
 

 

 

Abstract— Grid task scheduling problem has been a research 

focus in grid computing for the past years. Some 

Deterministic, Heuristics or Metaheuristic scheduling 

approaches have been proposed to solve this NP-complete 

problem. However, these algorithms do not take the Multi-

Objective nature of Grid Computing performance into 

account. In this paper we present a Multi-Objective approach 

using Evolutionary Algorithm (MOEA) to efficiently solve 

such kind of scheduling problems. Our proposal is based on 

NSGA-II MOEA algorithm combined with a set of Heuristics 

in different evolutionary operators which allow a fast 

convergence to optimal (or near-optimal) solutions. The 

results obtained by our proposed algorithm were compared 

and evaluated against Mono-Objective and Multi-Objective 

algorithms used for Grid task scheduling. The main 

contributions of this paper are the proposed mathematical 

model, the optimization model and the algorithm to solve it. 

Additionally we show the effectiveness and robustness of the 

proposed algorithm. 
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Heuristics, Metaheuristics, Meta-Scheduler, Multi-Objective 

Optimization, NP-Complete, NSGA-II, Pareto Front. 

I. INTRODUCTION 

RID Computing technologies, specifically the ones used 

in High Throughput Computing (HTC) [1] systems, 

allow a large amount of processing over large periods of time. 

The key for these infrastructures to offer a high performance is 

the management and effective exploitation of all available 

computing resources [2]. Traditionally, tasks scheduling in 

computing environments has been addressed using mono-

objective optimization [3] [4] [5]. Although this approach 

obtained good results on the performance of a single aspect 

(e.g. execution time and queue delays minimization), the 

Multi-Objective (MO) nature of Grid Computing [6] makes it 

 
 
 

an ineffective approach and necessary to use MO 

Optimization methods that can capture all the characteristics 

and requirements of different stakeholders of the Grid 

infrastructure, obtaining a set of trade-off solutions, all good in 

some aspect. 

Our proposal uses the paradigm of Multi-Objective 

Evolutionary Algorithms (MOEA). These algorithms 

combined with a set of evolutionary operators that take 

advantage of the characteristics of the general operations of 

Grid Computing, solve efficiently and effectively the task 

scheduling problem in Grid computing environments, which is 

a NP-Hard problem [7]. On the other hand, evaluations about 

our algorithm performance showed that the set of non-

dominated solutions found are closed to the Pareto-optimal 

front and uniformly spaced. Also the algorithm convergence is 

fast. The true Pareto Front was found using the classical 

method of  -constrains MO Optimization and the Branch and 

Bound deterministic algorithm [7] [8]. 

The rest of the paper is organized as follows. Section 2 talks 

about related work and section 3 introduces the task 

scheduling problem in the Multi-Objective context and 

presents a general mathematical model of Grid Computing. 

The section 4 proposes an optimization model for Grid 

scheduling in HTC with 2 objectives. Section 5 proposes the 

algorithm based on NSGA-II to solve it. Finally, the set of 

performance tests where the proposed algorithm is compared 

against a mono-objective and multi-objective algorithms is 

presented in Section 6. Section 7 has the conclusions and 

future work. 

II. RELATED WORK 

Task scheduling in Grid environments with a single 

objective has been one of the most extensively studied fields 

in recent years.  Grid use in academic and scientific 

environment is usually modeled by independent and batch task 

scheduling techniques. Some examples of such techniques are 

genetic algorithms [9], data mining [10] or swarm intelligence 

[11]. Other works have studied scheduling technologies using 
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economic/market-based models [12]. The main disadvantage 

of these techniques is the optimization of one goal regardless 

of the Multi-Purpose Grid nature which leads to improve the 

performance of one characteristic and causing the 

deterioration of the others characteristics. 

At the level of Grid task scheduling with multiple 

objectives using MO Optimization, very few papers are 

presented. In [6] the quality of the different found solutions 

were compared against the Ant Colony Optimization (ACO), 

the Particle Swarm Optimization (PSO), the Simulated 

Annealing (SA) and the Genetic Algorithms (GA) 

Metaheuristic. The results show that PSO and GA are highly 

efficient and effective in the task scheduling problem. Later 

these Metaheuristics were compare (combined with the classic 

MO Optimization Weighted Sum method) against a MOEA 

algorithm (it was not specified), optimizing the makespan and 

flowtime [7] [8] objective functions. Compared to other 

Metaheuristics, the MOEA algorithm presented better quality 

solutions, showing that this type of algorithms always 

converges to the optimal value on each execution. Unlike 

other Metaheuristics, where on each execution it could provide 

the optimal value or not, causing deviations between the 

solutions of different executions. Additionally, authors 

exposed the virtues of the MOEA to give a set of non-

dominated solutions to extend the capabilities of the best 

solution choosing that fits the specific problem. 

