρ3) = ρ1,
u(ρ1, ρ4) = ρ2, u(ρ3, ρ1) = ρ1, u(ρ3, ρ2) = ρ2,
u(ρ3, ρ3) = ρ3, u(ρ3, ρ4) = ρ4.

In Fig. 3 we observe the computation of the element Dn as
calculated in [14]. Considering the values of the mapping f we
obtain four containers of labels, each of them consisted of all
the labels for ρ1, ρ2, ρ3 and ρ4 respectively. Each container
has an infinite set of labels. In order to verify this fact we
denote

σ(P,Q) = {σ(u, v) | u ∈ P, v ∈ Q}

and for each natural number n we take

σn(A,B) =
⋃
j≤n

[σ(An, Bj) ∪ σ(Aj , Bn)]

where Aj , Bj are subsets of L, A is the sequence A0, A1, ...
and B is the sequence B0, B1, .... For every j ≥ 0 and i ∈
{1, 2, 3, 4} we denote Dj(ρi) = {u ∈ Dj | f(u) = ρi} and
let D(ρi) be the sequence D0(ρi), D1(ρi), ....

b

σ(a,a)

σ(σ(a,a),a)

ρ1 ρ2 ρ3

D0

D1

D2

ρ4

σ(a,σ(a,a))

σ(σ(a,a),b)

σ(a,σ(a,b))

σ(a,b)

σ(σ(a,a),σ(a,a)) σ(σ(a,a),σ(a,b))

a

Figure 3. The infinite hierarchy of layers

We obtain the following equations:
Dn+1(ρ1) = σn(D(ρ1), D(ρ3)) ∪ σn(D(ρ3), D(ρ1))
Dn+1(ρ2) = σn(D(ρ1), D(ρ4)) ∪ σn(D(ρ3), D(ρ2))
Dn+1(ρ3) = σn(D(ρ1), D(ρ1)) ∪ σn(D(ρ3), D(ρ3))
Dn+1(ρ4) = σn(D(ρ1), D(ρ2)) ∪ σn(D(ρ3), D(ρ4))

(6)
We observe that D2(ρ1), D2(ρ2), D2(ρ3) and D2(ρ4) are

nonempty sets. Based on (6) we can verify by induction that
Dn(ρ1), Dn(ρ2), Dn(ρ3) and Dn(ρ4) are also nonempty sets
for every n ≥ 3. Thus we obtain an infinite hierarchy of layers
for L.

We shall write Ans(x, y) = ∅ if ASPR(x, y) = ∅.
Consider the following interpretation Σ = (V ∗, i,D,P),

where
◦ V ∗ is the free monoid generated by V = {a1, a2, a3};
◦ i : S −→ V ∗, i(x1) = a1, i(x2) = a2, i(x3) = a3;
◦ D = (V ∗, ∗) is a partial algebra, where
∗ : V ∗ × V ∗ −→ V ∗ is defined as follows: for
every natural number k we take:

(ak1a
k
2) ∗ a1 = ak+1

1 ak2 (7)
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(ak+1
1 ak2) ∗ a2 = ak+1

1 ak+1
2 (8)

(ak+1
1 ak2) ∗ a2a3 = ak+1

1 ak+1
2 ak+1

3 (9)

We observe that ∗ is in this case a partial operation.
◦ The algorithms Alga : V ∗ × V ∗ −→ V ∗ and Algb :
V ∗ × V ∗ −→ V ∗ are defined as follows:
Alga(x, y) = x;
Algb(x, y) = xy.

and take P = {Alga, Algb}.
We choose the set M = {(x1, x3)}. We know that the pair
(x1, x3) corresponds to the binary relation ρ4 so we obtain the
labels for the accepted structured paths from x1 to x3 in the
fourth container which is infinite as we have seen. Therefore
we have an infinity of accepted structured paths from x1 to
x3.

Using the set R of restrictions we impose the restriction to
use only the accepted structured paths of the following form:

([x1, x2, x1, x2, . . . , x1, x2, x3], σ(ωk, b)), where the pair
(x1, x2) appears k times and ωk = σ(σ(. . . σ(a, a), a) . . . , a)
contains 2(k − 1) letters σ and 2k − 1 letters a.

