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Abstract— Let P (λ) =
∑k

i=0 λiAi(p) be a family of monic poly-
nomial matrices smoothly dependent on a vector of real parameters
p = (p1, . . . , pn). In this work we study behavior of a multiple
eigenvalue of the monic polynomial family P (λ) as well as we study
of behavior of a simple eigenvalue of a family of 1-degree singular
polynomial matrices representing families of singular linear systems.
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I. INTRODUCTION

Given a polynomial matrix P (λ) =
∑k

i=0 λiAi where Ai are
square matrices over real or complex field, it is an important question
from both the theoretical and the practical points of view to know
how the eigenvalues and eigenvectors change when the elements of
P (λ) are subjected to small perturbations.

Eigenvalue problem for polynomial matrices P (λ)v = 0, appears
(among many other applications) modeling physical and engineering
problems by means systems of k-order linear ordinary differential
equations. The values of eigenvalues can correspond among others,
to frequencies of vibration, critical values of stability parameters, or
energy levels of atoms.

The eigenvalues of some matrices are sensitive to perturbations,
it is well know that the eigenvalues of monic polynomial matrices
are continuous functions of the entries of the matrix coefficients of
the polynomial, but Small changes in the matrix elements can lead
to large changes in the multiplicity of eigenvalues. For example a
little perturbation of the matrix ( λ 1

0 λ ) as ( λ 1
ε λ ) the double eigenvalue

λ = 0 is perturbed to two different eigenvalues λ = ±√ε changing
completely the structure of the polynomial matrix. Obviously if
we consider the perturbation

(
λ 1+ε
0 λ

)
there are not changes in the

structure.
Given a square complex matrix A, it is an important question

from both the theoretical and the practical points of view to know
how the eigenvalues and eigenvectors change when the elements of
A are subjected to small perturbations. The usual formulation of the
problem introduces a perturbation parameter ε belonging to some
neighborhood of zero, and writes the perturbed matrix as A + εB
for an arbitrary matrix B. In this situation, it is well known [15]
section II.1.2, that each eigenvalue or eigenvector of A + εB admits
an expansion in fractional powers of ε, whose zero-th order term is
an eigenvalue or eigenvector of the unperturbed matrix A.

In this paper, in section 1 we present an overview over polynomial
matrices P (λ) and the analysis of perturbation of simple eigenvalue
λ0 of P (λ) such that 0 is a simple eigenvalue of the linear map
P (λ0). In section 3, inspired by the work of Arnold [2] on versal
deformations of square matrices, we derive versal deformations
providing a decomposition of arbitrary perturbation into tangent an
orthogonal spaces of the set of equivalent polynomial matrices. In
section 4, we study the perturbation of a multiple eigenvalue with a
simple eigenvector of a monic polynomial matrix smoothly depending
on parameters. Finally, in sections 5 and 6 we generalize the results
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to analysis of perturbation of simple eigenvalues of standard systems
and singular systems.

The study of behavior of simple and multiple eigenvalues of
a matrix depending smoothly of parameters has a great interest
for its many applications. Perturbation theory for eigenvalues and
eigenvectors of regular pencils is well established see [1],[17] for
example and for vibrational systems in [16]. In this paper we extend
some of these results to polynomial matrices.

II. PRELIMINARIES

A square polynomial matrix of size n and degree k is a polynomial
of the form

P (λ) =

k∑
i=0

λiAi, A0, . . . , Ak ∈ Mn(F), (1)

where F is the field of real or complex numbers. Our focus is on
monic polynomial matrices. A square polynomial matrix P (λ) is
said to be monic if Ak = In is identically. The polynomial matrix
(1) naturally arises associated with linear systems of differential
equations

Akx(k)(t)+ Ak−1x
(k−1)(t)+ . . . + A1x

1(t)+ A0x(t) = f(t) (2)

where x(t) is a vector-valued function (unknown) with n coordinates,
x(j)(t) denotes the j-th derivative of x(t) and f(t) is another vector-
valued function with n coordinates. Of particular relevance is the case
of linear systems of second order, appearing in many engineering
applications.

