

Abstract— Grid task scheduling problem has been a research

focus in grid computing for the past years. Some

Deterministic, Heuristics or Metaheuristic scheduling

approaches have been proposed to solve this NP-complete

problem. However, these algorithms do not take the Multi-

Objective nature of Grid Computing performance into

account. In this paper we present a Multi-Objective approach

using Evolutionary Algorithm (MOEA) to efficiently solve

such kind of scheduling problems. Our proposal is based on

NSGA-II MOEA algorithm combined with a set of Heuristics

in different evolutionary operators which allow a fast

convergence to optimal (or near-optimal) solutions. The

results obtained by our proposed algorithm were compared

and evaluated against Mono-Objective and Multi-Objective

algorithms used for Grid task scheduling. The main

contributions of this paper are the proposed mathematical

model, the optimization model and the algorithm to solve it.

Additionally we show the effectiveness and robustness of the

proposed algorithm.

Keywords— Evolutionary Algorithms, Grid, Task Scheduling,

Heuristics, Metaheuristics, Meta-Scheduler, Multi-Objective

Optimization, NP-Complete, NSGA-II, Pareto Front.

I. INTRODUCTION

RID Computing technologies, specifically the ones used

in High Throughput Computing (HTC) [1] systems,

allow a large amount of processing over large periods of time.

The key for these infrastructures to offer a high performance is

the management and effective exploitation of all available

computing resources [2]. Traditionally, tasks scheduling in

computing environments has been addressed using mono-

objective optimization [3] [4] [5]. Although this approach

obtained good results on the performance of a single aspect

(e.g. execution time and queue delays minimization), the

Multi-Objective (MO) nature of Grid Computing [6] makes it

an ineffective approach and necessary to use MO

Optimization methods that can capture all the characteristics

and requirements of different stakeholders of the Grid

infrastructure, obtaining a set of trade-off solutions, all good in

some aspect.

Our proposal uses the paradigm of Multi-Objective

Evolutionary Algorithms (MOEA). These algorithms

combined with a set of evolutionary operators that take

advantage of the characteristics of the general operations of

Grid Computing, solve efficiently and effectively the task

scheduling problem in Grid computing environments, which is

a NP-Hard problem [7]. On the other hand, evaluations about

our algorithm performance showed that the set of non-

dominated solutions found are closed to the Pareto-optimal

front and uniformly spaced. Also the algorithm convergence is

fast. The true Pareto Front was found using the classical

method of -constrains MO Optimization and the Branch and

Bound deterministic algorithm [7] [8].

The rest of the paper is organized as follows. Section 2 talks

about related work and section 3 introduces the task

scheduling problem in the Multi-Objective context and

presents a general mathematical model of Grid Computing.

The section 4 proposes an optimization model for Grid

scheduling in HTC with 2 objectives. Section 5 proposes the

algorithm based on NSGA-II to solve it. Finally, the set of

performance tests where the proposed algorithm is compared

against a mono-objective and multi-objective algorithms is

presented in Section 6. Section 7 has the conclusions and

future work.

II. RELATED WORK

Task scheduling in Grid environments with a single

objective has been one of the most extensively studied fields

in recent years. Grid use in academic and scientific

environment is usually modeled by independent and batch task

scheduling techniques. Some examples of such techniques are

genetic algorithms [9], data mining [10] or swarm intelligence

[11]. Other works have studied scheduling technologies using

MAGS – An Approach Using Multi-Objective

Evolutionary Algorithms for Grid Task

Scheduling

Miguel Camelo, Yezid Donoso, Harold Castro

Systems and Computing Engineering Department

Universidad de los Andes, Bogotá, Colombia

ydonoso@uniandes.edu.co

G

Issue 2, Volume 5, 2011 117

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

economic/market-based models [12]. The main disadvantage

of these techniques is the optimization of one goal regardless

of the Multi-Purpose Grid nature which leads to improve the

performance of one characteristic and causing the

deterioration of the others characteristics.

At the level of Grid task scheduling with multiple

objectives using MO Optimization, very few papers are

presented. In [6] the quality of the different found solutions

were compared against the Ant Colony Optimization (ACO),

the Particle Swarm Optimization (PSO), the Simulated

Annealing (SA) and the Genetic Algorithms (GA)

Metaheuristic. The results show that PSO and GA are highly

efficient and effective in the task scheduling problem. Later

these Metaheuristics were compare (combined with the classic

MO Optimization Weighted Sum method) against a MOEA

algorithm (it was not specified), optimizing the makespan and

flowtime [7] [8] objective functions. Compared to other

Metaheuristics, the MOEA algorithm presented better quality

solutions, showing that this type of algorithms always

converges to the optimal value on each execution. Unlike

other Metaheuristics, where on each execution it could provide

the optimal value or not, causing deviations between the

solutions of different executions. Additionally, authors

exposed the virtues of the MOEA to give a set of non-

dominated solutions to extend the capabilities of the best

solution choosing that fits the specific problem.

