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Abstract—We present total variation anisotropic edge detec-
tion. We derive the total variation functional from measure
theory, distribution theory and vector gradient method. The
Euler-Lagrange equation of the total variation functional gives
a steady state equation. The steady state equation acts as
an anisotropic filter on an image. The total variation filtered
images are compared to Laplacian filtered images. A subsequent
application of the zero crossing algorithm works quite well for
the traditional Marr-Hildreth method but gives poorer results for
the total variation filtered images. It was found that thresholding
methods work better and saves computational time. Also, our
results show that total variation edge detection overcomes some
drawbacks associated with the Marr-Hildreth method.

Index Terms—Anisotropic, Euler-Lagrange, LoG, Total Varia-
tion

I. INTRODUCTION

EDGE detection is a fundamental operation in image
processing. Most methods for edge detection can be

grouped into two basic categories:

1. Search-based methods which compute the edge strength
using first order derivatives. An example of this is the
Canny edge detection method.

2. Zero-crossing-based methods which search for zero-
crossings in a second order derivative expression com-
puted from the image. This could be the zero crossings
of the Laplacian or a nonlinear differential expression.
A popular method is the Marr-Hildreth method.

Historically, the Marr-Hildreth edge detection method
has been the most popular edge detection method based

on second order partial differential equations. It uses the
Lapalacian to filter an image. The zero-crossings algorithm
is then applied on the image to detect the edges. If the edge
threshold is zero, the edges form a closed loop. This is one of
the drawbacks of the method. The Laplacian used in the Marr-
Hildreth model is a linear partial differential equation and it
has isotropic filtering properties. We approach the problem
differently. We begin from the total variation functional for a
two dimensional image. We minimize the functional by the
Euler-Lagrange method. This results in a nonlinear steady
state second order partial differential equation. Because the
operator is nonlinear, applying it to an image results in an
anisotrpic filtering of the image. The filtered image when
compared to images filtered using the Marr-Hildreth operator
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shows stronger image edges. It will be observed that the TV-
filtered image is devoid of double edges as is the case with
the Laplacian operator.

II. TOTAL VARIATION

A function f defined on an interval [a, b] is said to be of
bounded variation if there is a constant C > 0 such that

n∑
k=1

|f(xk)− f(xk−1)| ≤ C

for every partition

a = x0 < x1 < ... < xn = b

of [a, b] by points of subdivision x0, x1, ..., xn. If f is of
bounded variation, then by the total variation of f is meant
the quantity

V b
a (f) = sup

n∑
k=1

|f(xk)− f(xk−1)|

where the least upper bound is taken over all partitions of
the interval [a, b]. The above definitions work quite well for
Riemann integrable functions. However, there are functions
that are not Riemann integrable. For this reason, we turn to a
more complete understanding of the total variation in the light
of Lebesgue integration.
Let λ be a charge on X and let P,N be a Hahn decomposition
for λ. The positive and negative variations of λ are the finite
measuresλ+, λ− defined for E in X by

λ+(E) = λ(E ∩ P )

λ−(E) = −λ(E ∩N)

The total variation of λ is the measure |λ| defined for E in
X by

|λ| = λ+(E) + λ−(E)

If f is Lebesgue-integrable and f belongs to L(X,X, μ) with
respect to a measure μ on X , and if λ is defined for E in X
by

λ(E) =

∫
E

fdμ,

then λ is a charge and

λ+(E) =

∫
E

f+dμ
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λ−(E) =

∫
E

f−dμ

so that

|λ|(E) =

∫
E

|f |dμ =

∫
E

f+dμ+

∫
E

f−dμ (1)

Here, f is any Lebesgue-integrable function. The sum of the
positive and negative variations of the function f gives its total
variation.
A function μ ∈ L1(Ω) whose partial derivatives in the sense
of distributions are measures with finite total variation in Ω is
called a function of bounded variation. This class of functions
is usually denoted by BV (Ω). Thus, u ∈ BV (Ω) if and only
if there are signed measures μ1, μ2, ..., μn defined in Ω such
that for i = 1, 2, ..., n,

|Du|(Ω) < ∞
and ∫

uDiϕdx = −
∫

ϕdμi (2)

for all ϕ ∈ C∞
0 (Ω). The gradient of μ will therefore be a

vector valued measure with finite total variation:

