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Abstract— The number of efficient approximation algorithms for 

quantum informational distances is very small, because of the special 
properties of quantum informational generator functions and of 
asymmetric quantum informational distances. If we wish to analyze 
the properties of quantum channels using today’s classical computer 
architectures, an extremely efficient algorithm is needed. The 
capacity recovery of very noisy communication channels cannot be 
imagined for classical systems, and this effect has no analogue in 
classical systems. The capacity recovery of very noisy quantum 
channels makes it possible to use two very noisy optical-fiber based 
quantum channels with a positive joint capacity at the output. Here 
we define a fundamentally new approach of capacity recovery of 
very noisy, practically completely useless optical quantum channels. 
We show an algorithmic solution to the capacity recovery problem, 
and provide an efficient algorithmic solution for finding the set of 
recoverable very noisy optical quantum channels. The calculations 
are based on the asymptotic classical capacity of the quantum 
channel. 
 
Keywords— Capacity Recovery, Noisy Optical 

Communications, Quantum Channels, Quantum Communications.  

I. INTRODUCTION 

HE capacity recovery of very noisy, practically 
completely useless quantum channels makes it possible to 

use two very noisy quantum channels with a positive joint 
capacity at the output.  As derived in [1], two very noisy 
communication links can be used to transmit information 
through the quantum communication channel and it is possible 
to “activate” one channel with the other channel, so the 
capacity of very noisy quantum channels can be increased [1]. 
The process of information transmission through an optical 
quantum communication channel can be described in three 
phases. In the first phase, the sender has to encode his 
information, according to properties of the physical channel - 
this step is called source encoding. After the sender has 
encoded his information into the appropriate form, it has to 
put on the optical quantum channel, which transforms it 
according to its channel map - this second phase is called the 
channel evolution. The optical quantum channel conveys the 
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quantum state to the receiver, however this state is still a 
superposed quantum state. To extract the information which is 
encoded in the state, the receiver has to make a measurement - 
this measurement process is the third phase of the 
communication over a quantum channel [2], [8], [17].  

In Fig. 1, we illustrate the source coding phase. The sender 
encodes his information into a physical attribute of a physical 
particle, such as the spin of the particles. For example, in the 
case of an electron or a half-spin particle, this can be an axis 
spin. The half-spin particles could take two possible states, 
hence these particles are two-level quantum systems - hence 
qubits.  
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Fig. 1 The source coding phase 

 
The channel transformation represents the noise of the 

quantum channel.  Physically, the optical quantum channel is 
the medium, which moves the particle from the sender to the 
receiver. The noise disturbs the state of the particle, in the 
case of a half-spin particle, it causes spin precession. For a 
noisy optical quantum channel, the channel transforms the 
original state into a mixed state [2]. The channel evolution 
phase is illustrated in Fig. 2. 
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Fig. 2 The channel evolution phase 

 
Finally, the measurement process responsible for the 

decoding, or the extraction of the encoded information. The 
previous phase determines the success probability of the 
recovery of the original data. If the channel is a completely 
noisy channel, then the receiver will get a maximally mixed 
quantum state - which state is geometrically positioned at the 
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origin of the Bloch sphere. The output of the measurement of 
a maximally mixed state is completely undeterministic: it tells 
us nothing about the original information encoded by the 
sender [2], [8], [38]-[42].  

A general quantum channel transforms the original pure 
quantum state into a mixed quantum state, - but not into a 
maximally mixed state - which makes it possible to recover 
the original message with a high - or low - probability, 
according to the level of the noise of the quantum channel. 
The measurement phase is illustrated in Fig. 3. 
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Fig. 3 The measurement process 

 
We present an algorithmic solution to the capacity recovery 

problem of very noisy optical quantum channels. Currently, 
we have no theoretical results for describing all possible 
combinations of recoverable very noisy channels, hence there 
should be many other possible combinations. We analyze the 
capacity recovery of the amplitude damping channel, which is 
an important channel in optical physical implementations. 
This channel describes the effect of energy dissipation of the 
quantum states. In practical optical or quantum 
communications, where quantum states or quantum bits are 
used, the loss of energy from the quantum system causes 
amplitude damping. In many practical applications, energy 
dissipation is an unavoidable phenomenon, hence analysis of 
the amplitude damping quantum channel is a relevant issue 
[2], [8], [17].  

A. Quantum Informational Distance 

In our work, we apply computational geometry in quantum 
space, between pure and mixed quantum states. In Fig. 4, we 
illustrate the logical structure of the analysis and the 
cooperation of classical and quantum systems. Since, currently 
we have no quantum computers, we would like to find 
recoverable noisy optical quantum channels using current 
classical computer architectures and the most efficient 
currently available algorithms. To this day, the most efficient 
classical algorithms for this purpose are computational 
geometric methods.  
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Quantum System

Classical System  
Fig. 4 The logical structure of our analysis 

Unlike ordinary geometric distances, the quantum 
informational distance is not a metric and is not symmetric, 
hence this pseudo-distance features as a measure of 
informational distance [26], [27], [28], [29], [30], [31], [33], 
[34]. 