In [13], the authors propose an algorithm called Multi-

Objective Resource Scheduling Approach - MORSA, which is

a combination between NPGA and NSGA Algorithms. They

combine the sorting algorithm of non-dominated solutions

with the process of Niche Sharing to ensure diversity. An

important feature is the incorporation of precedence

relationship between tasks, something that was not considered

on previous proposals. It uses the execution cost on resources

and completion time (flow time) as objective functions. This

proposal has the disadvantage of using first-generation MOEA

algorithms, although they are better than classical methods of

MO optimization, they are less efficient and effective than

second-generation MOEA [14].

Finally, another interesting proposal is presented in [15]

where the NSGA-II (a Second Generation MOEA) is used as

base algorithm. They are aimed at balancing the load between

autonomous sites (called Virtual Organizations or VOs [16])

while minimizing the response time of their tasks. Although

this solution has the advantages and benefits of using the

NSGA-II as base algorithm, authors do not incorporate any

knowledge into the algorithm (using fast Heuristics or

Metaheuristics), avoiding better results. This assertion is

demonstrated in the results of our proposal.

III. GRID COMPUTING AS MULTI-OBJECTIVE OPTIMIZATION

PROBLEM

The need to formulate the Grid resource management as a

MO problem results from the characteristics of the Grid

environment itself. This environment incorporates or knows a

set of requirements of different stakeholders groups. Each

group has its own point of view and policies that should be

considered when evaluating different schedules of tasks from

the point of view of different criteria or objectives.

Grid Characteristics can be captured in a formal

mathematical model, which allows designing an optimization

algorithm for the task scheduling problem. In general, the Grid

is composed of one or more Virtual Organizations (VO),

which is a set of individuals and/or domains that are governed

by a common set of policies for sharing resources. The users

objectives/preferences, resource providers and VO

administrators (called stakeholders in the literature) are often

inconsistent or conflicting with each other. A user is an entity

that uses available resources to execute their work computer or

any operation that consumes resources for a certain period of

time. On the other hand, a resource provider is an entity that

manages computational units (simple computers or local

management resources systems) inside a single administrative

domain. Users and resource providers can be organized

dynamically between VOs, each one with different policies

and preferences. Finally, a VO manager is the responsible

entity for the inter-domain policies maintenance and control to

exchange resources and security standards.

Grid Computing requires the use of specialized middleware

to hide complexity integration of distributed resources within

a domain or a VO. This middleware consists of services such

as data management, data collection and monitoring, resource

management, task scheduling, authorization, accounting,

among others. But the service responsible for ensuring high

efficiency in resource management is the service of Resource

Management and Task Scheduling. This service is responsible

for identifying requirements, matching resources to tasks (for

an efficient implementation), submit to the selected resources

the tasks executions and monitor them until they finish.

The problem considered in this work consists of a finite set

of | | users { | |} that need to send a | |

quantity of task { | |} to resources that

are provided by | | different resources providers of a finite

set { | |}. Each resources provider

has associated a set of | | resources of a finite set

{ | |} .

Each resource is described by a set of | | attributes (or

resources features) { | |}. Each task contains | |

hard constraints of a finite set, HC { | |}.

A hard constraint , can be defined as a relation between

a resource’s attribute () (i.e Operating System,

Processor Architecture, CPU speed at least 2GHz) and a task

requirement concerning its attribute (

), for each task and

its requirements

, where ,

 and .

The relationship is satisfied if matches with

, in

other words if the attribute is greater, equal and/or lower

than a required value by the attribute

, according to the

case. For example, if the attribute

 indicates that it has to

be greater than a value, the relationship is satisfied if

 is greater than the value. Be (a scheduling) the

Issue 2, Volume 5, 2011 118

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

assignments set () of resources to execute all tasks

 it is said that the assignment is feasible if

meets the relationship

 . Additionally it can be set

 as the required resources quantity for a task (i.e. a 1GB

Disk space or 4 CPUs).

It is important to verify that in the filter stage (compared

with the General Architecture for Scheduling in Grid [17])

exists a strong restriction stating that the task of a user must

have access rights to perform an operation (i.e. a task

execution) over a resource from a resource provider. The

permissions relationship of a user to access and use a resource

(identified by) can be defined as: if

 , meaning assigning a resource to a task is valid if and only

if the task owner has access and rights to use the allocated

resource.