‖Du‖ =

sup{
∫
Ω

udivvdx : v = (v1, ..., vn) ∈ C∞
0 (Ω;Rn),

|v(x)| ≤ 1∀x ∈ Ω} < ∞ (3)

The divergence of a vector field is denoted by divv and is
defined by

divv =
n∑

i=1

Divi =
n∑

i=1

∂vi
∂xi

If u ∈ BV (Ω), the total variation ‖Du‖ may be regarded as
a measure, for if f is a non-negative real-valued continuous
function with compact support in Ω, we may define

‖Du‖(f) =
sup{

∫
Ω

udivvdx : v = (v1, ..., vn) ∈ C∞
0 (Ω;Rn),

|v(x)| ≤ f(x)∀x ∈ Ω} (4)

[11] shows that ||Du|| is additive, continuous under mono-
tone convergence and a non-negative Radon measure on Ω.
The space of absolutely continuous u with u ′ ∈ L1(R1)
is contained in BV (R1). In the same manner in Rn, a
Sobolev function is also BV . That is, W 1,1(Ω) ⊂ BV (Ω).
If u ∈ W 1,1(Ω) then,∫

Ω

udivvdx = −
∫
Ω

n∑
i=1

Diuvdx (5)

and the gradient of u has finite total variation with

||Du||(Ω) =
∫
Ω

|Du|dx. (6)

(6) is related to (1) in the sense that (6) measures both the
positive and negative variations implicitly rather than explicitly
as in (1). If u ∈ C1(Ω), then [3] showed that∫

Ω

|Du|dx =

∫
Ω

|∇u(x)|dx (7)

Let Ω ∈ R2 be an image surface. Then from (7), we have

∫
Ω

|∇u(x)|dx =

∫ ∫ √(
∂u

∂x

)2

+

(
∂u

∂y

)2

dxdy (8)

which is the total variation of an image u with two independent
variables x, y. Furthermore, we derive the total variation of an
image using the vector gradient method. Images are two di-
mensional spatial functions. To find the total variation of an n-
dimensional mathematical object, we consider the directional
derivative of a scalar function f(�x) = f(x1, x2, ..., xn) along
a unit vector �u = (u1, ..., un). The directional derivative is
defined to be the limit

∇�uf(�x) = lim
h→0+

f(�x+ h�u)− f(�x)

h
(9)

We assume the function f to be differentiable at �x. This means
that the directional derivatives exist along any unit vector �u,
and one has

∇�uf(�x) = ∇f(�x) · �u (10)

For an image we represent the directional derivatives by i,j so
that {∇xf(�x) = ∇f(�x) · i = ∂f

∂x

∇yf(�x) = ∇f(�x) · j = ∂f
∂y

(11)

The components ∇xf(�x) and ∇yf(�x) are orthogonal so that

∇f(�x) = i
∂f

∂x
+ j

∂f

∂y
(12)

and the inner product is

〈∇f(�x),∇f(�x)〉 = |∇f | =
√(

∂f

∂x

)2

+

(
∂f

∂y

)2

(13)

Therefore, total variation in two dimensions can be written as∫ ∫
|∇f | dxdy (14)

which is the total variation of f over the entire image surface.
An important property of the total variation of a function f is
that it relies on the derivative of f to measure the total change
in f .