The eigenvalues of a polynomial matrix P (λ) are the zeros of the
nk-degree scalar polynomial det P (λ).

Let λ0 be an eigenvalue of polynomial matrix P (λ), then there
exists a vector v0 6= 0 such that P (λ0)(v0) = 0, this vector is called
an eigenvector.

We will call a Jordan chain of length k+1 for P (λ) corresponding
to complex number λ0 to the sequence of n-dimensional vectors
v0, . . . , vk such that

i∑

`=0

1

`!
P (`)(λ0)vi−` = 0, i = 0, . . . , k (3)

where P (`) denotes the `-derivative of P (λ) with respect the variable
λ. If λ0 is an eigenvalue there exists a Jordan chain of length at least
1 formed by the eigenvector.

Let λ0 be an eigenvalue of P (λ), then det P t(λ0) = det P (λ0) =
0, so λ0 is an eigenvalue of P t(λ). For this eigenvalue there exists
an eigenvector u0, that is P t(λ0)(u0) = 0, equivalently ut

0P (λ0) =
0. The vector u0 is called left eigenvector corresponding to the
eignevalue λ0 of P (λ).

For more information see [5], or [14] for example.
Let P (λ) =

∑k
i=0 λiAi be now, a polynomial matrix and we

assume that the matrices Ai smoothly depend on the vector of real
parameters p = (p1, . . . , pr). The function P (λ; p) =

∑k
i=0 λiAi(p)

is called a multi-parameter family of polynomial matrices. Eigenval-
ues of the polynomial matrix function are continuous functions of
the vector of parameters. We are going to review the behavior of a
simple eigenvalue of the family of polynomial matrices P (λ; p).
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Let λ(p) be a simple eigenvalue of the polynomial matrix P (λ; p).
Since λ(p) is a simple root of the scalar polynomial det P (λ), we
have

∂

∂λ
det P (λ; p) 6= 0. (4)

The expression (4) permit us to make use the implicit function
theorem to the equation det P (λ; p) = 0, and we observe that
the eigenvalue λ(p) of the family of polynomial matrices smoothly
depends on the vector of parameters, and its derivatives with respect
to parameters are

∂λ(p)

∂pi
= −

∂

∂pi
det P (λ; p)

∂

∂λ
det P (λ; p)

, i = 1, . . . , r. (5)

Taking into account that λ(p) is a simple eigenvalue and that
the sum of the lengths of Jordan chains in a canonical set is the
multiplicity of the eigenvalue as zero of det P (λ; p), we have that
the Jordan chains consist only of the eigenvectors.

The eigenvector v0(p) corresponding to the simple eigenvalue λ(p)
is determined up to a nonzero scaling factor α. This eigenvector
determines a one-dimensional null-subspace of the matrix operator
P (λ(p); p) smoothly dependent on p. Hence, the eigenvector v0(p)
can be chosen as a smooth function of the parameters.

An approximation of the eigenvalues as well of the corresponding
eigenvectors by means their derivatives is given by the following
result.

Theorem 1:

∂λ

∂pi |(λ0;p0)

= −
ut

0
∂P (λ; p)

∂pi |(λ0,p0)

v0(p0)

ut
0P

′(λ0; p0)v0(p0)
(6)

and

∂v0(p)

∂pi |(λ0,p0)

=

−T−1
0

(
∂λ

∂pi
(P ′(λ; p)) +

∂P (λ; p)

∂pi

)

|(λ0,p0)

v0(p0).
(7)

where T0 = P (λ0); p0) + u0u
t
0P

′(λ0; p0), and

∂2λ

∂pi∂pj |(λ0,p0)

= −a

b
,

with

a =(
ut

0

(
∂λ

∂pi

∂λ

∂pj
P ′(λ; p) +

∂λ

∂pi

∂P ′(λ; p)

∂pj

+
∂P ′(λ; p)

∂pi

∂λ

∂pj
+

∂2P (λ; p)

∂pi∂pj

)
v0(p)

+ut
0

(
P ′(λ; p)

∂λ

∂pj
+

∂P (λ; p)

∂pj

)
∂v0

∂pi

+ut
0

(
P ′(λ; p)

∂λ

∂pi
+

∂P (λ; p)

∂pi

)
∂v0

∂pj

)

|(λ0,p0)

,

and

b = ut
0P

′(λ0; p0)v0(p0).