Given the definitions, notations and considerations that

describe tasks scheduling problem in Grid environments, the

Multi-Objective problem formal definition is:

 ()

 () (() () | |()) (1)

 (2)

 (∑

 ()

) (3)

 (4)

Where

 ,

 , | | (5)

 () () (6)

 { | | }

(7)

 * +, * + * +
* + and * +

(8)

Equation (2) indicates that all the attributes requirements of

a task have to be satisfied under hard constraints. Equation (3)

ensures that available resources meet the resource

requirements for a task and equation (4) is the access rights

constrain of a user to resources to execute their tasks.

Equations (5) and (6) show the sets and attributes used in the

mathematical model and equation (7) indicates a feasible

allocation () of tasks to resources, which should be part of

the set () of all feasible solutions that satisfy the problem

constraints and meet the definition of the Pareto Front.

IV. OPTIMIZATION MATH MODEL FOR HIGH THROUGHPUT

COMPUTING

Since there are multiple types of Grid, we must define an

optimization model for a specific instance of Grid. The

mathematical model’s features of the MO scheduler that

support MO task scheduling are defined based on the HPC Job

Scheduling: Base Case and Common Cases of the information

paper OGF GFD-I.100 [18], widely referred to as the High

Throughput Computing (HTC) core. It is important to

recognize that the tasks scheduler in batch tasks is only a part

of the broad spectrum that represents management services in

Grid Computing. This model can be extended to more

objectives, other types of tasks and adding / removing

constrains.

The characteristics assumed in the optimization model for

task scheduling are presented below:

 A job is composed of a task and does not have a

priority.

 The Task Scheduling will be on batch job.

 Each job can only be assigned to a single resource and

this is executed exclusively.

 Resources and jobs are heterogeneous and are part of a

finite set.

 Resources are discrete, however the attributes

described above may have different domains.

 Pre-emption is not allowed.

 The time of application provisioning network delays, or

any other time different from the processing time of a

job is not considered. This is due to HTC Grid is only

for computer processing.

 The resource to be scheduling is the amount of Millions

of Instructions Per Second (MIPS) of the processor and

the amount of RAM available in Giga Bytes.

 Two Objectives to optimize.

Additionally, we define a Grid task scheduling problem

instance like a pair (n,m) where n and m indicate the total

number of tasks and resources in the scheduling problem

respectively. Given these characteristics and constraints the

table 1 presents the set of variables and parameters that allow

the creation of a mathematical optimization program for the

Grid Scheduling Problem in HTC environments on Grid.

Variable Description

Binary decision variable (0,1) that indicates whether

the i task is executed as the kth in the jth processor

Parameter Description

 Time Completion of i task

Amount of processing requested by the task i in

MIPS

Amount of processing offered by the j resource in

MIPS

Total execution time of the i task which is executed

as the kth in the jth processor (⁄).

Amount of memory requested by the i task in

GBytes

Amount of memory offered by the j resource in

GBytes

Table 1. Instances of the Problem

A. Objective Function

According to [18], the relevant objective function at Grid

can be classified according to the stakeholders involved in the

Grid (users, resource providers and administrators of the VO).

For the model, we selected two of these functions to observe

their behavior in the performance tests of the Multi-Objective

Algorithm: load balancing (makespan minimization) and task

Issue 2, Volume 5, 2011 119

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

completion time minimization (flowtime minimization).

1) Load Balancing (minimize makespan)

To do load balancing in Grid Scheduling is necessary to

assure that the finish time of the last job is the same on each

resource. Minimizing completion time of the system's last

task, also called makespan (), leads to optimal load

balancing. The total completion time of last task in a resource

is described as follows:

 ∑∑

 (9)

If { | |}, then the objective function to

load balancing is:

 () (10)

2) Minimize the total completion time of all task (minimize

flow-time)

A user on the grid wants the execution of their tasks to be

quick. Reducing the completion time of tasks generally

involves a greater use of more powerful machines and shorter

time in processor queues but this behavior leads to load

imbalance between resources. It can be formally defined as:

∑

 ∑∑

 (11)

Evidently the reduction of this value is desired by the Grid

users. Hence it is possible to define the second objective

function as follows:

 () ∑

 (12)

From the complexity point of view, it can be demonstrated

that in the resulting combinatorial problem of Task

Scheduling, the number of possible solutions that can be found

given the characteristics of this problem is exponential ()
and in the worst case scenario a deterministic algorithm must

check solutions.

B. Model Constrains

 Finally, given the set of objective functions, the set of

constraints in the mathematical programming model to solve

the multi-objective problem are:

∑∑

 (13)

∑

 (14)

 ∑∑

 (15)

 (16)

 (17)

 * + (18)

Where R={1,2,...,m} is the set of available resources in the

system and T={1,2,...,n} is the set of tasks in the batch.