II. CAPACITY OF A NOISY QUANTUM CHANNEL  

The input of a quantum channel   can be a pure or a mixed 
quantum state. In the case of a pure quantum state, the state 
vector   of the quantum state is completely known. The 

state vector    is a unit vector in the state space of the 

quantum system, and the density matrix of this pure state can 
be expressed by the projection 

   .                                        (1) 

On the other hand, for a mixed quantum state the state vector 
is not completely known, and the system is one of a number of 
possible states. In the case of a mixed quantum system, the 
system is in one of the states i  with a given probability 

ip , and it forms an ensemble of pure states as  ,i ip  .  

A. Channel Input and Channel Output Quantum States  

The density operator of a mixed state differs from the 
density operator of a pure state, for a mixed state it can be 
expressed as i i i

i

p   .  

The transmission of information through the quantum channel 
  is sent through in the form of encoded quantum states. In 
general, the input quantum state i  is prepared with 

probability ip , which describes the ensemble  ,i ip  .  

The average of the input of the quantum states is expressed as  

i i
i

p   ,                                     (2) 

The average of the output of the quantum channel is denoted 
by  

   i i
i

p   .                        (3) 

The classical information which can be transmitted through a 
noisy quantum channel   can be expressed by the   

Holevo quantity. The Holevo quantity describes the amount of 
information, which can be extracted from the output about the 
input state. We note, this information is also can be referred as 
accessible information in the literature. We can say, that the 
Holevo quantity of a quantum channel   expresses the joint 
entropy of the composite state in E  .  

 

B. Qubit Representations 

On the other hand, a quantum state can be described by its 
density matrix d d  , which is a d d  matrix, where d is 

the level of the given quantum system. For an n qubit system, 
the level of the quantum system is 2nd  . We use the fact 
that particle state distributions can be analyzed 
probabilistically by means of density matrices. A two-level 

Issue 3, Volume 5, 2011 189

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

quantum system can be defined by its density matrices in the 
following way:  

2 2 211
,  1,

12

z x iy
x y z

x iy z


  
      

       (4) 

which also an be rewritten as  

2 2 2

1

2 2 ,  1,  , , .
1

2 2

z x iy

x y z x y z
x iy z



  
 

     
   

 

 ,       (5) 

where i denotes the complex imaginary 2 1.i    The density 

matrix  , ,x y z   can be identified with a point  , ,x y z  

in 3-dimensional space, and a ball B  formed by such points  

  2 2 2, , 1x y z x y z   B ,                     (6) 

is called a Bloch-ball. The eigenvalues 1 2,   of  , ,x y z  

are given by 

 2 2 2
1 2, 1 2,x y z                           (7) 

the eigenvalue decomposition   is  

,i i
i

E                                          (8) 

where i jE E  is iE  for i j  and 0 for .i j  For a mixed state 

 , ,x y z , log   defined by  

 log log .i i
i

E                                (9) 

Using the Bloch sphere representation, the quantum state   

can be given as a three-dimensional point  , ,x y z   in 3 , 

and it can be represented in spherical coordinates  

 , ,r   ,                                  (10) 

where r is the radius of the quantum state to the origin,   and 
  represents the latitude and longitude rotation angles [2], 

[14]. Using the spherical coordinates, a three-dimensional 
point on the Bloch sphere can be given by:  

sin cos ,

sin ,

cos cos .

x r

y r

z r

 

 





                                (11) 

The Bloch vectors are real 3-dimensional vectors, that have 
magnitude 1m   for pure states, and 1m   for mixed states. 
The Bloch vectors of the states denoted by r , and it can be 
expressed as  

x

y

z

r

r

r

 
   
  

r .                                      (12) 

A qubit can be described by the two-dimensional Hilbert 
space 2 , and the operators acting on the quantum system is 
generated by the Pauli matrices,  

0 1 0 1 0
,  ,  .

1 0 0 0 1x y z

i

i
  

     
            

       (13)                                

For a Pauli matrix k ,   0kTr    and 2
k I  , where 

, , .k x y z  The set of states for a qubit in the computational 

basis  0 , 1 , is the eigenbasis of  z , thus 0 0z   and 

1 1 .z    A generic pure state can be given by  

0 1 ,                                  (14) 

and the projector of the state is  1
ˆ ,

2
n    1


 where 

n̂  is the Bloch vector, and it can be given by  

    2 2* *ˆ 2 Re ,2 Im , .n       For pure state the 

norm of Bloch vector is 1, and these vectors cover the Bloch 
sphere. The pure quantum states can be given by unit vectors 
in spherical coordinates  

cos 0 sin 1
2 2

ie     .             (15) 

The state   can be given by state n̂ , and it is the 

eigenstate for the eigenvalue +1 of n̂   , with  

   ˆ ˆ , sin cos ,sin sin ,cosn n             (16) 

where  0,   and  0, 2  . A   mixed state also can 

be expressed by a  

 1
ˆ

2
n    1


                          (17) 

projector on a pure quantum state.   