So we obtain: ASPR(G) = ASPR(x1, x3) =⋃
k≥1

{([x1, x2, . . . , x1, x2, x3], σ(ωk, b))}.

Proposition 3.1: The language generated by the sets M and
R is:

L(M,R) = {ak1ak2ak3}k≥1

Proof:
First we prove

{ak1ak2ak3}k≥1 ⊆ L(M,R) (10)

We have: L(M,R) = ∪
(x,y)∈M

Ans(x, y), but

M = {(x1, x3)} so we have L(M,R) = Ans(x1, x3) =
{valΣ(d) | d ∈ ASPR(x1, x3)}

We denote by dk the accepted structured path
([x1, x2, . . . , x1, x2, x3], σ(ωk, b)), where the pair (x1, x2)
appears k times and ωk = σ(σ(. . . σ(a, a), a) . . . , a) has
2(k − 1) letters σ and 2k − 1 letters a.

So ASPR(x1, x3) =
⋃
k≥1

dk and

Ans(x1, x3) =
⋃
k≥1

{valΣ(dk)}.

According to the definition of valΣ we have valΣ(x(1;n+
1), σ(v1, v2)) = valΣ(x(1; , i), v1) ∗ valΣ(x(i;n + 1), v2),
where i = ind([x1, ..., xn+1], σ(v1, v2)) and x(i; j) =
[xi, ..., xj ].

Therefore we have: valΣ(dk) =
valΣ([x1, x2, . . . , x1, x2], ωk) ∗ valΣ([x2, x3], b) =
valΣ([x1, x2, . . . , x1, x2], ωk) ∗ Algb(i(x2), i(x3)) =
valΣ([x1, x2, . . . , x1, x2], ωk) ∗ Algb(a2, a3) =
valΣ([x1, x2, . . . , x1, x2], ωk) ∗ a2a3, for every k ≥ 1.

We prove (10) by induction for k.
For k = 1 we have d1 = ([x1, x2, x3], σ(a, b)) and applying

valΣ to d1 we obtain:
valΣ([x1, x2, x3], σ(a, b)) = valΣ([x1, x2], a) ∗ a2a3 =

Alga(i(x1), i(x2))∗a2a3 = Alga(a1, a2)∗a2a3 = a1∗a2a3 =
a1a2a3 applying (9) therefore we have

a1a2a3 ∈ Ans(x1, x3)

We suppose the property is true for k so for dk we have

ak1a
k
2a

k
3 ∈ Ans(x1, x3)

For valΣ(dk) we have:
valΣ([x1, x2, . . . , x1, x2, x3], σ(ωk, b)) =

(...(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a)) ∗ valΣ([x1, x2], a) ∗
... ∗ valΣ([x1, x2], a) ∗ a2a3, where valΣ([x1, x2], a) appears
k times composed successively with valΣ([x2, x1], a) which
appears k − 1 times.

We applied (8) and (7) successively, one for every ∗
operation but the last one (2(k − 1) times) and we obtain
ak1a

k−1
2 the computation for the k pairs (x1, x2), giving us

the final result: (ak1a
k−1
2 ) ∗ a2a3 which from (9) is ak1a

k
2a

k
3 .

For k + 1 we have dk+1 that has k + 1 pairs (x1, x2). So
when computing valΣ(dk+1) we obtain:
valΣ([x1, x2, . . . , x1, x2, x3], σ(ωk+1, b)) =

(...(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a)) ∗ valΣ([x1, x2], a) ∗
... ∗ valΣ([x1, x2], a) ∗ a2a3, where valΣ([x1, x2], a) appears
k + 1 times composed successively with valΣ([x2, x1], a)
which appears k times.

From step k we have the value for the first k pairs (x1, x2)
and we add one more so we obtain:

((ak1a
k−1
2 ∗a2)∗a1)∗a2a3

(8)
= (ak1a

k
2 ∗a1)∗a2a3

(7)
= ak+1

1 ak2 ∗
a2a3

(9)
= ak+1

1 ak+1
2 ak+1

3 .
So we have

ak+1
1 ak+1

2 ak+1
3 ∈ Ans(x1, x3)

Therefore we have {ak1ak2ak3}k≥1 ⊆ Ans(x1, x3) =
L(M,R).