The constraint (12) ensures that task i is assigned to one and

only one position. The constraint (14) ensures that each

position () has at most one task assigned to it. Since the

 basically is a decision variable and not an element of the

resource vector of optimization model, the constraint (15)

ensures that the amount of processing on each machine is less

than . Constraints (16) and (17) are hard constraints on

the model which ensure that the requirements on the amount

of memory and processor request for a certain task are met.

The constraint (18) forces the decision variable to be 0 or 1, as

was described in Table 1.

V. MAGS: A NSGA-II BASED ALGORITHMS FOR GRID TASK

SCHEDULING

In year 2000, Kalyanmoy Deb et. al. in [19] presented the

Non-dominated Sorting Genetic Algorithm II (NSGA-II),

which is a review of the NSGA algorithm of MOEA’s first

generation. NSGA-II allows complexity reduction,

incorporates an elitism operator and eliminates the parameters

on the diversity operator, allowing for greater transparency in

the algorithm.

A. Evolutionary Algorithm Operators Configuration

The process of convergence of the solutions set to the

Pareto Front is highly linked to the use of evolutionary

operators. Now, the configuration parameters and operators

designed for the NSGA-II applied to the Task Scheduling

Problem are described. The algorithm 1 shows NSGA-II

pseudo code applied in task scheduling and Figure 1 show the

algorithm’s operation.

Issue 2, Volume 5, 2011 120

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 1 NSGA-II Operation

1) Chromosome

The chromosome encoding is done indirectly. Given a

chromosome of length n, the position of each gene in the

chromosome is the task number identifier and the allele value

(value the gene can take) m is the resource to which the task is

assigned. If n is the number of tasks to be scheduled in the

batch and m the amount of resources available, an instance

() with and indicates that the chromosome

that represents a solution is encoded as a vector of six

positions, where each allele can take the values 1, 2 and 3,

since we have 3 resources.

2) Comparison and Selection

The crowding comparison operator is used to choose the

solution set of the last front population trying to enter the next

generation population. Binary tournament operator is used into

the creation of child population.

3) Crossover

The crossover operation can extend the search space by

generating new solutions from the existing ones. Evaluating

the multipoint crossover strategies it was found that they are

highly destructive, generating highly random solutions that

can cause the algorithm to get stuck in a local optimum area,

giving low convergence to the Pareto front values. The

selected crossover strategy is the single point crossover [14],

which showed a good performance to solve this problem.

4) Mutation

The mutation operation provides Metaheuristics with local

search functions and solution diversity. The mutation process

acts in three different ways:

a) Fast Load Balancing between the most loaded (greater

makespan) and the least loaded (less makespan). This

Heuristic selects the most loaded resource and the less

loaded of a chromosome and exchanges two task.

b) Random migration of tasks between resources. Given

a chromosome, two genes are randomly selected and

the value of their alleles is exchanged.

c) Min-Min strategy. Given a random point in the

chromosome, the Min-Min Heuristics generate the

remaining values of the chromosome.

d) Incorporation of new random population.

Incorporates new solutions in a random fashion to

extend the search space which must meet the problem

constrains.

The strategy of mutation has a low complexity and

increases the capabilities of the NSGA-II to find the real

Pareto Front. The procedures a), b) and c) apply to (90%) of

the individuals to be mutated and the remaining (10%) are

eliminated and replaced by the procedure d).

5) Initial Population

The initial population in our algorithm is mostly randomly

generated meeting the problem constraints, but maintaining a

low complexity in the algorithm. On the other hand, a few

individuals are generated with fast Metaheuristics/Heuristics,

enabling greater convergence and higher speed of the

algorithm.

 The proposed initial Population uses a size of 100

individuals, where 95 (95%) are randomly generated, and of

the remaining 5 (5%), four are generated by genetic

algorithms (G.A) where one of the individuals minimizes the

makespan and the other minimizes the flowtime. Finally, the

last individual is generated by the Min-Min Heuristic.

6) Completion Criteria

The termination criterion used is the number of maximum

generations, which was set at 500. This value was

experimentally chosen because any increase upon this value,

offered no further improvements in the solutions.

VI. EVALUATIONS AND RESULTS

A. Mono-Objective Scenario

This evaluation presents important result about optimal

values found in single objective optimization. We use an

algorithm (Branch and Bound), and Heuristic (Min-Min

algorithm) and a Metaheuristic (Genetic Algorithms) to find

optimal values and to compare against MAGS extreme

solutions. The Min-Min Heuristic [3] [4] and G.A.

Metaheuristics presented in [6] good results in Grid Task

Scheduling Mono-Objective problems.