C. The quantum channel model 

In the most general view of the quantum communication 
model, Alice’s pure quantum state can be expressed by a 
density matrix A , whose rank is one, while a state with rank 

two is called mixed. According to the noise   of quantum 
channel, Alice’s sent pure quantum state A  becomes a mixed 

state, thus Bob will receive a mixed state denoted by B . A 

pure state has special meaning in quantum information theory 
and it is on the boundary of the convex object. 
For one-qubit states, the condition for   to be pure is simply 

expressed as 2 2 2 1,x y z    and it is on the surface of the 

Bloch ball. The map of the quantum channel is a trace-
preserving and completely positive map, and it can be given 
by a linear transform   which maps quantum states to 
quantum states. The classical data encoded into a quantum 
state represented by the density operator.  
The quantum state is evolved via the quantum channel map 
 , and if there is no noise on the channel, the map   is 
identical to identity transformation. The map of the channel 
can be modeled by a linear transform thus, if Alice sends 
quantum state  , ,x y z  on the quantum channel, the channel 

maps it as follows:  

         ', ', ' ' ', ', ' = , , , , , .x y z x y z x y z x y z     (18) 

The quantum channel   maps the density operators from a 
Hilbert space to another Hilbert space. According to the noise 
of the quantum channel, the pure input states become mixed 
states, which means that the output of the quantum channel 
cannot be determined with absolute certainty. 
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The information transmission through the quantum channel 
  is defined by the in  input quantum state and the initial 

state of the environment, 0 0E  . In the initial phase, the 

environment is assumed to be in the pure state 0 . The 

system state which consist of the input quantum state in  and 

the environment 0 0E  , is called the composite state 

in E  .  

If the quantum channel   is used for information 
transmission, then the state of the composite system changes 
unitarily, as follows:  

  *
in EU U  ,                             (19) 

where U  is a unitary transformation.  
After the quantum state transmitted he quantum channel  , 
the out  output state can be expressed as:  

  *
out E in ETr U U      ,                   (20) 

where ETr  is the partial trace operator, which traces out the 

environment from the joint state.  
The transmission of classical information over quantum 
channel with no prior entanglement between the sender 
(Alice) and the recipient (Bob) is illustrated in Fig. 5. The 
sender’s classical information denoted by iA  encoded into a 

quantum state A . The encoded quantum states are sent 

over the quantum channel. In the decoding phase, Bob 
measures state A , the outcome of the measurement of his 

received state B  is the classical information iB . The 

classical information is illustrated by the dashed line, the solid 
line represents quantum information.  
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Fig. 5 Transmission of classical information through the quantum 
channel 

 
In the classical communication model, the sender and receiver 
can be modeled by random variables 

  , 1, ,i iX p P x i N                   (21) 

and  

  , 1, .i iY p P y i N                     (22) 

In classical systems, the Shannon entropy of the discrete 
random variable X is denoted by  H X  and can be defined as 

   
1

log
N

i i
i

H X p p


  .                (23) 

For conditional random variables, the probability of random 

variable X given Y  is denoted by  p X Y . The noise in the 

channel increases the uncertainty in X, given Bob’s output Y. 
The informational theoretic noise of the channel increases the 

conditional Shannon entropy  H X Y , defined as 

     
1 1

, log
X YN N

i j i j
i j

H X Y p x y p x y
 

  ,       (24) 

thus the radius of the smallest enclosing quantum 
informational ball will decrease for fixed  H X .  

The general classical informational theoretic model for a noisy 
quantum channel is illustrated in Fig. 6. Alice’s pure state is 
denoted by A , the noise is modeled by an affine map   

and Bob’s mixed input state is denoted by  A B  .  

For random variables X and Y, the mutual entropy can be 
expressed as  

     ,H X Y H X H Y X  ,                 (25) 

where H(X),  ,H X Y  and  H Y X  are defined by 

probability distributions.  
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Fig. 6 The classical communication model 
 
In the classical communication model, we seek to maximize 

 H X  and minimize  H X Y  in order to maximize the 

radius of the smallest enclosing ball of Bob, since the radius 
can be computed as 

     * max .
iall possible xr H X H X Y                 (26) 

Geometrically, the presence of noise on the quantum channel 
causes a detectable mapping to change from a noiseless one-
to-one relationship to a stochastic map. In the classical model 
of a quantum channel, the input is in a pure state denoted by 

 ,i ip   and a measurement is made at the end of the quantum 

channel, which extracts the classical information from the sent 
quantum state.  

III. NOISY QUANTUM CHANNEL CODING 

To describe the capacity of the quantum channel, we have to 
make a distinction between the various capacities of a 
quantum channel. The results of quantum information theory 
inspired from classical information theory, however not all of 
these classical results can be used in the quantum 
communication model. An other important difference between 
the capacities of the quantum channel, and the capacity of a 
classical channel, that those capacities of a quantum channel 
can be determined only asymptotically, which makes the case 
more hard computationally. It means, that while the capacity 
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of a classical communication channel can be determined by 
the single-use or one-shot method, in the case of the quantum 
channel, the capacities can be determined only asymptotically, 
- or with other word, the one-shot capacity is not equal to the 
capacity of the quantum channel. This fundamental difference 
make possible to use the quantum channel for information 
transmission in those situations, which are completely 
unimaginable in the case of a classical communication channel 
[32].  
 