Now we prove

L(M,R) ⊆ {ak1ak2ak3}k≥1 (11)

For every k ≥ 1 there is dk ∈ ASPR(x1, x3) such that
valΣ(dk) = ak1a

k
2a

k
3 .

So L(M,R) = Ans(x1, x3) =
⋃
k≥1

{valΣ(dk)} =⋃
k≥1

{ak1ak2ak3} ⊆ {ak1ak2ak3}k≥1.

The language we obtained:{ak1ak2ak3}k≥1 is a context-
sensitive language, but is not a context free language in
Chomsky hierarchy.

Because of the restriction we imposed this is the only
language we can obtain from the computations on ASPR(G).

Let’s now remove the restrictions that we have defined
before so we have ASPR(G) = ASP (G) and we will redefine
the operation ∗ as follows: for every i, j, k, l ≥ 0 and m ≥ 1
we take

ai1a
j
2 ∗ ak1al2 = ai+k

1 aj+l
2 (12)

ai1a
j
2 ∗ ak1al2am3 = ai+k

1 aj+l
2 aj+l

3 (13)

Because we have removed the restrictions we will have even
more accepted structured paths than before in ASPR(G).

If we choose M1 = {(x1, x3)} we will also obtain
L(M1, R) = {ak1ak2ak3}k≥1, but every word in the language
will be generated by more accepted structured paths. For
example if we consider the path: [x1, x2, x1, x2, x3] we obtain
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the following accepted structured paths according to the labels
we have in the container ρ4:

1) ([x1, x2, x1, x2, x3], σ(σ(σ(a, a), a), b))
2) ([x1, x2, x1, x2, x3], σ(σ(a, a), σ(a, b)))
3) ([x1, x2, x1, x2, x3], σ(σ(a, σ(a, a)), b))
4) ([x1, x2, x1, x2, x3], σ(a, σ(σ(a, a), b)))
5) ([x1, x2, x1, x2, x3], σ(a, σ(a, σ(a, b))))

When computing each of them we obtain the same result,
using the new defined operation ∗.

1) valΣ([x1, x2, x1, x2, x3], σ(σ(σ(a, a), a), b)) =
valΣ([x1, x2, x1, x2], σ(σ(a, a), a))∗valΣ([x2, x3], b) =
(valΣ([x1, x2, x1], σ(a, a)) ∗ valΣ([x1, x2], a)) ∗
Algb(i(x2), i(x3)) = ((valΣ([x1, x2], a) ∗
valΣ([x2, x1], a))∗Alga(i(x1), i(x2)))∗Algb(a2, a3) =
((Alga(i(x1), i(x2)) ∗Alga(i(x2), i(x1))) ∗
Alga(a1, a2)) ∗ a2a3 = ((Alga(a1, a2) ∗
Alga(a2, a1)) ∗ a1) ∗ a2a3 = ((a1 ∗ a2) ∗ a1) ∗ a2a3

(12)
=

(a1a2 ∗ a1) ∗ a2a3
(12)
= a2

1a2 ∗ a2a3
(13)
= a2

1a
2
2a

2
3.

2) valΣ([x1, x2, x1, x2, x3], σ(σ(a, a), σ(a, b))) =
valΣ([x1, x2, x1], σ(a, a))∗valΣ([x1, x2, x3], σ(a, b)) =
(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a)) ∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x3], b)) =
(Alga(i(x1), i(x2)) ∗Alga(i(x2), i(x1))) ∗
(Alga(i(x1), i(x2)) ∗Algb(i(x2), i(x3))) =
(Alga(a1, a2) ∗Alga(a2, a1)) ∗ (Alga(a1, a2) ∗
Algb(a2, a3)) = (a1 ∗ a2) ∗ (a1 ∗ a2a3)

(12)(13)
=

a1a2 ∗ a1a2a3
(13)
= a2

1a
2
2a

2
3.