The Mono-Objective evaluation presented in this part takes

three instances of the problem into account (Table 2): a small

(3,13), a medium (5,100) and a large (50,300) search space.

The relaxation used in the Branch and Bound is solved by the

dual simplex method [20]. The standard deviation for G.A.

Metaheuristics and the MOEA was calculated after 20

algorithm executions. The relative error is computed respect to

the optimum value found in Branch and Bound, which is the

exact method and serves as a theoretical reference. In the

intractable instances for exactly algorithms the reference was

the MAGS results.

Instance
Task

()
Resources

()
Space Solutions

 (Total Solutions)

Small 13 3 1594323

Medium 100 5 7,88861E+69

Large 300 50 4.9E+509

Table 2. Instances of the Problem

Issue 2, Volume 5, 2011 121

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

1) Algorithms Configurations

Below we present the Mono-Objective algorithm

configurations.

 B&B: This optimization strategy use Simplex Dual

Algorithm to find lower bounds and Pure Depth First

Heuristic to find integer optimal solution.

 Min-Min: Its configuration is based on algorithm

present in [3] and [4].

 Genetic Algorithm: Table 3 presents the algorithms

parameter configuration.

 MAGS: Table 4 presents the algorithms parameter

configuration.

2) Results for Mono-Objective Evaluation

The evaluations shown in table 5,6 and 7 and figures 2, 3

and 4 show the quality of the solutions that MOEA finds

incorporating knowledge of the Task Scheduling problem into

evolutionary operators. In the instance (3,13), the Min-Min

Heuristic showed a poor performance for both objective

functions, but particularly in the makespan, showing a relative

error greater than 70%. Genetic algorithms show very good

results with relative errors less than 2%. On the other hand, the

MOEA obtains the expected optimal values. The above

statement is supported by having a relative error of 0. Another

important result of the MOEA was its standard deviation,

which was zero. Indicating that in each execution of the

algorithm, it always found the global optimum of the objective

functions.

Options Value

Initial Population 100

Initial Population

Creation

Random with bound

constrains

Generation Number 500

Crossover Single-Point

Crossover Probability 80%

Mutation Uniform

Probability Mutation 20%

Selection Binary Tournament

Total Executions 20

Table 3. G.A. parameters in Mono-Objective evaluation

Options Value

Initial Population 100

Initial Population

Creation

Random meet the bound

constrains , Min-Min Heuristic

(2 Individual) and G.A.

Metaheuristic (3 Individuals)

Generation Number 500

Crossover Single-Point

Crossover Probability 80%

Mutation

Fast Balancing, Fast

Migration, Min-Min, Random

Population

Probability Mutation 20%

Selection Binary Tournament

Elitist Operator Crowding Distance

Total Executions 20

Table 4. MAGS parameters in Mono-Objective evaluation

Fig. 2 Results of Instance (3,13)

Algorithm
Objective

Function

Optimal

Value

Standard

Deviation

Relative

Error (%)

B&B
makespan 45 ------ ------

flowtime 260,95 ------ ------

G.A
makespan 45,52 0,28 1,155

flowtime 262,46 0,69 0,578

Min-Min
makespan 79 ------ 75,55

flowtime 310 ------ 18,79

MAGS
makespan 45 0 0

flowtime 260,95 0 0

Table 5. Optimization results in the instance (3,13)

In the results of the instance (5,100), again the Min-Min

algorithm presents low quality results, which are above 50%

over the actual value of the makespan, showing its

inefficiency to minimize this function. The opposite happens

with the results obtained in the minimization of flowtime,

which are acceptable since they are below 10% of the

theoretical value. The G.A. continues to present difficulties in

optimizing the makespan, with a relative error greater than

20% in contrast to the minimization of flowtime which is

maintained below 1% compared to the theoretical optimum

value obtained by the Branch and Bound. The G.A. shows

high standard deviations especially in the makespan,

indicating a low certainty as to find the optimum value in each

run of the algorithm.

Issue 2, Volume 5, 2011 122

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 3 Results of Instance (5,100)

In the instance (50-300), the complexity generated by the

mathematical model and the computational complexity of the

size of the search space, prevented the exact method from

being executed. For this reason, the standard deviation for the

Min-Min and G.A. was calculated with respect to the values

found by the MOEA.