∂2v0(p)

∂pi∂pj |(λ0,p0)

=

T−1
0

(
∂2λ

∂pi∂pj
P ′(λ; p)v0(p)+

(
∂λ

∂pi

∂λ

∂pj
P ′(λ; p) +

∂λ

∂pi

∂P ′(λ; p)

∂pj

+
∂P ′(λ; p)

∂pi

∂λ

∂pj
+

∂2P (λ; p)

∂pi∂pj

)
v0(p)

+

(
P ′(λ; p)

∂λ

∂pj
+

∂P (λ; p)

∂pj

)
∂v0

∂pi

+

(
P ′(λ; p)

∂λ

∂pi
+

∂P (λ; p)

∂pi

)
∂v0

∂pj

)

|(λ0,p0)

.

The proof is analogous to that given in [16] for matrix pencils and
for vibrational systems.

III. VERSAL DEFORMATIONS

The Arnold technique of constructing a local canonical form,
called versal deformation, of a differentiable family of square matri-
ces under conjugation [2] provide a special parametrization of matrix
spaces, which can be effectively applied to perturbation analysis and
investigation of complicated objects like singularities and bifurcations
in multi-parameter dynamical systems (see [2], [6] among others).

The general notion of versality is the following. Let M be a
differential manifold with the equivalence relation defined by the
action α(g, x) (where x, g ◦ x ∈ M and g ∈ G) of a Lie group
G. Let us consider a smooth mapping x : U0 −→ M, where U0 is
a neighborhood of the origin of the space F`. The mapping ϕ(γ) is
called deformation of x0 = x(0) with the parameter vector γ ∈ F`.
Introducing a change of parameters φ : U ′0 −→ U0, where U ′0 is a
neighborhood of the origin in Fk, such that φ(0) = 0, we obtain the
deformation ϕ(φ(ξ)) of x0 with the parameter vector ξ ∈ U ′0 ⊂ Fk.
Applying the equivalence transformation g(ξ), where g : U ′0 −→ G
is a smooth mapping such that g(0) = e is the unit element of G,
we get the deformation

z(ξ) = α(g(ξ), ϕ(φ(ξ))) (8)

of z(0) = α(e, x0) = x0. Then, ϕ(γ) is called versal deformation of
x0, if any deformation z(ξ) of x0 can be represented in the form (8)
in some neighborhood of the origin U ′′0 ⊂ Fk. This definition implies
that a versal deformation generates all deformations of x0 and, hence,
possesses properties (invariant under the equivalence transformation)
of all deformations of the given element x0 ∈M.

Theorem 2: [2] The deformation ϕ(γ) of x0 is versal if and only
if it is transversal to the orbit of x0 under the action of G.
This theorem reduces the problem of finding a versal deformation to
solving a specific linear equation determined by x0.

Proposition 1: A versal deformation of x0 is given by

x0 + (Tx0O(x0))
⊥

In fact we can take any complementary subspace F of Tx0O(x0).
In our particular setup we consider the Lie group G = Gl(n;R)

acting over the space of monic polynomial matrices Pk(λ) =
{∑k

i=0 λiAi | Ak = In, Ai ∈ Mn(F} ≈ {(Ak−1, . . . , A1, A0)} =
(Mn(R)k in the following manner

α : G × Pk(λ) −→ Pk(λ)
(S, (Ak−1, . . . , A0)) −→ (S−1Ak−1S, . . . , S−1A0S)

(9)

Let us use the notation TIG for the tangent space to the manifold
G at the unit element I . Since G is an open subset of Mn(F), we
have TIG = Mn(F),
and, since Pk(λ) (identified with Mn(F)n) is a linear space, at the
point x0 = (Ak−10 , . . . , A10 , A00), we have Tx0Pk(λ) = Pk(λ).
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Proposition 2: Let dαx0 : TIG −→ Pk(λ) be the differential of
αx0 at the unit element I . Then

dαx0(S) = (Ak−1S − SAk−1, . . . , A0S − SA0) ∈ Pk(λ),
S ∈ TIG.