A. Classical Channel Coding  

Before we start to discuss the method of quantum channel 
encoding, we introduce the subject by the results of the 
classical noisy channel coding. The classical communication 
channel N encodes the information into classical information 
carrier, and transmits classical bits. The capacity of a classical 
communication channel N (which channel does not use 
quantum states for encoding) gives an upper bound on the 
classical bits which can be transmitted per channel use, in 
reliable form.  
In the classical channel coding, the R channel rate of the 
classical channel N can be defined by the n number of channel 
uses, or the copies if the channel, and the M bits of classical 
information can be sent through the classical channel N 
faithfully, as follows:  

1
R M

n
 .                                   (27) 

The classical bits can be sent through reliable the classical 
channel, only if this rate does not exceed C, the capacity of 
the classical communication channel N, thus, if R C  holds. 
On the other hand, if the rate R at which the classical 
information is transmitted over the classical channel exceeds 
the C classical capacity of the classical channel N,  i.e. R C , 
the information cannot be transmitted through the channel in a 
reliable form. As follows, if R C  holds, then the decoding 
probability of the sent information converges to zero in the 
number of channel uses.  
The C capacity of a noisy classical communication channel N, 
can be expressed by the maximum of the mutual information 

 :I A B , which measures the amount of information between 

two random variables A and B as 
        : ,I A B H A H B H A B   ,            (28) 

where  ,H A B  is the joint entropy. The C classical capacity 

of the classical communication channel N takes its maximum 
over all possible input distributions  p x  for the sender’s 

sequence nA , which consists of random variables, as follows:  

 
 

 max :
p x

C N I A B .                            (29) 

This  C N  capacity describes the capacity of a classical 

communication channel, - as it can be concluded, it can be 
determined by a “single-use” formula, hence there is no any 
asymptotic nature in the case of a noisy classical 
communication channel. As we will see, this single-use nature 
does not hold anymore in the case of a quantum 
communication channel.  

B. Quantum Channel Coding 

The noisy quantum channel encoding method uses very 
similar theoretical background as the classical channel coding, 
however there are some fundamental differences between 
them. The encoding and the decoding mathematically can be 
described by the superoperators   and  , realized on the 
blocks of quantum states. The sender encodes the message 
from the source into a quantum state, and sends the encoded 
quantum state through the quantum channel. The receiver 
decodes the quantum state. The received quantum state will be 
a modified state (typically), according to the noise of the 
quantum channel. 
The model of noisy quantum channel coding with the 
encoding and decoding process is illustrated in Fig. 7. 
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Classical or 
Quantum Source

Source

Encoder
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Input

Channel
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Fig. 7 Noisy Quantum Channel Coding 

 
Similar to classical channel encoding, the quantum states can 
be transmitted over copies of a quantum channel. In this case, 
we have n copies of a quantum channel  , which will be 

denoted as n . This channel model can be used to describe 
the transmission of codewords through the quantum channel, 
and it can be used to compute the asymptotic capacity of the 
quantum channel.  
The information transmission over n copies of quantum 
channel   is shown in Fig. 8. The input of the encoder 
consist of m pure quantum states, the encoder maps the m 
quantum states into the joint state of n intermediate systems. 
Each of these intermediate systems are sent through an 
independent instance of the quantum channel  . This 
intermediate joint state is decoded by the   decoder, which 
results in m quantum states. The output of the decoder   is 
typically a mixed quantum state, according to the noise of the 
quantum channel. The rate of the code is equal to the m length 
of input codeword per n, the number of independent instances 
of the quantum channel.   
 


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Fig. 8 Transmission of codewords through the quantum channel. The 
pure input quantum state consist of m qubits, the encoder produces a 
joint state of n intermediate systems. The encoded qubits are passed 

through the independent instances of the quantum channel 

Issue 3, Volume 5, 2011 192

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

The encoding and decoding with n  will have great 
relevance in the description of the asymptotic formula of the 
various channel capacities of the quantum channel. 
In the case of quantum channel coding, using n copies of the 
quantum channel  , the rate at which information can be 
transmitted through the quantum channel with arbitrarily small 
probability of error is  

1
logR M

n
 ,                                   (30) 

where M denotes the set of possible codewords to be 
transmitted. The exponentially small probability of error at 
this rate can be achieved only if R C , otherwise the 
probability of the successful decoding exponentially tends to 
zero, as the number of channel uses increases.  
In the case of a classical communication channel N, the 
capacity is equal to the maximum of the mutual information 
between the sender and the receiver, for a single-use of the 
channel. It has an important conclusion: the asymptotic 
capacity of a classical communication channel N, is equal to 
the single use of the channel. On the other hand, it does not 
hold anymore in the case of quantum communication 
channels.  
Our geometrical analysis is focused on the mixed quantum 
state, received by Bob. Alice’s pure state is denoted by A , 

the noise is modeled by an affine map   and Bob’s mixed 

input state is denoted by  A B  . For random variables 

X and Y,      ,H X Y H X H Y X  , where H(X), 

 ,H X Y  and  H Y X  are defined by probability 

distributions.  
We measure in a geometrical representation the information 
which can be transmitted in the presence of noise on the 
quantum channel.   