Algorithm
Objective

Function

Optimal

Value

Standard

Deviation

Relative

Error (%)

B&B
makespan 208,4 ------ ------

flowtime 7949,77 ------ ------

G.A
makespan 250,2 13,71 20,05

flowtime 7980,66 8,02 0,38

Min-Min
makespan 314 ------ 50,67

flowtime 8625,37 ------ 8,498

MAGS
makespan 208,46 0,052 0,029

flowtime 7954,83 1,15 0,06

Table 6. Optimization results in the instance (5,100)

Fig. 4 Results of Instance (50,300)

Algorithm
Objective

Function

Optimal

Value

Standard

Deviation

Relative

Error

(%)

B&B
makespan Intractable ------ ------

flowtime Intractable ------ ------

G.A
makespan 123,89 14,85 107,39

flowtime 7605,32 16,21 1,89

Min-Min
makespan 7839,55 ------ 55,68

flowtime 93 ------ 5,03

MAGS
makespan 59,73 0,44 ------

flowtime 7463,90 4,1872 ------

Table 7. Optimization results in the instance (50,300)

Continuing with the analysis of the instance (50,300), the

G.A. had a terrible level of convergence in the makespan and

its standard deviation showed that it happened in most of its

algorithm executions. The Min-Min continues with its

tendency to be close to 50% from the optimal makespan

generated by the MOEA. Flowtime optimal values, found by

the GA and Min-Min, are still good values (assuming that

being below 5% is a good optimum value). It is important to

acknowledge that a value less than 5% in the solution can be

classified as good or very good, given that the magnitude of

flowtime values that are close to 7900 seconds, and an error

below 5% means a deviation less than 300 seconds from the

optimum. The standard deviation of the GA rises, again

showing problems of convergence towards the optimum in

each algorithm execution.

B. Multi-Objective Scenario

One of the best ways to measure the quality of a Multi-

Objective algorithm is using metrics to evaluate it against

theoretical solutions of the models. In this work, we built a

real Pareto Front evaluating the mathematical problem with

the method of -constrains and using the deterministic/exact

algorithm of Branch and Bound.

The obtain results allow us first to use the metric of

Issue 2, Volume 5, 2011 123

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

generational distance - GD (presented in [14]) to evaluate the

Pareto front convergence found with our proposal against the

real Pareto front found by the exact algorithm. On the other

hand, it is necessary to evaluate the ability to generate well-

distributed solutions through the real Pareto, so the metric

spacing - (S) (presented in [14]) is use. Here are the formulas

that relate them respectively.

(∑

 | |
)

 ⁄

| |

(19) √

| |
∑(̅)

| |

 (20)

The algorithm was run 20 times and on each run the GD

and S metrics were obtained. Subsequently their average and

standard deviation are obtained. The ε-constrains method

configuration parameters are presented in table 8.

Options Value

Integer Problem Relaxation Solution Simplex-Dual

Search Heuristic Pure Depth First

Quality Integer solution for Acceptance 0.05%

Max Time Exploration for Solution 3600 seconds

ε values calculated 30

Table 8. -constrains method configuration parameters.

1) Pareto Front, Spacing and GD Results

In this evaluation, three instances of the problem were used

to calculate the real Pareto Front and the one generated by our

proposal. Being one instance a pair like (m, n), where m is the

number of machines and n the number of tasks. Then the

instances used for evaluation were: small instance (3,13),

which generates a search space of 1,594,323 solutions;

medium instance (5,100), which generates a space of

 solutions and a big instance (50,300) with a search

space of solutions. The obtained Pareto Fronts are

presented in the figures 5, 6 and 7 and spacing and

generational distance values in table 9.

The instance’s (3,13) results show that all the points of the

real Pareto were found by the MOEA, thus when computing

its spacing and the generational distance, the values are below

the unity because of the precision on the decimal values of the

exact algorithm. These results confirm the convergence of the

algorithm towards the real Pareto front. Furthermore, both the

generational distance and the spacing held a low standard

deviation, which shows that the algorithm converges always in

every execution.

Fig. 5 Pareto Front in the instance (3,13)

In the (5,100) instance, the algorithm’s efficiency was

demonstrated again, even in bigger search spaces. The

calculated metrics show the high quality and diversity of the

Pareto’s front non-dominated solutions found by the proposed

algorithm. Although the spacing and the GD both increased,

they are still low in scale of the objective functions.

Fig. 6 Pareto Front in the instance (5,100)

Finally, in the 50-300 instance (large-scale combinatory

problem), the program used to calculate the optimum values of

the real Pareto did not work. The space and computational

complexity of the mathematical programming model turned

the deterministic algorithm of the classic method useless. The

calculated spacing and its deviation showed that through each

of the algorithm’s execution, the Pareto’s distribution almost

always stayed constant. This indicates that the generated fronts

on each execution were similar one to another, meaning

convergence to the same optimum values.