In [13], the authors propose an algorithm called Multi-

Objective Resource Scheduling Approach - MORSA, which is 

a combination between NPGA and NSGA Algorithms. They 

combine the sorting algorithm of non-dominated solutions 

with the process of Niche Sharing to ensure diversity. An 

important feature is the incorporation of precedence 

relationship between tasks, something that was not considered 

on previous proposals. It uses the execution cost on resources 

and completion time (flow time) as objective functions. This 

proposal has the disadvantage of using first-generation MOEA 

algorithms, although they are better than classical methods of 

MO optimization, they are less efficient and effective than 

second-generation MOEA [14]. 

Finally, another interesting proposal is presented in [15] 

where the NSGA-II (a Second Generation MOEA) is used as 

base algorithm. They are aimed at balancing the load between 

autonomous sites (called Virtual Organizations or VOs [16]) 

while minimizing the response time of their tasks. Although 

this solution has the advantages and benefits of using the 

NSGA-II as base algorithm, authors do not incorporate any 

knowledge into the algorithm (using fast Heuristics or 

Metaheuristics), avoiding better results. This assertion is 

demonstrated in the results of our proposal. 

III. GRID COMPUTING AS MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM 

The need to formulate the Grid resource management as a 

MO problem results from the characteristics of the Grid 

environment itself. This environment incorporates or knows a 

set of requirements of different stakeholders groups. Each 

group has its own point of view and policies that should be 

considered when evaluating different schedules of tasks from 

the point of view of different criteria or objectives.  

Grid Characteristics can be captured in a formal 

mathematical model, which allows designing an optimization 

algorithm for the task scheduling problem. In general, the Grid 

is composed of one or more Virtual Organizations (VO), 

which is a set of individuals and/or domains that are governed 

by a common set of policies for sharing resources. The users 

objectives/preferences, resource providers and VO 

administrators (called stakeholders in the literature) are often 

inconsistent or conflicting with each other. A user is an entity 

that uses available resources to execute their work computer or 

any operation that consumes resources for a certain period of 

time. On the other hand, a resource provider is an entity that 

manages computational units (simple computers or local 

management resources systems) inside a single administrative 

domain. Users and resource providers can be organized 

dynamically between VOs, each one with different policies 

and preferences. Finally, a VO manager is the responsible 

entity for the inter-domain policies maintenance and control to 

exchange resources and security standards. 

Grid Computing requires the use of specialized middleware 

to hide complexity integration of distributed resources within 

a domain or a VO. This middleware consists of services such 

as data management, data collection and monitoring, resource 

management, task scheduling, authorization, accounting, 

among others. But the service responsible for ensuring high 

efficiency in resource management is the service of Resource 

Management and Task Scheduling. This service is responsible 

for identifying requirements, matching resources to tasks (for 

an efficient implementation), submit to the selected resources 

the tasks executions and monitor them until they finish. 

The problem considered in this work consists of a finite set 

of | | users   {            | |} that need to send a | | 

quantity of task   {               | |} to resources that 

are provided by |  | different resources providers of a finite 

set    {               |  |}. Each resources provider 

has associated a set of | | resources of a finite set    

{            | |} . 

Each resource is described by a set of | | attributes (or 

resources features)   {       | |}. Each task contains |  | 

hard constraints of a finite set, HC {               |  |}. 

A hard constraint    , can be defined as a relation   between 

a resource’s attribute (      )         (i.e Operating System, 

Processor Architecture, CPU speed at least 2GHz) and a task 

requirement concerning its attribute (    
   
), for each task   and 

its requirements   
   

, where    ,            

   and     . 

The relationship is satisfied if        matches with     
   

, in 

other words if the attribute        is greater, equal and/or lower 

than a required value by the attribute     
   

, according to the 

case. For example, if the attribute     
   
 indicates that it has to 

be greater than a   value, the relationship   is satisfied if 

       is greater than the   value. Be   (a scheduling) the 
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assignments set ( ) of resources to execute all tasks      

       it is said that the assignment is feasible if         

meets the relationship     
   
       . Additionally it can be set 

      as the required resources quantity for a task (i.e. a 1GB 

Disk space or 4 CPUs).  