III. THE TOTAL VARIATION OF AN IMAGE

Equation (8) is a norm and the vectorial components of ∇f
are ∂f

∂x and ∂f
∂y . So, the norm

∫ ∫
|∇f |dxdy =

∫ ∫ √(
∂f

∂x

)2

+

(
∂f

∂y

)2

dxdy (15)

In the discrete form,

∂f

∂x
= f(x+ 1, y)− f(x, y)
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∂f

∂y
= f(x, y + 1)− f(x, y)

So,

|∇f | =√
[f(x+ 1, y)− f(x, y)]2 + [f(x, y + 1)− f(x, y)]2 (16)

Therefore, the discrete total variation is written as:

∑
x

∑
y
|∇f | =∑

x

∑
y

√
[f(x+ 1, y)− f(x, y)]2 + [f(x, y + 1)− f(x, y)]2

(17)

IV. THE EULER EQUATION OF THE TOTAL VARIATION

FUNCTIONAL

We restate the total variation functional (following the
general convention) as

J(u) =

∫
|∇u|dxdy (18)

where u is our image function and it depends spatially on two
independent variables x and y. The total variation functional
has one dependent variable (the image function u) and two
indepedent variables x and y. First, we state the form of
the Euler-Lagrange equation for the case of one dependent
variable and several independent variables. Let

I(f) =

∫
Ω

F (x1, x2, ..., xn, f, fx1 , fx2, ..., fxn)dx (19)

where fxi = ∂f
∂xi

. (19) is extremized only if f satisfies the
partial differentiation equation:

∂F

∂f
−

n∑
i=1

∂

∂xi

∂F

∂fxi

= 0 (20)

We observe that the total variation functional can be written
as

J(x, y, u, |∇u|) =
∫

|∇u|dxdy (21)

The right hand side of the equation tells us that the functional
doses not depend on u but it depends on its gradient because

|∇u| =
√(

∂u

∂x

)2

+

(
∂u

∂y

)2

= f (22)

and there is no term in u on the right hand side. So the Euler
equation for the total variation is:

∂f

∂u
−

2∑
i=1

∂

∂xi

∂f

∂xi
= 0 (23)

but ∂f
∂u = 0 since the functional J does not depend on u. So

we have

2∑
i=1

∂

∂xi

∂f

∂xi
=

∂

∂x1

∂f

∂x1
+

∂

∂x2

∂f

∂x2
. (24)

In an image, x1 = x and x2 = y so (24) becomes

2∑
i=1

∂

∂xi

∂f

∂xi
=

∂

∂x

∂f

∂x
+

∂

∂y

∂f

∂y
. (25)

This is equivalent to differentiating |∇u| with respect to x and
y. We made |∇u| = f for simplicity. So differentiating with
respect to x, we get

∂f

∂x
=

∂

∂x

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
] 1

2

=

1[(
∂u
∂x

)2
+
(

∂u
∂y

)2
] 1

2

· ∂u
∂x

=
1

|∇u| ·
∂u

∂x
(26)

Also,

∂f

∂y
=

∂

∂y

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
] 1

2

=

1[(
∂u
∂x

)2
+
(

∂u
∂y

)2
] 1

2

· ∂u
∂y

=
1

|∇u| ·
∂u

∂y
(27)

So (25) becomes

∂

∂x
·

∂u
∂x

|∇u| +
∂

∂y
·

∂u
∂y

|∇u| =
1

|∇u|
(

∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y

)
(28)

We can write (28) in vector form as:

1

|∇u|
(
i
∂

∂x
+ j

∂

∂y

)
·
(
i
∂u

∂x
+ j

∂u

∂y

)
=

∇ · ∇u

|∇u| . (29)

This can be rewritten as

∇ · ∇u

|∇u| =
1

|∇u|
(
∂2u

∂x2
+

∂2u

∂y2

)
=

∇2u

|∇u| =
Δu

|∇u| . (30)

From the foregoing analysis, the Euler equation of the total
variation functional is

min J(u) = Jmin(u) = ∇ · ∇u

|∇u| (31)

or,

Jmin(u) =
∇2u

|∇u| . (32)
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V. PARTIAL DIFFERENTIAL EQUATIONS IMAGE FILTERS

Prior to edge detection, a partial second order partial differ-
ential equation (usually a Laplacian) is used to filter an image.
The result of this filtering is then tested for zero crossings.
This is based on the Marr-Hildreth(1980) model. The use of
the Laplacian operator