Instance Metric Average Standard deviation

(3,13)
GD 0,091 0,038

Spacing 1.42 0.45

(5,100)
GD 1,29 0,75

Spacing 1,44 1,18

(50,300)
GD

No calculated because ε-constrains method

don’t work (the memory RAM was

exceeded)

Spacing 1,787 1,3217

Table 9. Generational Distance and Spacing metrics results

Issue 2, Volume 5, 2011 124

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Fig. 7 Pareto Front in the instance (50,300)

2) Complexity Analysis

The computational complexity of NSGA-II algorithm is

polynomial and equal to () for each G generation,

where is the number of objective functions and the

individuals in the population, meaning its implementation

complexity is () and this is independent of the number

of resources and task. On the other hand, Branch and Bound,

has a complexity equal to fully evaluate the search space of

combinatorial problem and it is concluded that this algorithm

is in the worst case scenario of exponential

complexity (), where is the number of resources and
is the number of tasks. In a practical way, the execution times

of our proposal and of the traditional method were measured.

The table 10 shows the practical results of the execution time

in both algorithms.

Instance

(n,m)

MAGS - NSGA-II for Grid

Scheduling

(seconds)

ε-constrains using

Branch and Bound

(seconds)

3-13 10.31 >>1

10-50 32,36 62,5

5-100 37.88 147,8

20-200 49,27 <<3600

50-300 94,28 Intractable

Table 10. Execution Time of NSGA-II and Branch and

Bound

This table shows the inefficiency of the deterministic

algorithms in NP-Complete problems. In a small problem

instance, the difference, in terms of execution time elapsed,

between algorithms is low. However, in large problem

instance the deterministic algorithm have very high execution

therefore the optimization results should be obtained as an

integer gap value respect to optimization problem relaxed

solution. In the last instance (50,300), the deterministic

algorithm does not finalize because its spatial complexity is

beyond the capabilities of the machine used for assessments

(Dual Core Xeon Processor and 4 GB of RAM).

VII. CONCLUSIONS AND FUTURE WORK

The proposed MOEA showed the best results,

demonstrating that the use of elitism operator carries the best

individuals to the next generation by allowing the genetic

material of these individuals to be used to create new members

of the population through evolutionary operators, expecting

that these new individuals are fitter than their predecessors.

Additionally, the mutation operator designed in this proposal

(which contains knowledge of the problem) coupled with the

choice of algorithm parameters and the other operators

through pre-evaluations enabled the construction of an

algorithm that allows convergence to the real Pareto Front

efficiently. It is also observed that even though each instance

increased the complexity of the search space, convergence was

held constant and the relative error remained low.

The Mono-Objective evaluations we showed that proposed

MOEA is the excellent convergence to the optimum on every

execution demonstrated by a low standard deviation. It is

noteworthy that solutions far from the real optimal values, can

generate a front of local non-dominated solutions (local

optimum), avoiding the convergence to the global optimum.

Additionally we showed that in large-scale task scheduling (a

NP-Complete Problem) deterministic algorithms are highly

inefficient and is necessary to use Metaheuristics as the

NSGA-II, whose polinomial complexity allows us to find

good solutions in a reasonable time.

On the other side, Multi-Objective evaluation in the

medium-large scale size Grid scheduling problem (5-100 y 50-

300) showed the difficulties suffered by the traditional

deterministic-algorithm method when trying to find the exact

Pareto front (because of its computational and spatial

complexity) were noted. In the 5-100 instance, the

computational complexity caused the Branch and Bound

algorithm’s execution to be very slow to find the values used

to generate the real Pareto front using the MO classic method

but the space complexity was reduced by means of using

efficient algorithms like the dual-simplex, the Pure Depth First

search Heuristic and the use of sparse matrixes, which permit

the manipulation of millions of variables to solve medium-

scale mathematical programming problems. Nonetheless

although these solutions are acceptable in medium-scale

problems, they are either limited or insufficient in large-scale

problems. This was seen in the 50-300 instance where the

exact algorithm failed its execution because of a need for more

memory (above 4GB of RAM) when loading the restriction

matrix. It is important to note that the proposed algorithm

finds a set of optimal solutions (close to the Optimal Pareto

Front). The charts presented and supported by the GD and

spacing metrics, showed that the use of Metaheuristics is

highly recommended to tackle Multi-Objective task

scheduling problems which are of combinatory nature and

generate a large scale and/or non-convex search space.

It is worthwhile to remember that HTC’s task scheduling

Problem includes scenarios of hundreds of thousands of

resources and task that must be schedule quickly, where

deterministic algorithms solutions cannot be used and

therefore, it necessary to use alternatives such as the one

suggested here, which showed to be efficient and effective

when tackling the problem. As a future work, it is proposed to

compare the algorithm with other MOEA on large-scale

instances. Furthermore, it is also suggested to begin

evaluating other evolutionary operators and incorporating new

Heuristics on the mutation operator to improve a faster the

algorithm’s convergence to the real Pareto.