(10)
Remark 1: It is well-known that the map dαx0 provide a simple

description of the tangent space Tx0O(x0).
Proposition 3:

Tx0O(x0) = Im dαx0 ⊂ Pk(λ).
Hermitian product in Pk(λ) and TIG we will deal with in this paper
are the following ones:

〈x1, x2〉 = tr(Ak−11A∗k−12 + . . . tr(A01A∗02 ,
xi = (Ak−1i . . . , A0i) ∈ Pk(λ),

(11)

where A∗ denotes the conjugate transpose of the matrix A.
Using the hermitian product (11) is easily to deduce a description

of Tx0O(x0)
⊥ for x0 ∈ Pk(λ).

Proposition 4: Let x0 = (Ak−10 , . . . , A00) be a polynomial
matrix in Pk(λ). Then (Xk−1, . . . , X0) ∈ Tx0O(x0)

⊥ if and only
if

X∗
k−1Ak−10 −Ak−10X∗

k−10 + . . . + X∗
0A0 −A0X

∗
0 = 0

Let x0 a polynomial matrix, the values of eigenvalues of all poly-
nomial matrices “near” of x0 are eigenvalues for some polynomial
matrix in the versal deformation of x0.

IV. PERTURBATION OF EIGENVALUE OF ARBITRARY
MULTIPLICITY WITH SINGLE EIGENVECTOR

Let P (λ; p) = λ2I2 + A(p) with A(p) =

(−1 p
p 0

)
be a one

parameter family of polynomial matrices. The eigenvalues are

λi = ±
√

1±
√

1 + 4p2

2
, (12)

that they are branches of one quadruple-valued analytic function

λ(p) =

√
1 +

√
1 + 4p2

2
the exceptional points are:

- p =
1

2
i and the eigenvalues are ±

√
2

2
both being double.

- p = −1

2
i and the eigenvalues are ±

√
2

2
both being double.

-p = 0 and the eigenvalues are +1, −1 both being simple and 0
being double.

We observe that for p =
1

2
i, the polynomial matrix P (λ; p) has

a single eigenvector up to a non-zero scaling factor for the double

eigenvalue λ =

√
2

2
.

We next consider the behavior of the eigenvalues in the neighbor-

hood of one of the exceptional points. Concretely we take p =
1

2
i.

In this case the eigenvalues are not differentiable functions of the

parameter at p =
1

2
i, just where the double eigenvalue appears,

derivative of the eigenvalues tend to infinity as p approaches to
1

2
i.

Therefore the analysis of perturbations of multiple eigenvalues with
single eigenvector, must be treated in a different manner.

Let P (λ; p) be a monic polynomial matrix family and λ0 an
eigenvalue of arbitrary multiplicity ` with single eigenvector up to
a non-zero scaling factor at the point p = p0, then, there exists a
Jordan chain v0, . . ., v`−1 such that

P (λ0, p0)v0 = 0,
P ′(λ0, p0)v0 + P (λ0, p0)v1 = 0,

1

(`− 1)!
P `−1(λ0, p0)v0 + . . . + P (λ0, p0)v`−1 = 0,

(13)

and, there exists a left Jordan chain u0, . . ., u`−1 such that

ut
0P (λ0, p0) = 0,

ut
0P

′(λ0, p0) + ut
1P (λ0, p0) = 0,

1

(`− 1)!
ut

0P (λ0, p0) + . . . + ut
`−1P (λ0, p0) = 0.

(14)

Remark 2: a) ut
0P

′(λ0, p0)v0 = 0,
b) ut

1P
′(λ0, p0)v0 = 0 ⇔ ut

1P (λ0, p0)v1 = 0 ⇔
ut

0P
′(λ0, p0)v1 = 0,

c) ut
0P

′(λ0; p0)v1 = ut
1P

′(λ0; p0)v0.
In order to analyze the behavior of two eigenvalues λ(p) that merge

to λ0 at p0, we consider a perturbation of the parameter along a
smooth curve p = p(ε), where ε ≥ 0 is a small real perturbation
parameter and p(0) = p0.