3) valΣ([x1, x2, x1, x2, x3], σ(σ(a, σ(a, a)), b)) =
valΣ([x1, x2, x1, x2], σ(a, σ(a, a)))∗valΣ([x2, x3], b) =
(valΣ([x1, x2], a) ∗ valΣ([x2, x1, x2], σ(a, a))) ∗
Algb(i(x2), i(x3)) = (Alga(i(x1), i(x2)) ∗
(valΣ([x2, x1], a) ∗ valΣ([x1, x2], a))) ∗Algb(a2, a3) =
(Alga(a1, a2) ∗ (Alga(i(x2), i(x1)) ∗
Alga(i(x1), i(x2)))) ∗ a2a3 = (a1 ∗ (Alga(a2, a1) ∗
Alga(a1, a2))) ∗ a2a3 = (a1 ∗ (a2 ∗ a1)) ∗ a2a3

(12)
=

(a1 ∗ a1a2) ∗ a2a3
(12)
= a2

1a2 ∗ a2a3
(13)
= a2

1a
2
2a

2
3.

4) valΣ([x1, x2, x1, x2, x3], σ(a, σ(σ(a, a), b))) =
valΣ([x1, x2], a)∗valΣ([x2, x1, x2, x3], σ(σ(a, a), b)) =
Alga(i(x1), i(x2)) ∗ (valΣ([x2, x1, x2], σ(a, a)) ∗
valΣ([x2, x3], b)) = Alga(a1, a2) ∗ ((valΣ([x2, x1], a) ∗
valΣ([x1, x2], a)) ∗Algb(i(x2), i(x3))) =
a1 ∗ ((Alga(i(x2), i(x1)) ∗Alga(i(x1), i(x2))) ∗
Algb(a2, a3)) = a1 ∗ ((Alga(a2, a1) ∗Alga(a1, a2)) ∗
a2a3) = a1 ∗ ((a2 ∗ a1) ∗ a2a3)

(12)
=

a1 ∗ (a1a2 ∗ a2a3)
(13)
= a1 ∗ a1a

2
2a

2
3

(13)
= a2

1a
2
2a

2
3.

5) valΣ([x1, x2, x1, x2, x3], σ(a, σ(a, σ(a, b)))) =
valΣ([x1, x2], a)∗valΣ([x2, x1, x2, x3], σ(a, σ(a, b))) =
Alga(i(x1), i(x2)) ∗ (valΣ([x2, x1], a) ∗
valΣ([x1, x2, x3], σ(a, b))) =
Alga(a1, a2) ∗ (Alga(i(x2), i(x1)) ∗ (valΣ([x1, x2], a) ∗
valΣ([x2, x3], b))) = a1 ∗ (Alga(a2, a1) ∗
(Alga(i(x1), i(x2)) ∗Algb(i(x2), i(x3)))) =
a1 ∗ (a2 ∗ (Alga(a1, a2) ∗Algb(a2, a3))) =

a1 ∗ (a2 ∗ (a1 ∗ a2a3))
(13)
= a1 ∗ (a2 ∗ a1a2a3)

(13)
=

a1 ∗ a1a
2
2a

2
3

(13)
= a2

1a
2
2a

2
3.

Next we show what results we obtain if we choose different
sets M .

For the set M2 = {(x2, x3)} we obtain accepted structured
paths with labels from the container corresponding to ρ2 and
we compute one for the first 3 paths from x2 to x3:
• valΣ([x2, x3], b) = Algb(i(x2), i(x3)) = Algb(a2, a3) =
a2a3.

• valΣ([x2, x1, x2, x3], σ(a, σ(a, b))) = valΣ([x2, x1], a) ∗
valΣ([x1, x2, x3], σ(a, b)) = Alga(i(x2), i(x1)) ∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x3], b)) =
Alga(a2, a1)∗(Alga(i(x1), i(x2))∗Algb(i(x2), i(x3))) =
a2 ∗ (Alga(a1, a2) ∗Algb(a2, a3)) =

a2 ∗ (a1 ∗ a2a3)
(13)
= a2 ∗ a1a2a3

(13)
= a1a

2
2a

2
3.