It is important to verify that in the filter stage (compared 

with the General Architecture for Scheduling in Grid [17]) 

exists a strong restriction stating that the task of a user must 

have access rights to perform an operation (i.e. a task 

execution) over a resource from a resource provider. The 

permissions relationship of a user to access and use a resource 

(identified by  ) can be defined as: if                

    , meaning assigning a resource to a task is valid if and only 

if the task owner has access and rights to use the allocated 

resource. 

Given the definitions, notations and considerations that 

describe tasks scheduling problem in Grid environments, the 

Multi-Objective problem formal definition is: 

 

             (               )     

 ( )  (  ( )   ( )    |  |( )) (1) 

            

    
   
                     (2) 

    ( ∑      
   

  (         )    

)          (3) 

                     (4) 

Where  

           ,       
   
   ,        | | (5) 

 (         )         (    ) (6) 

  {                       | |      }   

     
(7) 

  *     +,   *     +   *     +   
*      + and   *      + 

(8) 

 

Equation (2) indicates that all the attributes requirements of 

a task have to be satisfied under hard constraints. Equation (3) 

ensures that available resources meet the resource 

requirements for a task and equation (4) is the access rights 

constrain of a user to resources to execute their tasks. 

Equations (5) and (6) show the sets and attributes used in the 

mathematical model and equation (7) indicates a feasible 

allocation ( ) of tasks to resources, which should be part of 

the set ( ) of all feasible solutions that satisfy the problem 

constraints and meet the definition of the Pareto Front.  

IV. OPTIMIZATION MATH MODEL FOR HIGH THROUGHPUT 

COMPUTING 

Since there are multiple types of Grid, we must define an 

optimization model for a specific instance of Grid. The 

mathematical model’s features of the MO scheduler that 

support MO task scheduling are defined based on the HPC Job 

Scheduling: Base Case and Common Cases of the information 

paper OGF GFD-I.100 [18], widely referred to as the High 

Throughput Computing (HTC) core. It is important to 

recognize that the tasks scheduler in batch tasks is only a part 

of the broad spectrum that represents management services in 

Grid Computing. This model can be extended to more 

objectives, other types of tasks and adding / removing 

constrains. 

The characteristics assumed in the optimization model for 

task scheduling are presented below: 

 A job is composed of a task and does not have a 

priority. 

 The Task Scheduling will be on batch job. 

 Each job can only be assigned to a single resource and 

this is executed exclusively. 

 Resources and jobs are heterogeneous and are part of a 

finite set. 

 Resources are discrete, however the attributes 

described above may have different domains. 

 Pre-emption is not allowed. 

 The time of application provisioning network delays, or 

any other time different from the processing time of a 

job is not considered. This is due to HTC Grid is only 

for computer processing. 

 The resource to be scheduling is the amount of Millions 

of Instructions Per Second (MIPS) of the processor and 

the amount of RAM available in Giga Bytes. 

 Two Objectives to optimize. 

Additionally, we define a Grid task scheduling problem 

instance like a pair (n,m) where n and m indicate the total 

number of tasks and resources in the scheduling problem 

respectively. Given these characteristics and constraints the 

table 1 presents the set of variables and parameters that allow 

the creation of a mathematical optimization program for the 

Grid Scheduling Problem in HTC environments on Grid. 

 

Variable Description 

     
Binary decision variable (0,1) that indicates whether 

the i task is executed as the kth in the jth processor 

Parameter Description 

   Time Completion of i task 

   
Amount of processing requested by the task i in 

MIPS 

   
Amount of processing offered by the j resource in 

MIPS 

     
Total execution time of the i task which is executed 

as the kth in the jth processor (    ⁄ ). 

   
Amount of memory requested by the i task in 

GBytes 

   
Amount of memory offered by the j resource in 

GBytes 

Table 1. Instances of the Problem  

A. Objective Function 

According to [18], the relevant objective function at Grid 

can be classified according to the stakeholders involved in the 

Grid (users, resource providers and administrators of the VO). 

For the model, we selected two of these functions to observe 

their behavior in the performance tests of the Multi-Objective 

Algorithm: load balancing (makespan minimization) and task 
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completion time minimization (flowtime minimization). 