Issue 2, Volume 5, 2011 125

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

REFERENCES

[1] Condor - High Throughput Computing (HTC). [Online].

 http://www.cs.wisc.edu/condor/htc.html

[2] Zhou Lei and Zhifeng, Allen, Gabrielle Yun, "Grid Resource

Allocation," in Grid Computing: Infraestructure, Service, and

Applications, Lizhe Wang, Wei Jie, and Jinjun Chen, Eds. Boca Raton:
CRC Press, 2009, ch. 7, pp. 1172-188.

[3] Tracy D. Braun et al., "A comparison of eleven static heuristics for

mapping a class of independent tasks onto heterogeneous distributed
computing systems," in Journal of Parallel and Distributed Computing.:

Academic Press, Inc, 2001, vol. 61, pp. 810 - 837.

[4] Hesam Izakian, Ajith Abraham, and Václav Snasel, "Comparison of
Heuristics for Scheduling Independent Tasks on Heterogeneous

Distributed Enviroments," vol. 1, pp. 8-12, 2009.

[5] Tracy D. Braun et al., "A comparison study of static mapping heuristics

for a class of meta-tasks on heterogeneous computing systems," in

Eighth Heterogeneous Computing Workshop, 1999. (HCW '99)
Proceedings.: IEEE Computer Society, 1999, pp. 15-29.

[6] Fatos Xhafa and Ajith Abraham, Metaheuristics for Scheduling in

Distributed Computing Environments.: Springer-Verlag Berlin
Heidelberg, 2008, pp. 1-38, 247-272.

[7] Miguel L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fifth

Edition ed.: Springer, 2008.

[8] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,

"Handbook on Scheduling: From Theory to Applications (International

Handbooks on Information Systems)," in International Handbook on
Information Systems, Primera Edición ed.: Springer, 2007, pp. 137-190,

271-311.

[9] A. Sanchez et al., A dynamic-balanced scheduler for genetic algorithms
for grid computing, 1st ed.: WSEAS Transactions on Computers , 2009,

vol. 8.

[10] Liu Meiqun, Gao Kun, and Wan Zhong, A novel architecture for data
mining grid scheduler, 1st ed.: WSEAS Transactions on Systems, 2008,

vol. 7.

[11] Da-Zhen Wang, Jun-Shan Zhan, Fang Wan, and Lei Zhu, A Dynamic
Task Scheduling Algorithm in Grid Environment, 7th ed.: WSEAS

Transaction on Computer, 2006, vol. 7.

[12] Massimiliano Caramia and Stefano Giordani, Resource allocation in grid
computing: an economic model, 1st ed.: WSEAS Transactions on

Computer Research, 2008, vol. 3, pp. 19-27.

[13] Guangchang Ye, Ruonan Rao, and Minglu Li, A Multiobjective
Resources Scheduling Approach Based on Genetic Algorithms in Grid

Environment. Hunan, China: Fifth International Conference on Grid and

Cooperative Computing Workshops, 2006.

[14] Kalyanmoy Deb, Multi-Objective Optimization using Evolutionary

Algorithms. New York: John Wiley & Sons, Ltd., 2001.

[15] Christian Grimme, Joachim Lepping, and Alexander Papaspyrou,
"Discovering Performance Bounds for Grid Scheduling by using

Evolutionary Multiobjective Optimization," in Proceedings of the 10th

annual conference on Genetic and evolutionary computation. Atlanta,
GA, USA: ACM, 2008, pp. 1491-1498.

[16] Ian T. Foster, "The Anatomy of the Grid: Enabling Scalable Virtual

Organizations," in Proceedings of the 7th International Euro-Par
Conference Manchester on Parallel Processing.: Springer-Verlag, 2001,

vol. 2150/2001, pp. 1-4.

[17] Open Grid Forum - Group Scheduling Working. (2001) Ten Actions
When SuperScheduling. [Online].

 http://www.ogf.org/documents/GFD.4.pdf

[18] OGSA HPC Profile WG. (2006) HPC Job Scheduling: Base Case and
Common Cases. [Online]. http://www.ogf.org/documents/GFD.100.pdf

[19] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, "A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimisation:
NSGA-II," PPSN VI: Proceedings of the 6th International Conference

on Parallel Problem Solving from Nature, pp. 849–858, 2000.

[20] Mokhtars S. Bazaraa and John J. Jarvis, Linear Programming and

Network Flows.: John Wiley & Sons, Inc., 1977, pp. 279-286.

Issue 2, Volume 5, 2011 126

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