• valΣ([x2, x1, x2, x1, x2, x3], σ(σ(a, a), σ(a, σ(a, b)))) =
(valΣ([x2, x1], a)∗valΣ([x1, x2], a))∗(valΣ([x2, x1], a)∗
valΣ([x1, x2, x3], σ(a, b))) = (Alga(i(x2), i(x1)) ∗
Alga(i(x1), i(x2))) ∗ (Alga(i(x2), i(x1)) ∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x3], b))) =
(Alga(a2, a1) ∗Alga(a1, a2)) ∗ (Alga(a2, a1) ∗
(Alga(i(x1), i(x2)) ∗Algb(i(x2), i(x3)))) =

(a2 ∗ a1) ∗ (a2 ∗ (Alga(a1, a2) ∗Algb(a2, a3)))
(12)
=

a1a2 ∗ (a2 ∗ (a1 ∗ a2a3))
(13)
= a1a2 ∗ (a2 ∗ a1a2a3)

(13)
=

a1a2 ∗ a1a
2
2a

2
3

(13)
= a2

1a
3
2a

3
3.

So continuing the computations for any accepted structured
path from x2 to x3 we obtain the language: L(M2, R) =
{ak−1

1 ak2a
k
3}k≥1.

For the set M3 = {(x1, x2)} we obtain:
• valΣ([x1, x2], a) = Alga(i(x1), i(x2)) =
Alga(a1, a2) = a1.

• valΣ([x1, x2, x1, x2], σ(a, σ(a, a))) = valΣ([x1, x2], a) ∗
valΣ([x2, x1, x2], σ(a, a)) = Alga(i(x1), i(x2)) ∗
(valΣ([x2, x1], a) ∗ valΣ([x1, x2], a)) =
Alga(a1, a2)∗(Alga(i(x2), i(x1))∗Alga(i(x1), i(x2))) =

a1 ∗ (Alga(a2, a1) ∗Alga(a1, a2)) = a1 ∗ (a2 ∗ a1)
(12)
=

a1 ∗ a1a2
(12)
= a2

1a2.
• valΣ([x1, x2, x1, x2, x1, x2], σ(σ(σ(a, a), σ(a, a)), a)) =

((valΣ([x1, x2], a) ∗ valΣ([x2, x1], a)) ∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a))) ∗
valΣ([x1, x2], a) = ((Alga(i(x1), i(x2)) ∗
Alga(i(x2), i(x1))) ∗ (Alga(i(x1), i(x2)) ∗
Alga(i(x2), i(x1)))) ∗Alga(i(x1), i(x2)) =
((Alga(a1, a2) ∗Alga(a2, a1)) ∗ (Alga(a1, a2) ∗
Alga(a2, a1))) ∗Alga(a1, a2) = ((a1 ∗ a2) ∗ (a1 ∗ a2)) ∗
a1

(12)
= (a1a2 ∗ a1a2) ∗ a1

(12)
= a2

1a
2
2 ∗ a1

(12)
= a3

1a
2
2.

We obtain the language: L(M3, R) = {ak1ak−1
2 }k≥1.

For the set M4 = {(x2, x1)} we obtain:
• valΣ([x2, x1], a) = Alga(i(x2), i(x1)) =
Alga(a2, a1) = a2.

• valΣ([x2, x1, x2, x1], σ(σ(a, a), a)) =
valΣ([x2, x1, x2], σ(a, a)) ∗ valΣ([x2, x1], a) =
(valΣ([x2, x1], a) ∗ valΣ([x1, x2], a)) ∗
Alga(i(x2), i(x1)) =
(Alga(i(x2), i(x1))∗Alga(i(x1), i(x2)))∗Alga(a2, a1) =

(Alga(a2, a1) ∗Alga(a1, a2)) ∗ a2 = (a2 ∗ a1) ∗ a2
(12)
=

a1a2 ∗ a2
(12)
= a1a

2
2.
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• valΣ([x2, x1, x2, x1, x2, x1], σ(σ(a, a), σ(a, σ(a, a)))) =
(valΣ([x2, x1], a)∗valΣ([x1, x2], a))∗(valΣ([x2, x1], a)∗
valΣ([x1, x2, x1], σ(a, a))) = (Alga(i(x2), i(x1)) ∗
Alga(i(x1), i(x2))) ∗ (Alga(i(x2), i(x1)) ∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a))) =
(Alga(a2, a1) ∗Alga(a1, a2)) ∗ (Alga(a2, a1) ∗
(Alga(i(x1), i(x2)) ∗Alga(i(x2), i(x1)))) =