1) Load Balancing (minimize makespan) 

To do load balancing in Grid Scheduling is necessary to 

assure that the finish time of the last job is the same on each 

resource. Minimizing completion time of the system's last 

task, also called makespan (     ), leads to optimal load 

balancing. The total completion time of last task in a resource 

is described as follows: 

 

   ∑∑           

 

   

 

   

              (9) 

 

 

If         {      | |}, then the objective function to 

load balancing is: 

 

 ( )                 (10) 

2) Minimize the total completion time of all task (minimize 

flow-time) 

A user on the grid wants the execution of their tasks to be 

quick. Reducing the completion time of tasks generally 

involves a greater use of more powerful machines and shorter 

time in processor queues but this behavior leads to load 

imbalance between resources. It can be formally defined as: 

∑  

 

   

 ∑∑           

 

   

 

   

 (11) 

Evidently the reduction of this value is desired by the Grid 

users. Hence it is possible to define the second objective 

function as follows: 

  ( )            ∑  

 

   

 (12) 

From the complexity point of view, it can be demonstrated 

that in the resulting combinatorial problem of Task 

Scheduling, the number of possible solutions that can be found 

given the characteristics of this problem is exponential  (  ) 
and in the worst case scenario a deterministic algorithm must 

check    solutions. 

B. Model Constrains 

 Finally, given the set of objective functions, the set of 

constraints in the mathematical programming model to solve 

the multi-objective problem are: 

 

∑∑    

 

   

 

   

          (13) 

∑    

 

   

                (14) 

      ∑∑         

 

   

 

   

          (15) 

      
  

  
 (16) 

      
  

  
 (17) 

      *   + (18) 

 

Where R={1,2,...,m} is the set of available resources in the 

system and T={1,2,...,n} is the set of tasks in the batch. 

The constraint (12) ensures that task i is assigned to one and 

only one position. The constraint (14) ensures that each 

position (   ) has at most one task assigned to it. Since the 

     basically is a decision variable and not an element of the 

resource vector of optimization model, the constraint (15) 

ensures that the amount of processing on each machine is less 

than     . Constraints (16) and (17) are hard constraints on 

the model which ensure that the requirements on the amount 

of memory and processor request for a certain task are met. 

The constraint (18) forces the decision variable to be 0 or 1, as 

was described in Table 1. 

V. MAGS: A NSGA-II BASED ALGORITHMS FOR GRID TASK 

SCHEDULING 

In year 2000, Kalyanmoy Deb et. al. in [19] presented the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II), 

which is a review of the NSGA algorithm of MOEA’s first 

generation. NSGA-II allows complexity reduction, 

incorporates an elitism operator and eliminates the parameters 

on the diversity operator, allowing for greater transparency in 

the algorithm. 

A. Evolutionary Algorithm Operators Configuration  

The process of convergence of the solutions set to the 

Pareto Front is highly linked to the use of evolutionary 

operators. Now, the configuration parameters and operators 

designed for the NSGA-II applied to the Task Scheduling 

Problem are described. The algorithm 1 shows NSGA-II 

pseudo code applied in task scheduling and Figure 1 show the 

algorithm’s operation. 
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Fig. 1 NSGA-II Operation 

1) Chromosome 

The chromosome encoding is done indirectly. Given a 

chromosome of length n, the position of each gene in the 

chromosome is the task number identifier and the allele value 

(value the gene can take) m is the resource to which the task is 

assigned. If n is the number of tasks to be scheduled in the 

batch and m the amount of resources available, an instance 

(   ) with     and     indicates that the chromosome 

that represents a solution is encoded as a vector of six 

positions, where each allele can take the values 1, 2 and 3, 

since we have 3 resources.  

2)  Comparison and Selection 

The crowding comparison operator is used to choose the 

solution set of the last front population trying to enter the next 

generation population. Binary tournament operator is used into 

the creation of child population. 

3) Crossover 

The crossover operation can extend the search space by 

generating new solutions from the existing ones. Evaluating 

the multipoint crossover strategies it was found that they are 

highly destructive, generating highly random solutions that 

can cause the algorithm to get stuck in a local optimum area, 

giving low convergence to the Pareto front values. The 

selected crossover strategy is the single point crossover [14], 

which showed a good performance to solve this problem. 