Along the curve p(ε) = (p1(ε), . . . , pr(ε)) we have a one
parameter matrix family P (λ, p(ε)), which can be represented in
the form of Taylor expansion

P (λ, p(ε)) = P0 + εP1 + ε2P2 + . . . ,

with P0 = P (λ, p0), P1 =
∑r

i=1

∂P (λ, p(ε))

∂pi

dpi

dε
,

P2 =
1

2

(∑r
i=1

∂P (λ, p(ε))

∂pi

d2pi

dε2
+

∑r
i,j=1

∂2P (λ, p(ε))

∂pi∂pj

dpi

dε

dpj

dε

)
,

where the derivatives are evaluated at p0.
Taking into account that P (λ, p(ε)) =

∑k
i=0 λiAi(p(ε)

(Ak(p(ε) = In), we have that

P (λ, p(ε)) =

k∑
i=0

λi(Ai0 + εAi1 + ε2Ai2 + . . .) (15)

where Ak0 + εAk1 + ε2Ak2 + . . . = In, A`0 =

A`(p0), A`1 =
∑r

i=1

∂A`(p(ε))

∂pi

dpi

dε
, A`2 =

1

2

(∑r
i=1

∂A`(p(ε))

∂pi

d2pi

dε2
+

∑r
i,j=1

∂2A`(p(ε))

∂pi∂pj

dpi

dε

dpj

dε

)
.

and the derivatives are evaluated at p0.
If λ0 is a `-multiplicity eigenvalue of P (λ; p0) having a unique

eigenvector v0 up to a non-zero scaling factor the perturbation
theory (see [15], for example) tell us that the `-fold eigenvalue λ0

generally splits into ` of simple eigenvalues λ under perturbation
of the polynomial matrix P (λ; p0). These eigenvalues λ and the
corresponding eigenvectors v can be represented in the form of the
Puiseux series:

λ = λ0 + ε1/`λ1 + ε2/`λ2 + ε3/`λ3 + ε4/`λ4 + . . .

v = v0 + ε1/`w1 + ε2/`w2 + ε3/`w3 + ε4/`w4 + . . .
(16)

Lemma 1: Let p0 be a point such that λ(p0) = λ0 is a `-
multiplicity eigenvalue with single eigenvector v0(p0) and u0 a
corresponding left eigenvector. Then, [u0]

⊥ = Im P (λ0, p0).
Proof: Let z ∈ Im P (λ0, p0), then there exists a vector x such

that P (λ0, p0)x = z. So

ut
0z = ut

0P (λ0, p0)x = 0tx = 0,

consequently Im P (λ0; p0) ⊂ [u0]
⊥. And taking into account that

rank P (λ0, p0) = dim Im P (λ0, p0) = n− 1 = dim[u0]
⊥,

we conclude the result.
Corollary 1: With the same conditions as the previous lemma,

we have.
1

`!
ut

0P
`(λ0; p0)v0 +

1

(`− 1)!
ut

0P
`−1(λ0; p0)v1 + . . . +

ut
0P

′(λ0; p0)v`−1 6= 0.

Proof: Suppose
1

`!
ut

0P
`(λ0; p0)v0 + . . . + ut

0P
′(λ0; p0)v`−1

6= 0. Then
1

`!
P `(λ0; p0)v0 +

1

(`− 1)!
P `−1(λ0; p0)v1+
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. . . + P ′(λ0; p0)v`−1 ∈ Im P (λ0, p0), and
1

`!
P `(λ0; p0)v0

+
1

(`− 1)!
P `−1(λ0; p0)v1 + . . . + P ′(λ0; p0)v`−1 = P (λ0; p0)x.

Equivalently:

1

`!
P `(λ0; p0)v0 +

1

(`− 1)!
P `−1(λ0; p0)v1 + . . .

+P ′(λ0; p0)v`−1 + P (λ0; p0)(−x) = 0,
(17)

but the Jordan chains of the P (λ; p0) for λ = λ0 are length `, so
there is no vector x verifying (17).