C. The Asymptotic Classical Capacity of The Quantum 
Channel 

This capacity is simply analogous to classical information 
transmission over a classical quantum channel. Hence, it 
simply gives the best rate at which a quantum channel   can 
be used to transmit classical information from Alice to Bob, 
which can be measured as the maximization of the mutual 
information between Alice and Bob:  

        max : max
A A

C I A B H A H A B   ,   (31) 

hence as the maximization of  :I A B  over Alice’s random 

input variables A, and  Bob’s variable B.  
To measure the capacity which can be achieved by a quantum 
channel, we have to use an asymptotic formula. The 
asymptotic formula “activates” the benefits of quantum 
phenomena, such as entanglement and joint measurement. 
The general sketch of classical capacity  C   of a quantum 

channel is illustrated in Fig. 9. Here we show the asymptotic 
classical channel capacity of the quantum channel. The 
asymptotic classical capacity of the quantum channel can be 
expressed as:  

    1
lim

n

A
n

C
n
  


  ,                    (32) 

where A  is Alice’s input system, n is the number of channel 

uses. 
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Fig. 9 The asymptotic classical capacity of a quantum channel. This 

capacity quantifies the maximum of the total number of transmittable 
classical bits divided by the number of channel uses 

 
In the classical communication model, we seek to maximize 

 H X  and minimize  H X Y  in order to maximize the 

radius of the smallest enclosing ball of Bob, since the radius 
can be computed as 

     * max .
iall possible xr H X H X Y           (33) 

To compute the radius *r  of the smallest informational ball of 
quantum states and the entropies between mixed quantum 
states, instead of the classical Shannon entropy, we use the 
Holevo-Schumacher-Westmoreland (HSW) channel capacity 
[15], [16].  

D. Channel Entropies 

According to the HSW theorem, the single use capacity 
   1C   of a quantum channel  , can be defined as 

follows [15], [16]:  
     

    
1 1

1

all possible  and 

, , , , ,
1 1

max

max ,

i i

n n

outputp

n n

i i i i
p p

i i

C

p p



 
 

 



     
  
  

 

 S S
   (34) 

where output  is the Holevo quantity of the output, 

   logTr   S  is the von Neumann entropy, and 

 i  represents the output density matrix obtained from 

the quantum channel input density matrix i  [15]. Using the 

result of the HSW theorem [15], we will refer to the single use 
channel capacity as the radius of the smallest enclosing ball as 
follows:  

     
1*

all possible  and max
i i outputpr C    .        (35) 

In this paper, we use the geometrical interpretation of HSW 
channel capacity, using quantum relative entropy as a distance 
measure function.  
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IV. ADVANCED PROPERTIES OF A QUANTUM CHANNEL 

The additivity property and capacity recovery of zero-capacity 
quantum channels can be analyzed in a geometrical 
representation, which uses the quantum relative entropy-based 
channel capacity. There are some geometrical approaches in 
the literature, which could help to reveal the structural 
properties of quantum channel additivity [6], [7]. These 
methods also could be a very efficient tool for analyzing the 
still open questions on the additivity property of quantum 
channel capacity.  
The quantum informational distance has some distance-like 
properties, however it is not commutative [16].   
The classical communication over quantum channel is studied 
by Holevo, who showed the upper bound for quantum channel 
capacity [2], [14], [15], [16]. The capacity of quantum channel 
has been theoretically presented by Schumacher-
Westmoreland, and they have proved that the upper bound of 
the quantum channel capacity can be attained [15], [16]. The 
capacity of quantum channel has been studied by Shor, who 
proved the equivalence of the additivity of the quantum 
channel capacity and the additivity of the minimum entropy 
output [2]. To compute the channel capacity of a quantum 
channel, instead of the classical Shannon entropy, we 
introduce the Holevo-Schumacher-Westmoreland (HSW) 
channel capacity [15], [16]. In the last decade, one of the most 
important questions in quantum information processing was 
the analysis of the impact of noise on the different channel 
capacities.  
At present, the conjectures connected the quantum channel 
additivity are still not solved, some of them are only 
confirmed to hold for some classes of quantum channels. 
Currently, the most basic questions on the classical capacity 
of a quantum channel still remain open. The open questions 
related to the additivity of quantum channel capacities can be 
discussed by informational geometric approaches [6], [7], [9],  
[14]. 

A. Additivity of Quantum Channels  

To this day, additivity for quantum channel capacity 

 1 2C    of two general quantum channels 1  and 2  

has been conjectured, but still not proven. The equality of 
channel capacities is known for some special cases, but the 
generalized rule is still unknown. In classical systems, the 
correlations between classical inputs  1 2, mx x x , do not 

increase the capacity of the classical channel [2]. The classical 
channel behavior can be achieved in quantum communication, 
if the correlation between the input states is not allowed. In 
this case, the entangled input states are not allowed, and the 
joint quantum channel capacity  1 2C    cannot be 

improved quantum mechanically. If the entanglement is 
allowed between the input states, then un-correlated input 
states  1 2 1 2, m nx x x         can be encoded 

to entangled states as 

   1 2 12 34 1, m n nx x x         ,     (36) 

where  1i i  denotes the entangled states of the i-th and 

i+1-th density matrix inputs.  
The entanglement between input states 

1 2 n      is restricted to these  1i i  pairs, as 

we have illustrated it in Fig. 10.  