L =
∂

∂x2
+

∂

∂y2
(33)

to operate on an image u produces a Laplacian filtered image.
This is a basic step in image segmentation using partial
differential equations. An example of such segmentation is
edge detection. The approach basically consists of defining
a discrete formulation of the second order derivative and
then constructing a filter mask based on the formulation. The
mask is then convolved with the image to produce the filtered
image. The Laplacian filter is isotropic. On the other hand the
discretized form of the Laplacian can be applied directly to the
image. The results are the same. Isotropic filters are rotation
invariant in the sense that rotating the image and then applying
the filter gives the same result as applying the filter first
and then rotating the image. The simplest isotropic derivative
operator is the Laplacian [16], which for a function(image) of
two variables, is defined as

∇2f =
∂2f

∂x2
+

∂2f

∂y2
(34)

Because derivatives of any order are linear operators, the
Laplacian is also a linear operator. To implement the Laplacian
on a digital image, we discretize it as follows:{

∂2

∂x2 = f(x+ 1, y) + f(x− 1, y)− 2f(x, y)

∂2

∂y2 = f(x, y + 1) + f(x, y − 1)− 2f(x, y)
(35)

So, adding the two equations,

∇2f(x, y) =

f(x+ 1, y) + f(x− 1, y) + f(x, y + 1)

+ f(x, y − 1)− 4f(x, y) (36)

which filters the image. This equation can also be implemented
using the filter mask:

0 1 0
1 -4 1
0 1 0

TABLE I: Mask 1

The mask gives an isotropic result for rotations. Figure 1
shows the effect of this mask on an image. A variant of Mask
1 which works better is Mask 2 shown in Table 2. It is also
isotropic.

1 1 1
1 -8 1
1 1 1

TABLE II: Mask 2

Original Image
Image filtered with Laplacian mask

 whose central value is −4

Fig. 1: Image Filtered with Mask 1

Original Image Image Filtered with Mask 1

Fig. 2: Image Filtered with Mask 1

Original Image Image Filtered with Mask 2

Fig. 3: Image Filtered with Mask 2

Original Image Image Filtered with Mask 1

Fig. 4: Image Filtered with Mask 2

VI. THE TOTAL VARIATION FILTER

The total variation of a function(image) is usually used in
the form of its Euler equation.

Jmin(u) =
∇2u

|∇u| . (37)

But we can see that the Jmin(u) is related to the Laplacian.
The numerator of Jmin(u) is the Laplacian. The difference
is that the denominator is |∇u|. Now, |∇u| is a function. It
takes different values at different pixels in the image. Both the
Laplacian and Jmin(u) represent diffusion. The Laplacian is
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isotropic but the total variation filter is anisotropic. Below we
present images filtered with the total variation filter.

Fig. 5: Original Image(House)

TV filter (house)

Fig. 6: TV Filtered Image(House)

Fig. 7: Original Image(Shapes)

The anisotropic property of the TV filter gives it some ad-
vantages over the traditional Laplacian filter. We present these
advantages in the next section.

VII. ADVANTAGES OF THE TOTAL VARIATION FILTER

We state some reasons that give the total variation filter an
advantage over the traditional Laplacian filter:

TV filter

Fig. 8: TV Filtered Image of Shapes

1. The total variation filter is better at edge-sensitive filter-
ing than the Laplacian. A comparison of the TV-filtered
images (Figures 5 to 8) to the other images (Figures 1
to 4) shows that the edges in the TV-filtered images are
conspicuously more pronounced and detailed.

2. The total variation filter is quite texture-sensitive. This
is very obvious in Figure 8. The detailed changes in the
texture of the images are clearly captured in the filtered
image.

3. A drawback of the Laplacian is that during the filteration
process, a double edge is formed. The total variation
filter overcomes this disadvantage (see Figures 13 and
14). There is only one edge formed and it is appreciably
strong. Unlike the Laplacian filter, the TV filter does not
show false edges. The images being compared below
show this clearly. To illustrate this point, we show an
image with sharp edges (Figure 9). The image was
filtered with Mask 1, Mask 2 and the total variation
filter. Mask 1 and Mask 2 are Laplacian filters and so the
corresponding images are scaled to show the presence
of double edges. This is not so in the case of the total
variation filter. There is only one edge.