A. Perturbation of double eigenvalue with single eigenvector
Firstly and for a more understanding, we analyze the case where

` = 2
Substituting (16) into (15) we obtain

P (λ; p(ε)) =
(λk

0In + λk−1
0 Ak−10 + . . . + λ0A10 + A00)+

ε1/2(kλk−1
0 λ1In + (k − 1)λk−2

0 λ1Ak−10 + . . . + λ1A10)+

ε((kλk−1
0 λ2 +

1

2
k(k − 1)λ0λ

2
1)In + ((k − 1)λk−2

0 λ2+

1

2
(k − 1)(k − 2)λ0λ

2
1)Ak−10 + λk−1

0 Ak−11+

λ2A10 + λ0A11 + . . . + A01) + . . .

If v is an eigenvector for the eigenvalue λ, we have that

P (λ; p(ε))v = P (λ; p(ε))(v0 + ε1/2w1 + εw2 + . . .) = 0.

Then, we find the chain of equations for the unknowns λ1, λ2, . . .
and w1, w2, . . ..

P (λ0, p0)v0 = 0, (18)

λ1P
′(λ0; p0)v0 + P (λ0; p0)w1 = 0, (19)

P (λ0; p0)w2 + λ1P
′(λ0; p0)w1 +

1

2
λ2

1P
′′(λ0; p0)v0+

λ2P
′(λ0; p0)v0 + P1(λ0; p0)v0 = 0,

(20)

P (λ0; p0)w3 + λ1P
′(λ0; p0)w2 +

1

2
λ2

1P
′′(λ0; p0)w1+

λ2P
′(λ0; p0)w1 + P1(λ0; p0)w1 + λ1λ2P

′′(λ0; p0)v0+

λ3
1

1

3!
P ′′′(λ0; p0)v0 + λ3P

′(λ0; p0)v0 + λ1P
′
1(λ0; p0)v0 = 0,

(21)
where P1(λ0; p0) = λk−1

0 Ak−11 + λ0Ak−21 + . . . + λ0A11 + A01.
Equation (18) is satisfied because v0 is an eigenvector correspond-

ing to the eigenvalue λ0. Comparing equation (32) with (3) for i = 1
we observe that w1 = λ1v1 + βv0 for all β is a solution, we take
w1 = λ1v1.

To find the value of λ1 we premultiply equation (20) by ut
0, using

the given value for w1 and taking into account ut
0P (λ0; p0) = 0 and

ut
0P

′(λ0; p0)v0 = 0 we obtain

λ2
1(u

t
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0) + ut

0P1(λ0; p0)v0 = 0.

Taking into account corollary 1 we can find

λ1 = ±
√√√√ −ut

0P1(λ0; p0)v0

ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0

. (22)

If ut
0P1(λ0; p0)v0 6= 0 we have two values of λ1 that determine

leading terms in expansions for two different eigenvalues λ that
bifurcate from the double eigenvalue λ0.

Suppose then, that ut
0P1(λ0; p0)v0 6= 0. Premultiplying (21) by

ut
0,

λ1u
t
0P

′(λ0, p0)w2 +
1

2
λ3

1u
t
0P

′′(λ0; p0)v1+

λ1λ2u
t
0P

′(λ0; p0)v1 + λ1u
t
0P1(λ0; p0)v1+

λ1λ2u
t
0P

′′(λ0; p0)v0 + λ3
1

1

3!
ut

0P
′′′(λ0; p0)v0+

λ1u
t
0P

′
1(λ0; p0)v0 = 0.

Premultiplying (20) by ut
1 and according to 2, we have:

ut
0P

′(λ0; p0)w2 =

λ1u
t
1P

′(λ0; p0)w1 +
1

2
λ2

1u
t
1P

′′(λ0; p0)v0+

λ2u
t
1P

′(λ0; p0)v0 + ut
1P1(λ0; p0)v0.