 1 2, mx x x
1

2

3

4 n

1n 
…

…

12 34  1n n
Input states

 
Fig. 10 Encoding with entanglement 

 
For the additivity of any two quantum channels 1  and 2 , 

it is conjectured that the following equation holds for the C 
capacities:  

     1 2 1 2C C C      ,                 (37) 

where    1 2C C   is the total capacity if two channels 

1  and 2  are used separately, while  1 2C    is the 

joint capacity. For the additivity of quantum channels the 
following equation holds  

     1 2 1 2C C C      .               (38) 

In Fig. 11, we illustrated the measurement setting for tensor 
product channel capacity  1 2C   . The two quantum 

channels 1  and 2  form a tensor product channel 

1 2  , which is denoted by the dashed frame. The parallel 

quantum channels 1  and 2  can be viewed one channel 

denoted by 12 , for which 12 12 12 1 2:        , 

where   is the Hilbert-space. The additivity conjecture of 
quantum channel capacity can be stated as, how could the 
entangled states contribute to the capacity  1 2C    of a 

product channel 12 1 2    , or how could we exploit 

entanglement in quantum channel capacity [14]. The joint 
capacity  1 2C     can be determined after a joint 

measurement of channels 1  and 2  . The two quantum 

channels 1  and 2  form a tensor product channel 

12 1 2    . 
Product input 

states
Quantum Channel

1
1

22
12

Joint measurement

 1 1 1 

 2 2 2 

 
Fig. 11 Joint-measurement setting for tensor-product channel 

capacities 
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As it has been proven [14], if there is no joint measurement in 
the model, then the joint capacity  1 2C    of quantum 

channels 1  and 2   is additive, and super-additivity 

property cannot be exploited:  

     1 2 1 2C C C      .               (39) 

If for the joint capacity of the two channels 1  and 2   , the 

conjecture  

     1 2 1 2C C C      ,                 (40) 

holds, then the tensor-product channel model 12 1 2     

forms a “superchannel”, for which super-additivity holds. If 
this property holds, then using entanglement on the input of 
channel 12 1 2    , the channel capacity  1 2C    

can be increased, and the additivity property of channel 
capacity fails:  

     1 2 1 2C C C      .             (41) 

We note, that the parallel quantum channel view 

12 1 2    , and the model of serial entangled inputs are 

equivalent from the view of super-additivity.  

B. Capacity recovery of Quantum Channels 

The capacity recovery of the zero-error capacity of quantum 
channels makes it possible to use two quantum channels, each 
with zero zero-error capacity, with a positive joint zero-error 
capacity. The capacity recovery of quantum channels may be 
the starting-point of a large-scale revolution in quantum 
information theory and in the communication of future 
quantum networks [12], [13]. The capacity recovery of zero-
capacity quantum channels makes it possible to use two zero-
capacity quantum channels with a positive joint capacity at the 
output. The problem of capacity recovery can be discussed as 
part of a larger problem set – the problem of quantum channel 
additivity. The number of efficient approximation algorithms 
for quantum informational distances is very small, because of 
the special properties of quantum informational generator 
functions and of asymmetric quantum informational distances. 
If we wish to analyze the properties of quantum channels 
using today’s classical computer architectures, an extremely 
efficient algorithm is needed [35], [36], [37].  
With the help of efficient computational geometric methods, 
the capacity recovery of zero-capacity quantum channels can 
be analyzed very efficiently. Computational Geometry was 
originally focused on the construction of efficient algorithms 
and provides a very valuable and efficient tool for computing 
hard tasks. In many cases, traditional linear programming 
methods are not very efficient.  
To analyze a quantum channel for a large number of input 
quantum states with classical computer architectures, very fast 
and efficient algorithms are required. We use these classical 
computational geometric tools to discover the still unknown 
“superactive” zero-capacity quantum channels [1].  
The problem of capacity recovery of zero-capacity quantum 
channels can be viewed as a smaller subset of a larger problem 
set involving the additivity of quantum channels. The problem 
of capacity recovery of zero-capacity quantum channels can 

be viewed as a smaller subset of a larger problem set 
involving the additivity of quantum channels.  
 

Additivity problem
of quantum channels

Capacity Recovery
of

zero-capacity
quantum channels

 
Fig. 12 The problem of capacity recovery of zero-capacity quantum 

channels as a sub domain of a larger problem set 
 
The possibility of the capacity recovery of the zero capacity 
quantum channels can be a very valuable tool for improving 
the results of fault-tolerant quantum computation and possible 
communication techniques over noisy quantum channels in 
future’s quantum networks. 
The zero-error capacity of the quantum channel measures the 
amount of information which can be transmitted through a 
noisy quantum channel with a zero probability of error [23], 
[24], [25].  
Since the revolutionary properties of capacity recovery of 
quantum channel capacities have been reported on, many new 
quantum informational results have been developed [1], [18], 
[19], [20], [21], [22]. The capacity recovery of zero-error 
capacity implies the fact that a possible combination of 
quantum channels with zero zero-error capacity exists, where 
individually totally useless channels can activate each other, 
and their joint zero-error capacity will be greater than zero [1]. 