4. A major challenge in edge detection is disconnection of
curves. This is very evident when the Laplacian is used
to detect edges in images. The TV filter gives stronger
edges and so mitigates the problem caused by weak
Laplacian edges.

VIII. DETECTING EDGES

We have shown the effect of image filtering with the
Laplacian and total variation filters. However, in practice, this
is insufficient to properly detect edges because the Laplacian
operator is very sensitive to noise and small oscillations and
so we may not obtain the real edges in an image. To remedy
this problem [6] used a 2D Gaussian function

G(x, y) = e−
x2+y2

2σ2 (38)

to smooth the image u(x, y). This is accomplished by a
convolution of both functions i.e. G(x, y) � u(x, y). σ is
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Fig. 9: Original Image (Noise Square)

Fig. 10: Image filtered with Mask 1: It is Scaled to Show
Double Edges

the standard deviation of G(x, y) and it acts as a scaling
factor, blurring out noise and structures with scales below σ.
Therefore, we get no absolute definition of edges. We only
talk about edges at a certain scale. The convolution

D(x, y) = G(x, y) � u(x, y) (39)

yields a smoothed image at a scale σ to which the Laplacian
operator is applied i.e. ∇2 (G(x, y) � u(x, y)). This operation
is commutative and gives the same result as(∇2G(x, y)

)
� u(x, y) = ∇2D(x, y) (40)

The expression ∇2G is called the Laplacian of a Gaussian
(LoG) and is expressed as

∇2G(x, y) =

[
x2 + y2 − 2σ2

σ4

]
e−

x2+y2

2σ2 (41)

Fig. 11: Image filtered with Mask 2: It is Scaled to Show
Double Edges

Fig. 12: Image filtered with TV Filter: No double Edges

The scaling factor σ enables us to tune the edge detection pro-
cess. Likewise, for the total variation approach, we first smooth
the image by convolving u(x, y) and the Gaussian function
G(x, y) just as in the case of the Laplacian approach. We
then apply the total variation operator to the convolved image
D(x, y) i.e. ∇2D(x,y)

|∇D| . This operation is not commutative as in
the case of the LoG. Below we show results of edge detection
based on the LoG images and total variation filtered images.
Edge detection for both kinds of images do not follow exactly
the same procedure. The traditional method of detecting edges
in LoG images is by zero crossings. Figure 8 shows an
example of this. However, this method is not effective for the
total variation filtered images. The zero crossings do not give
strong edges as expected. Therefore, for application purposes,
it is best to avoid the use of zero crossings in total variation
filtered images. Generally, the edges in total variation filtered
images are stronger than edges in LoG images. the pixels in
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Fig. 13: Magnified Region of Interest Showing Double Edges

Fig. 14: Magnified Region of Interest Showing Single Edge
in TV-Filtered Image

the LoG images were magnified by a factor of 30 to give the
result in Figure 8. But even after a magnification of the pixel
strength, the edges in the LoG image still do not possess the
same strength and detail as the edges in the total variation
filtered image. We present further examples of image edge
detection at various scales σ = 3, 4, 5.

IX. CONCLUSION

We have compared the total variation edge detection method
to the Marr-Hildreth method and found that:

1. The TV method gives stronger edges and detail than the
Marr-Hildreth method.

2. The TV filter produces only a single strong edge rather
than the double edges in the Laplacian filtered image.

3. The zero crossing method used in detecting edges in
the LoG images is not effective in TV filtered images.
Simple thresholding is more effective.

Fig. 15: Gaussian Smoothed Image with Standard Deviation
= 2

Fig. 16: Zero Crossing of LoG Image with Pixel Strength
Magnification of 30

4. Thresholding LoG images at 0 after the zero-crosings
algorithm is applied produces closed-loop edges. The
total variation method does not exhibit this drawback.
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Fig. 25: Laplacian Edge Detection with Pixel Strength Mag-
nification of 30 and σ = 5

Fig. 26: Total Variation Edge Detection at σ = 5
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