So, taking into account (22)

λ1λ2(2ut
0P

′(λ0; p0)v1 + ut
0P

′′(λ; p0)v0) =

−(λ3
1(u

t
1P

′(λ0; p0)v1 +
1

2
ut

1P
′′(λ0; p0)v0 +

1

2
ut

0P
′′(λ0; p0)v1

+
1

3!
ut

0P
′′′(λ0; p0)v0) + λ1(u

t
1P1(λ0; p0)v0+

ut
0P1(λ0; p0)v1 + ut

0P
′
1(λ0; p0)v0))

Since λ1(u
t
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0) 6= 0 we obtain

λ2= −
λ2

1(
1

2
ut

0P
′′(λ0; p0)v1+

1

3!
ut

0P
′′′(λ0; p0)v0

2(ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)

−
λ2

1(u
t
1P

′(λ0; p0)v1+
1

2
ut

1P
′′(λ0; p0)v0)

2(ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)

+
ut

0P1(λ0; p0)v1 + ut
0P

′
1(λ0; p0)v0 + ut

1P1(λ0; p0)v0

2(ut
0P

′(λ0; p0)v1 +
1

2
ut

0P
′′(λ0; p0)v0)

.

(23)

Now, we can compute w2. We have

P (λ0; p0)w2 = −λ1P
′(λ0; p0)w1 − 1

2
λ2

1P
′′(λ0; p0)v0−

λ2P
′(λ0; p0)v0 + P1(λ0; p0)v0

(24)

Lemma 2: Following condition ut
0P1(λ0; p0)v0 6= 0 we have that

P (λ0; p0) + u0u
t
0P1(λ0; p0)v0v

t
0 is an invertible matrix.

Proof: Let x = αv0 + w with w ∈ [v0]
⊥, be a vector in the

null space, then (P (λ0; p0) + u0u
t
0P1(λ0; p0)v0v

t
0)x = 0.

Premultiplying by ut
0 we have

ut
0(P (λ0; p0) + u0u

t
0P1(λ0; p0)v0v

t
0)x = 0,

0 = u0u
t
0P1(λ0; p0)v0v

t
0(αv0 + w) =

|α|‖u0‖2‖v0‖2ut
0P1(λ0; p0)v0.

Then α = 0.
Consequently, x = w ∈ [v0]

⊥ and x ∈ Ker u0u
t
0P1(λ0; p0)v0v

t
0,

so x ∈ Ker P (λ0; p0) and x = βv0, but x ∈ [v0]
⊥, then β = 0.

Now we consider the normalization condition vt
0w2 = 0, and

adding u0u
t
0P1(λ0; p0)v0v

t
0 from the left to equation (24) and using

lemma 2, we find vector w2.
Using these calculations we have the following theorem.
Theorem 3: Let λ0 be a double eigenvalue of the polynomial

matrix P (λ; p0), with a single eigenvector up to a non-zero scaling
factor, and let v0, v1 be a Jordan chain and u0, u1 a left Jordan chain.
We consider a perturbation of the parameter vector along the curve
p(ε) starting at p0 satisfying the condition λ1 6= 0.

Then, the double eigenvalue λ0 bifurcates into two simple eigen-
values given by the relation

λ = λ0 + ε1/2λ1 + ελ2 + o(ε),

with λ1 and λ2 as (22) and (23) respectively.
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B. Perturbation of a `-multiplicity eigenvalue with single
eigenvector

Now, we analyze the general case.
Analogously, substituting (16) into (15) we obtain

P (λ; p(ε)) = (λ0 + ε1/`λ1 + ε2/`λ2 + . . . + ελ` + . . .)kIn+

(λ0 + ε1/`λ1 + . . .)k−1(Ak−10 + . . . + ε`Ak−1` + . . .)+
. . . +

(λ0 + ε1/`λ1 + ε2/`λ2 + . . .)(A10 + εA11 + ε2A12 + . . .)+
A00 + εA01 + ε2A02 + . . . =
(λk

0In + λk−1
0 Ak−10 + . . . + λ0A10 + A00)+

ε1/`(kλk−1
0 λ1In + (k − 1)λk−2

0 λ1Ak−10 + . . . + λ1A10)+

ε2/`((kλk−1
0 λ2 +

1

2
k(k − 1)λ0λ

2
1)In + ((k − 1)λk−2

0 λ2+

1

2
(k − 1)(k − 2)λ0λ

2
1)Ak−10 + . . . + λ2A10) + . . .