V. GEOMETRICAL INTERPRETATION OF QUANTUM CHANNEL 

CAPACITY  

The authors of [15] have shown that the capacity of a quantum 
channel can be measured geometrically, using quantum 
relative entropy function as a distance measure. Schumacher 
and Westmoreland have shown that the channel capacity of 
every optimal output state k  can be expressed as [15] 

     1
kC D   ,                        (42) 

where k kp   is the optimal average output state and 

the relative entropy function of two density matrices can be 
defined as  

     log logk k k kD Tr         .      (43) 

In this definition, Tr is the trace operator. In conclusion, for 
non-optimal output states   and optimal average output state 

k kp  , we have        1
kC D D     .  

Moreover, in [15], Schumacher and Westmoreland have also 
shown that there exists at least one optimal output state 

 ,k kp   which achieves the optimal capacity 
     1

kC D   . The geometrical interpretation of 
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quantum channel capacity was introduced in [15], using the 
quantum relative entropy function as a distance measure as 
follows:   

   
   

    1 * min max .C r D
 

          (44) 

We analyze the capacity recovery of the quantum channel by 
clustering and convex hull calculations based on quantum 
relative entropy. If we denote the optimal output states by 

  ,k k kp   which achieve the capacity    1C   of 

channel  and k k
k

p  , then the single use quantum 

channel capacity can be derived in terms of the quantum 
relative entropy in the following way [16], [17]: 

 

    

     

    

   

   

log log

log log

log log

.

k k
k

k k k k k
k

k k k k k
k k

k k k
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k k
k

p D

p Tr p Tr
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p

 
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 

       

  





 



 S S

     (45) 

It can therefore be concluded that the Holevo quantity   can 
be expressed in terms of the quantum relative entropy and the 

   1C   single use HSW channel capacity  as [15] 

          1

,max ,
k k k kall p

k

C p D        (46) 

where k  denotes the input quantum states of channel  and 

.k k
k

p   The geometric interpretation of the HSW 

channel capacity has been studied by Cortese [14], who also 
extended these results to the general qudit channels.  
Using the resulting quantum relative entropy function [15] and 
the HSW-theorem, the  C   asymptotic classical capacity 

of the quantum channel can be expressed with the help of the 
radii of the smallest quantum informational balls as follows:  

       

 
1 1

1*

*

, , , , ,
1

1
lim

1 1
       lim lim max ,

n n

n
super

n

n
n
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n n p p

i

r C C
n

r
n n  






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

  

   
 
  

  



  (47) 

where *
ir  is the single use capacity of the i-th use of quantum 

channel  , AB
k  is the optimal output channel state, and 

AB  is the average state. We analyze the capacity recovery 
property of the quantum channel, using the mini-max criterion 
for states AB

k  and AB . The radius *
superr  of the superball is 

equal to the asymptotic classical capacity [6], [11]. 
In Fig. 13, we illustrate the superball representation for the 

analysis of two quantum channels, however it naturally can be 
extended to n different quantum channel models. The 
geometrical structure of quantum informational balls differs 
from the geometrical structure of ordinary Euclidean balls. 

 
 
Fig. 13 Geometric interpretation of capacity recovery of very noisy 

quantum channels 
 
In the capacity recovery problem, we have to use different 
quantum channel models [1]. For two different quantum 
channels 1

n  and 2
n , the asymptotic HSW channel 

capacity  1 2C    is equal to the sum of the radii 

 *
1superr   and  *

2superr   of the quantum informational 

superballs, whose radii form a new quantum superball with 
radius 

   
        

*
1 2 1 2

1 * *
1 2 1 2

1
lim .

super

n

super supern

r C

C r r
n





   

  

   

   
 (48) 

In Fig. 14 we show the measurement setting to analyze the 
capacity recovery of very noisy optical quantum channel-pair 

1  and 2 .  
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Fig. 14 The method of capacity recovery of optical quantum channels 
 
The geometrical method computes the joint capacity, based on 
the clustering of channel output quantum states and a convex 
hull calculation [12], [13], [14].  

A. The Quantum Informational Ball 
We use the Delaunay tessellation, since it is the fastest 

known tool to seek the center of the smallest enclosing ball of 
points. The circumcircle of the given quantum states is the 
circle that passes through the quantum states 1  and 2  of the 

edge 1 2   and endpoints 1 , 2  and 3  of the triangle 

1 2 3   . The triangle t is said to be Delaunay, when its 

circumcircle is empty [3], [7]. For an empty circumcircle, the 
circle passing through the quantum states of a triangle 
t T and encloses no other vertex of the set  . The quantum 
Delaunay diagrams between mixed quantum states are 
different from Euclidean diagrams, as we have illustrated Fig. 
15.  
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Fig. 15 Classical Euclidean (a), and quantum Delaunay tessellation 

(b) 
 
The problem of clustering in quantum space, using the quantum 
informational distance as a distance function, is a completely 
new area in quantum information theory. The properties of 
Voronoi diagrams [3] in quantum space have been studied by 
Kato et al. [10], however the problem of clustering was not 
analyzed in their work. The coreset method for different 
distances has been studied in the literature [4], [7], [9]. 