(a2 ∗ a1) ∗ (a2 ∗ (Alga(a1, a2) ∗Alga(a2, a1)))
(12)
=

a1a2 ∗ (a2 ∗ (a1 ∗ a2))
(12)
= a1a2 ∗ (a2 ∗ a1a2)

(12)
=

a1a2 ∗ a1a
2
2

(12)
= a2

1a
3
2.

We obtain the language: L(M4, R) = {ak−1
1 ak2}k≥1.

For the set M5 = {(x1, x1)} we obtain:
• valΣ([x1, x2, x1], σ(a, a)) =
valΣ([x1, x2], a) ∗ valΣ([x2, x1], a) =
Alga(i(x1), i(x2)) ∗Alga(i(x2), i(x1)) =

Alga(a1, a2) ∗Alga(a2, a1) = a1 ∗ a2
(12)
= a1a2.

• valΣ([x1, x2, x1, x2, x1], σ(σ(a, a), σ(a, a))) =
valΣ([x1, x2, x1], σ(a, a)) ∗ valΣ([x1, x2, x1], σ(a, a)) =
(valΣ([x1, x2], a)∗valΣ([x2, x1], a))∗(valΣ([x1, x2], a)∗
valΣ([x2, x1], a)) = (Alga(i(x1), i(x2)) ∗
Alga(i(x2), i(x1))) ∗ (Alga(i(x1), i(x2)) ∗
Alga(i(x2), i(x1))) = (Alga(a1, a2) ∗Alga(a2, a1)) ∗
(Alga(a1, a2) ∗Alga(a2, a1)) = (a1 ∗ a2) ∗ (a1 ∗ a2)

(12)
=

a1a2 ∗ a1a2
(12)
= a2

1a
2
2.

• valΣ([x1, x2, x1, x2, x1, x2, x1], σ(σ(σ(a, a),
σ(a, a)), σ(a, a))) = valΣ([x1, x2, x1, x2, x1], σ(σ(a, a),
σ(a, a))) ∗ valΣ([x1, x2, x1], σ(a, a)) =
(valΣ([x1, x2, x1], σ(a, a))∗valΣ([x1, x2, x1], σ(a, a)))∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a)) =
((valΣ([x1, x2], a) ∗ valΣ([x2, x1], a)) ∗
(valΣ([x1, x2], a) ∗ valΣ([x2, x1], a))) ∗
valΣ([x1, x2], a) ∗ valΣ([x2, x1], a) =
(Alga(a1, a2) ∗Alga(a2, a1)) ∗ (Alga(a1, a2) ∗
Alga(a2, a1)) ∗ (Alga(a1, a2) ∗Alga(a2, a1)) =

((a1 ∗ a2) ∗ (a1 ∗ a2)) ∗ (a1 ∗ a2)
(12)
=

(a1a2 ∗ a1a2) ∗ a1a2
(12)
= a2

1a
2
2 ∗ a1a2

(12)
= a3

1a
3
2.

We obtain the language: L(M5, R) = {ak1ak2}k≥1.
For the set M6 = {(x2, x2)} we obtain:
• valΣ([x2, x1, x2], σ(a, a)) =
valΣ([x2, x1], a) ∗ valΣ([x1, x2], a) =
Alga(i(x2), i(x1)) ∗Alga(i(x1), i(x2)) =

Alga(a2, a1) ∗Alga(a1, a2) = a2 ∗ a1
(12)
= a1a2.