4) Mutation 

The mutation operation provides Metaheuristics with local 

search functions and solution diversity. The mutation process 

acts in three different ways: 

a) Fast Load Balancing between the most loaded (greater 

makespan) and the least loaded (less makespan). This 

Heuristic selects the most loaded resource and the less 

loaded of a chromosome and exchanges two task. 

b) Random migration of tasks between resources. Given 

a chromosome, two genes are randomly selected and 

the value of their alleles is exchanged. 

c) Min-Min strategy. Given a random point in the 

chromosome, the Min-Min Heuristics generate the 

remaining values of the chromosome. 

d) Incorporation of new random population. 

Incorporates new solutions in a random fashion to 

extend the search space which must meet the problem 

constrains. 

The strategy of mutation has a low complexity and 

increases the capabilities of the NSGA-II to find the real 

Pareto Front. The procedures a), b) and c) apply to (90%) of 

the individuals to be mutated and the remaining (10%) are 

eliminated and replaced by the procedure d). 

5) Initial Population 

The initial population in our algorithm is mostly randomly 

generated meeting the problem constraints, but maintaining a 

low complexity in the algorithm. On the other hand, a few 

individuals are generated with fast Metaheuristics/Heuristics, 

enabling greater convergence and higher speed of the 

algorithm. 

     The proposed initial Population uses a size of 100 

individuals, where 95 (95%) are randomly generated, and of 

the remaining 5 (5%), four are generated by genetic 

algorithms (G.A) where one of the individuals minimizes the 

makespan and the other minimizes the flowtime. Finally, the 

last individual is generated by the Min-Min Heuristic. 

6) Completion Criteria 

The termination criterion used is the number of maximum 

generations, which was set at 500. This value was 

experimentally chosen because any increase upon this value, 

offered no further improvements in the solutions. 

VI. EVALUATIONS AND RESULTS 

A. Mono-Objective Scenario 

This evaluation presents important result about optimal 

values found in single objective optimization. We use an 

algorithm (Branch and Bound), and Heuristic (Min-Min 

algorithm) and a Metaheuristic (Genetic Algorithms) to find 

optimal values and to compare against MAGS extreme 

solutions. The Min-Min Heuristic [3] [4] and G.A. 

Metaheuristics presented in [6] good results in Grid Task 

Scheduling Mono-Objective problems. 

The Mono-Objective evaluation presented in this part takes 

three instances of the problem into account (Table 2): a small 

(3,13), a medium (5,100) and a large (50,300) search space. 

The relaxation used in the Branch and Bound is solved by the 

dual simplex method [20]. The standard deviation for G.A. 

Metaheuristics and the MOEA was calculated after 20 

algorithm executions. The relative error is computed respect to 

the optimum value found in Branch and Bound, which is the 

exact method and serves as a theoretical reference. In the 

intractable instances for exactly algorithms the reference was 

the MAGS results. 

 

Instance 
Task

( ) 
Resources 

( ) 
Space Solutions 

 (Total Solutions) 

Small 13 3 1594323 

Medium 100 5 7,88861E+69 

Large 300 50 4.9E+509 

Table 2.  Instances of the Problem  
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1) Algorithms Configurations 

Below we present the Mono-Objective algorithm 

configurations. 

 B&B: This optimization strategy use Simplex Dual 

Algorithm to find lower bounds and Pure Depth First 

Heuristic to find integer optimal solution. 

 Min-Min: Its configuration is based on algorithm 

present in [3] and [4]. 

 Genetic Algorithm: Table 3 presents the algorithms 

parameter configuration.  

 MAGS: Table 4 presents the algorithms parameter 

configuration. 

2) Results for Mono-Objective Evaluation 

The evaluations shown in table 5,6 and 7 and figures 2, 3 

and 4 show the quality of the solutions that MOEA finds 

incorporating knowledge of the Task Scheduling problem into 

evolutionary operators. In the instance (3,13), the Min-Min 

Heuristic showed a poor performance for both objective 

functions, but particularly in the makespan, showing a relative 

error greater than 70%. Genetic algorithms show very good 

results with relative errors less than 2%. On the other hand, the 

MOEA obtains the expected optimal values. The above 

statement is supported by having a relative error of 0. Another 

important result of the MOEA was its standard deviation, 

which was zero. Indicating that in each execution of the 

algorithm, it always found the global optimum of the objective 

functions. 