VI. THE OPTICAL QUANTUM CHANNEL 

The optical quantum channel   can be described in the 
Kraus representation [2], [5], using a set of Kraus matrices 

 = iA� , in the following form 

  † ,i i
i

A A                              (49) 

where † ,i i
i

A A I  and  

  1

0

0 1

p
A

 
  
 

, and 2

0 0
,

1 0
A

p

 
  

  
         (50) 

where p  represents the probability that the channel leaves the 

0  input state unchanged. In practical applications, this 

parameter represents the probability of energy loss from 
losing a particle. The channel flips the input state from 0  to 

1  with probability 1 .p  In the Bloch sphere representation, 

the effect of the amplitude damping channel on the initial 

input state  1

2 in  1 r , where  inr  is the length of the 

initial Bloch vector, can be analyzed. The output state is 

denoted by    1

2 out  1 r , hence the amplitude 

damping channel can be expressed using Bloch vectors inr  

and outr  in the following way:  
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   (51) 

The smallest value of  D    corresponds to the contour 

closest to the location of the density matrix. In Fig. 16(a), the 
Euclidean distances from the origin of the Bloch sphere to 
center *c  and to point   are denoted by m  and m , 

respectively. To determine the optimal length of vector r , 

the algorithm moves point  . As we move vector r  from 

the optimum position, the larger contour corresponding to a 
larger value of quantum relative entropy D will intersect the 
channel ellipsoid surface, thereby increasing 

 max .D
  r r r  The optimal quantum informational ball is 

illustrated in light-grey in Fig. 16(b). 

    
Fig. 16 Intersection of quantum informational ball and channel 

ellipsoid of amplitude damping channel 
 
From our geometrical analysis, it can be concluded that the 
optimum input states for an optical quantum channel are 
unentangled, non-orthogonal quantum states [17]. In Fig. 17, 
we show the results for the capacity recovery analysis of 
amplitude damping channel. The capacity recovery of 
amplitude damping channel   cannot be described by the 
relation derived for unital quantum channels. The radii of the 
smallest quantum informational balls of channels 1  and 2  

are denoted by *
1r  and *

2r .  

   
Fig. 17 Smallest quantum informational balls of two independent 

quantum channels 
 
Our analysis has shown that the optimum input states are non-
orthogonal input quantum states [16]. 

A. Analysis of Channel Output States 

A coreset of a set of output quantum states has the same 
behavior as the larger input set, so clustering and other 
approximations can be made with smaller coresets. The 
coreset can be viewed as a smaller input set of channel output 
states, hence it can be used as the input to an approximation 
algorithm. The weighted sum of errors of the smaller coreset 
is a  1   approximation of the larger input set. These 

coresets are called weak coresets [9] and this method can be 
applied in quantum space between quantum states. The weak 
coresets include all the relevant information required to 
analyze the original extremely large input set. The coreset 
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approach has significantly lower computational complexity, 
hence it can be applied very efficiently in the quantum space 
[9].  

B. Clustering Channel Output States 

Using  -similar quantum informational distances and the 

 -weak coreset of quantum states, the capacity recovery of 
very noisy optical quantum channels can be analyzed by an 

 1  -approximation algorithm in a run time 

2 22 log
k

kd n dkn  
 

 
 ,                      (52) 

where k  is the number of quantum states in set OUT , n is the 

number of input states and d is the dimension of the points.  
To summarize, our algorithmic capacity recovery of very 
noisy optical quantum channels combines the weak coreset 
methods and the clustering algorithms. 

Our geometrical approach
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Fig. 18 Decomposition of our geometrical approach for finding 

recoverable very noisy optical channels 
 
In Fig. 19, we illustrate the clustering method of channel 
output states. In the clustering process, our algorithm 
computes the median-quantum states denoted by i , using a 

fast weak coreset and clustering algorithm. In the next step, 
we compute the convex hull of the median quantum states 
and, from the convex hull, the radius of the smallest 
quantum informational ball can be obtained. The convex-
hull calculation is based on the quantum Delaunay diagrams. 
The smallest superball measures the channel capacity; hence 
the radius of the superball is equal to the sum of radii of 
quantum balls of independent channel outputs. The output 
states are measured by a joint measurement setting. 

 
Fig. 19  Capacity of quantum channel analyzed by the radius of the 

smallest quantum informational ball 
 
Using the modified weak coreset algorithm and the  1  -

approximation algorithm, the capacity recovery of quantum 
channels can be analyzed relative to  -similar quantum 

informational distances and k median-quantum states with 
error      , 1 7 ,IN OUT k INerror opt    where 

 k INopt   is the error of the optimal solution for set of 

input quantum states IN  . 

VII. CONCLUSION 

This paper shows a fundamentally new algorithmic solution 
for capacity recovery of very noisy optical quantum channels. 
To analyze channel capacity recovery, we introduced the 
quantum informational “superball” representation. The 
iterations are based on the computed radius of the superball. 
The algorithm presented has lower complexity in comparison 
with other existing coreset and approximation algorithms, 
which can also be applied in quantum space. This paper is 
intended to be an introduction to the basic properties of the 
proposed framework for finding recoverable very noisy 
optical quantum channels. The proposed method can be a very 
valuable tool for improving the results of fault-tolerant 
quantum computation and possible communication techniques 
over noisy optical quantum channels. In future work, we 
would like to extend our results to other possible very noisy 
quantum channel models and we would like to show some 
typical results on recovered very noisy quantum channels.  
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