• valΣ([x2, x1, x2, x1, x2], σ(σ(σ(a, a), a), a)) =
valΣ([x2, x1, x2, x1, ], σ(σ(a, a), a))∗valΣ([x1, x2], a) =
((valΣ([x2, x1], a) ∗ valΣ([x1, x2], a)) ∗
(valΣ([x2, x1], a)) ∗ valΣ([x1, x2], a) =
((Alga(i(x2), i(x1)) ∗Alga(i(x1), i(x2))) ∗
Alga(i(x2), i(x1)) ∗Alga(i(x1), i(x2)) =
((Alga(a2, a1) ∗Alga(a1, a2)) ∗Alga(a2, a1)) ∗
Alga(a1, a2) = ((a2 ∗ a1) ∗ a2) ∗ a1

(12)
=

(a1a2 ∗ a2) ∗ a1
(12)
= a1a

2
2 ∗ a1

(12)
= a2

1a
2
2.

• valΣ([x2, x1, x2, x1, x2, x1, x2], σ(σ(σ(a, a), σ(a, a)),
σ(a, a))) = valΣ([x2, x1, x2, x1, x2], σ(σ(a, a),
σ(a, a))) ∗ valΣ([x2, x1, x2], σ(a, a)) =

(valΣ([x2, x1, x2], σ(a, a))∗valΣ([x2, x1, x2], σ(a, a)))∗
(valΣ([x2, x1], a) ∗ valΣ([x1, x2], a)) =
((valΣ([x2, x1], a) ∗ valΣ([x1, x2], a)) ∗
(valΣ([x2, x1], a)∗valΣ([x1, x2], a)))∗valΣ([x2, x1], a)∗
valΣ([x1, x2], a) = (Alga(a2, a1) ∗Alga(a1, a2)) ∗
(Alga(a2, a1) ∗Alga(a1, a2)) ∗ (Alga(a2, a1) ∗
Alga(a1, a2)) = ((a2 ∗ a1) ∗ (a2 ∗ a1)) ∗ (a2 ∗ a1)

(12)
=

(a1a2 ∗ a1a2) ∗ a1a2
(12)
= a2

1a
2
2 ∗ a1a2

(12)
= a3

1a
3
2.

We obtain the language: L(M6, R) = {ak1ak2}k≥1.
We can see that L(M5, R) = L(M6, R) so we can write:
L(M7, R) = {ak1ak2}k≥1, where M7 = {(x1, x1), (x2, x2)}.
This is a context-free language but not a regular language,
according to Pumping Lemma for regular languages.

IV. CONCLUSIONS AND OPEN PROBLEMS

In this paper we present a new application of the stratified
graphs G. We showed that by a specific interpretation I of G
we obtain a formal language. Also by adding the restriction
set R we can limit the computations to a certain type of
accepted structured paths and use only those to obtain a certain
language.

We relieved that these structure can generate regular lan-
guages, context-sensitive languages which are not context-free
languages and also context-free languages that are not regular
languages and even more they can all be generated using the
same labelled stratified graph. This study can be continued
and we relieve here the following open problems:

1) Study the family of languages generated by labelled
stratified graphs in comparison with the Chomsky hi-
erarchy of formal languages.

2) There are several syntactical mechanisms to model the
natural languages (for example, Recursive Transition
Networks, Augmented Transition Networks etc). Try to
apply the ideas presented in this paper to obtain subsets
of natural languages by means of labelled stratified
graphs.

3) Characterize the algebraic properties of formal lan-
guages generated by the same labelled stratified graph,
but using various interpretations.

4) Study the change of L(M,R) for various choices of R
and M .

5) The most interesting languages are the infinite ones.
Study the infiniteness of the languages represented by
stratified graphs by means of the containers of such a
structure (defined as in [14]).

6) The Lindenmayer systems can also generate formal
languages. Study the family of the languages generated
by stratified graphs in comparison with the languages
generated by the Lindenmayer systems.

7) Study the problem described in this paper with another
kind of interpretation. Namely, for each x ∈ S the
element i(x) is the language generated by some formal
grammar. The relations between the nodes of a stratified
graph, as well as the operation ∗, are defined in this
case as a binary operation between formal languages. In
this manner we can combine the languages generated
by distinct kinds of grammar or we can combine a
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formal language generated by a grammar with the formal
language generated by a Lindenmayer system.
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[6] N. Ţăndăreanu, Proving the existence of labeled Stratified Graphs,
Annals of the University of Craiova, Mathematics and Computer Science
Series, Vol. XXVII, (2000), 81-92
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