Options Value 

Initial Population 100 

Initial Population 

Creation 

Random with bound 

constrains 

Generation Number 500 

Crossover Single-Point 

Crossover Probability 80% 

Mutation Uniform 

Probability Mutation 20% 

Selection Binary Tournament 

Total Executions 20 

Table 3.  G.A. parameters in Mono-Objective evaluation 

 

Options Value 

Initial Population 100 

Initial Population 

Creation 

Random meet the bound 

constrains , Min-Min Heuristic 

(2 Individual) and G.A. 

Metaheuristic (3 Individuals) 

Generation Number 500 

Crossover Single-Point 

Crossover Probability 80% 

Mutation 

Fast Balancing, Fast 

Migration, Min-Min, Random 

Population 

Probability Mutation 20% 

Selection Binary Tournament 

Elitist Operator Crowding Distance 

Total Executions 20 

Table 4.  MAGS parameters in Mono-Objective evaluation 

 

 
Fig. 2 Results of Instance (3,13) 

Algorithm 
Objective 

Function 

Optimal 

Value 

Standard 

Deviation 

Relative 

Error (%) 

B&B 
makespan 45 ------ ------ 

flowtime 260,95 ------ ------ 

G.A 
makespan 45,52 0,28 1,155 

flowtime 262,46 0,69 0,578 

Min-Min 
makespan 79 ------ 75,55 

flowtime 310 ------ 18,79 

MAGS 
makespan 45 0 0 

flowtime 260,95 0 0 

Table 5.  Optimization results in the instance (3,13) 

 

In the results of the instance (5,100), again the Min-Min 

algorithm presents low quality results, which are above 50% 

over the actual value of the makespan, showing its 

inefficiency to minimize this function. The opposite happens 

with the results obtained in the minimization of flowtime, 

which are acceptable since they are below 10% of the 

theoretical value. The G.A. continues to present difficulties in 

optimizing the makespan, with a relative error greater than 

20% in contrast to the minimization of flowtime which is 

maintained below 1% compared to the theoretical optimum 

value obtained by the Branch and Bound. The G.A. shows 

high standard deviations especially in the makespan, 

indicating a low certainty as to find the optimum value in each 

run of the algorithm. 
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Fig. 3 Results of Instance (5,100) 

 

In the instance (50-300), the complexity generated by the 

mathematical model and the computational complexity of the 

size of the search space, prevented the exact method from 

being executed. For this reason, the standard deviation for the 

Min-Min and G.A. was calculated with respect to the values 

found by the MOEA. 

 

Algorithm 
Objective 

Function 

Optimal 

Value 

Standard 

Deviation 

Relative 

Error (%) 

B&B 
makespan 208,4 ------ ------ 

flowtime 7949,77 ------ ------ 

G.A 
makespan 250,2 13,71 20,05 

flowtime 7980,66 8,02 0,38 

Min-Min 
makespan 314 ------ 50,67 

flowtime 8625,37 ------ 8,498 

MAGS 
makespan 208,46 0,052 0,029 

flowtime 7954,83 1,15 0,06 

Table 6. Optimization results in the instance (5,100) 

 

 
Fig. 4 Results of Instance (50,300) 

 

Algorithm 
Objective 

Function 

Optimal 

Value 

Standard 

Deviation 

Relative 

Error 

(%) 

B&B 
makespan Intractable ------ ------ 

flowtime Intractable ------ ------ 

G.A 
makespan 123,89 14,85 107,39 

flowtime 7605,32 16,21 1,89 

Min-Min 
makespan 7839,55 ------ 55,68 

flowtime 93 ------ 5,03 

MAGS 
makespan 59,73 0,44 ------ 

flowtime 7463,90 4,1872 ------ 

Table 7. Optimization results in the instance (50,300) 

 

Continuing with the analysis of the instance (50,300), the 

G.A. had a terrible level of convergence in the makespan and 

its standard deviation showed that it happened in most of its 

algorithm executions. The Min-Min continues with its 

tendency to be close to 50% from the optimal makespan 

generated by the MOEA. Flowtime optimal values, found by 

the GA and Min-Min, are still good values (assuming that 

being below 5% is a good optimum value). It is important to 

acknowledge that a value less than 5% in the solution can be 

classified as good or very good, given that the magnitude of 

flowtime values that are close to 7900 seconds, and an error 

below 5% means a deviation less than 300 seconds from the 

optimum. The standard deviation of the GA rises, again 

showing problems of convergence towards the optimum in 

each algorithm execution. 

B. Multi-Objective Scenario 

One of the best ways to measure the quality of a Multi-

Objective algorithm is using metrics to evaluate it against 

theoretical solutions of the models. In this work, we built a 

real Pareto Front evaluating the mathematical problem with 

the method of  -constrains and using the deterministic/exact 

algorithm of Branch and Bound. 

The obtain results allow us first to use the metric of 
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generational distance - GD (presented in [14]) to evaluate the 

Pareto front convergence found with our proposal against the 

real Pareto front found by the exact algorithm. On the other 

hand, it is necessary to evaluate the ability to generate well-

distributed solutions through the real Pareto, so the metric 

spacing - (S) (presented in [14]) is use. Here are the formulas 

that relate them respectively. 

 

   
(∑   

 | |
   )

 
 ⁄

| |
 

 

(19)   √
 

| |
∑(    ̅)

 

| |

   

 (20) 

The algorithm was run 20 times and on each run the GD 

and S metrics were obtained. Subsequently their average and 

standard deviation are obtained. The ε-constrains method 

configuration parameters are presented in table 8. 

 

Options Value 

Integer Problem  Relaxation Solution Simplex-Dual 

Search Heuristic Pure Depth First 

Quality Integer solution for Acceptance 0.05% 

Max Time Exploration for Solution 3600 seconds 

ε  values calculated 30 

Table 8.  -constrains method configuration parameters. 

1) Pareto Front, Spacing and GD Results  

In this evaluation, three instances of the problem were used 

to calculate the real Pareto Front and the one generated by our 

proposal. Being one instance a pair like (m, n), where m is the 

number of machines and n the number of tasks. Then the 

instances used for evaluation were: small instance (3,13), 

which generates a search space of 1,594,323 solutions; 

medium instance (5,100), which generates a space of 

          solutions and a big instance (50,300) with a search 

space of           solutions. The obtained Pareto Fronts are 

presented in the figures 5, 6 and 7 and spacing and 

generational distance values in table 9. 

The instance’s (3,13) results show that all the points of the 

real Pareto were found by the MOEA, thus when computing 

its spacing and the generational distance, the values are below 

the unity because of the precision on the decimal values of  the 

exact algorithm. These results confirm the convergence of the 

algorithm towards the real Pareto front.  Furthermore, both the 

generational distance and the spacing held a low standard 

deviation, which shows that the algorithm converges always in 

every execution.  

 

 
Fig. 5 Pareto Front in the instance (3,13) 

 

In the (5,100) instance, the algorithm’s efficiency was 

demonstrated again, even in bigger search spaces. The 

calculated metrics show the high quality and diversity of the 

Pareto’s front non-dominated solutions found by the proposed 

algorithm. Although the spacing and the GD both increased, 

they are still low in scale of the objective functions. 

 

 
Fig. 6 Pareto Front in the instance (5,100) 

 

Finally, in the 50-300 instance (large-scale combinatory 

problem), the program used to calculate the optimum values of 

the real Pareto did not work. The space and computational 

complexity of the mathematical programming model turned 

the deterministic algorithm of the classic method useless. The 

calculated spacing and its deviation showed that through each 

of the algorithm’s execution, the Pareto’s distribution almost 

always stayed constant. This indicates that the generated fronts 

on each execution were similar one to another, meaning 

convergence to the same optimum values.  

Instance Metric Average Standard deviation 

(3,13) 
GD 0,091 0,038 

Spacing 1.42 0.45 

(5,100) 
GD 1,29 0,75 

Spacing 1,44 1,18 

(50,300) 
GD 

No calculated because ε-constrains method 

don’t work (the memory RAM was 

exceeded) 

Spacing 1,787 1,3217 

Table 9. Generational Distance and Spacing metrics results 
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Fig. 7 Pareto Front in the instance (50,300) 

2) Complexity Analysis  

The computational complexity of NSGA-II algorithm is 

polynomial and equal to  (   ) for each G generation, 

where   is the number of objective functions and   the 

individuals in the population, meaning its implementation 

complexity is (    )  and this is independent of the number 

of resources and task. On the other hand, Branch and Bound, 

has a complexity equal to fully evaluate the search space of 

combinatorial problem and it is concluded that this algorithm 

is in the worst case scenario of exponential 

complexity  (  ), where   is the number of resources and   
is the number of tasks. In a practical way, the execution times 

of our proposal and of the traditional method were measured. 

The table 10 shows the practical results of the execution time 

in both algorithms.  

Instance 

(n,m) 

MAGS - NSGA-II for Grid 

Scheduling 

(seconds) 

ε-constrains using 

Branch and Bound 

(seconds) 

3-13 10.31 >>1 

10-50 32,36 62,5 

5-100 37.88 147,8 

20-200 49,27 <<3600 

50-300 94,28 Intractable 

Table 10. Execution Time of NSGA-II and Branch and 

Bound 

This table shows the inefficiency of the deterministic 

algorithms in NP-Complete problems. In a small problem 

instance, the difference, in terms of execution time elapsed, 

between algorithms is low. However, in large problem 

instance the deterministic algorithm have very high execution 

therefore the optimization results should be obtained as an 

integer gap value respect to optimization problem relaxed 

solution. In the last instance (50,300), the deterministic 

algorithm does not finalize because its spatial complexity is 

beyond the capabilities of the machine used for assessments 

(Dual Core Xeon Processor and 4 GB of RAM). 

VII. CONCLUSIONS AND FUTURE WORK 

The proposed MOEA showed the best results, 

demonstrating that the use of elitism operator carries the best 

individuals to the next generation by allowing the genetic 

material of these individuals to be used to create new members 

of the population through evolutionary operators, expecting 

that these new individuals are fitter than their predecessors. 

Additionally, the mutation operator designed in this proposal 

(which contains knowledge of the problem) coupled with the 

choice of algorithm parameters and the other operators 

through pre-evaluations enabled the construction of an 

algorithm that allows convergence to the real Pareto Front 

efficiently. It is also observed that even though each instance 

increased the complexity of the search space, convergence was 

held constant and the relative error remained low.  

The Mono-Objective evaluations we showed that proposed 

MOEA is the excellent convergence to the optimum on every 

execution demonstrated by a low standard deviation. It is 

noteworthy that solutions far from the real optimal values, can 

generate a front of local non-dominated solutions (local 

optimum), avoiding the convergence to the global optimum. 

Additionally we showed that in large-scale task scheduling (a 

NP-Complete Problem) deterministic algorithms are highly 

inefficient and is necessary to use Metaheuristics as the 

NSGA-II, whose polinomial complexity allows us to find 

good solutions in a reasonable time. 

On the other side, Multi-Objective evaluation in the 

medium-large scale size Grid scheduling problem (5-100 y 50-

300) showed the difficulties suffered by the traditional 

deterministic-algorithm method when trying to find the exact 

Pareto front (because of its computational and spatial 

complexity) were noted. In the 5-100 instance, the 

computational complexity caused the Branch and Bound 

algorithm’s execution to be very slow to find the   values used 

to generate the real Pareto front using the MO classic method 

but the space complexity was reduced by means of using 

efficient algorithms like the dual-simplex, the Pure Depth First 

search Heuristic and the use of sparse matrixes, which permit 

the manipulation of millions of variables to solve medium-

scale mathematical programming problems. Nonetheless 

although these solutions are acceptable in medium-scale 

problems, they are either limited or insufficient in large-scale 

problems. This was seen in the 50-300 instance where the 

exact algorithm failed its execution because of a need for more 

memory (above 4GB of RAM) when loading the restriction 

matrix. It is important to note that the proposed algorithm 

finds a set of optimal solutions (close to the Optimal Pareto 

Front). The charts presented and supported by the GD and 

spacing metrics, showed that the use of Metaheuristics is 

highly recommended to tackle Multi-Objective task 

scheduling problems which are of combinatory nature and 

generate a large scale and/or non-convex search space. 

It is worthwhile to remember that HTC’s task scheduling 

Problem includes scenarios of hundreds of thousands of 

resources and task that must be schedule quickly, where 

deterministic algorithms solutions cannot be used and 

therefore, it necessary to use alternatives such as the one 

suggested here, which showed to be efficient and effective 

when tackling the problem. As a future work, it is proposed to 

compare the algorithm with other MOEA on large-scale 

instances.  Furthermore, it is also suggested to begin 

evaluating other evolutionary operators and incorporating new 

Heuristics on the mutation operator to improve a faster the 

algorithm’s convergence to the real Pareto.  
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