If v is an eigenvector for the eigenvalue λ we have that

P (λ; p(ε))v = P (λ; p(ε))(v0 + ε1/`w1 + ε2/`w2 + . . .) = 0

Then, we find the chain of equations for the unknowns λ1, λ2, . . .
and w1, w2, . . ..

P (λ0, p0)v0 = 0, (25)

λ1P
′(λ0; p0)v0 + P (λ0; p0)w1 = 0, (26)

P (λ0; p0)w2 + λ1P
′(λ0; p0)w1+

1

2
λ2

1P
′′(λ0; p0)v0 + λ2P

′(λ0; p0)v0 = 0,
(27)

λ3P
′(λ0, p0)v0 +

1

3!
λ3

1P
′′′(λ0; p0)v0+

1

2
λ1λ2P

′′(λ0; p0)v0 + λ2P
′(λ0; p0)w1+

1

2
λ2

1P
′′(λ0; p0)w1 + λ1P

′(λ0; p0)w2 + P (λ0; p0)w3=0,

(28)

. . .
P (λ0; p0)w` + λ1P

′(λ0; p0)w`−1+
1

2
λ2

1P
′′(λ0; p0)w`−2 + λ2P

′(λ0; p0)w1 + . . . +

λ`−1P
′(λ0; p0)w1 + P1(λ0; p0)v0 = 0,

(29)

where P1(λ0; p0) = λk−1
0 Ak−11 + λ0Ak−21 + . . . + λ0A11 + A01.

Equation (25) is satisfied because v0 is an eigenvector correspond-
ing to the eigenvalue λ0. Comparing equation (26) with (3) for i = 1
we observe that w1 = λ1v1 + βv0 is a solution, comparing equation
(27) with (3) for i = 2 w2 = λ2

1v2 + λ2v1 is a solution, following
in this sense w3 = λ3

1v3 + λ1λ2v2 + λ3v1 etc.
Theorem 4: Let λ0 be a `-multiplicity eigenvalue of the poly-

nomial matrix P (λ; p0), with a single eigenvector up to a non-
zero scaling factor, and let v0, . . . , v`−1 be a Jordan chain and
u0, . . . , u`−1 a left Jordan chain. We consider a perturbation of
the parameter vector along the curve p(ε) starting at p0. Suppose
ut

0P1(λ0; p0)v0 6= 0, then, the eigenvalue λ0 bifurcates into ` simple
eigenvalues given by the relation

λ = λ0 + ε1/`λ1 + o(ε),

with

λ1 = `

√√√√ −ut
0P1(λ0; p0)v0

1

`!
ut

0P
`(λ0; p0)v0 + . . . + ut

0P
′(λ0; p0)v`−1

.

Remark 3: Condition ut
0P1(λ0; p0)v0 6= 0 holds for almost all

perturbations.
Proof: To find the value of λ1 using w1 = λ1v1 + βv0 in

equation (20) and premultiply it by ut
0 and taking into account remark

2 and normalization condition ut
0P

′(λ0; p0)vi = 0, we obtain

λ`
1(

1

`!
ut

0P
`(λ0; p0)v0 +

1

(`− 1)!
ut

0P
`−1(λ0; p0)v1+

. . . + ut
0P

′(λ0; p0)v`−1) + ut
0P1(λ0; p0)v0 = 0.

Now, corollary 1 ensures the result.

V. PERTURBATION ANALYSIS OF SIMPLE EIGENVALUES OF
STANDARD SYSTEMS

We consider systems in the form ẋ = Ax+Bu with A ∈ Mn(C)
and B ∈ Mn×m(C), we will write the systems as a pair of matrices
(A, B).

Remember that λ0 ∈ C is an eigenvalue of the system if and only
if there exists a non-zero vector v0 such that

Atv0 = λ0v0, Btv0 = 0,

and v0 is called eigenvector of the system for this eigenvalue.
The eigenvalues of the system (A, B) correspond to the eigenval-

ues of the associate 1-degree singular polynomial matrix λ
(
(I 0

)
+(

A B
)

and the eigenvectors correspond to the left eigenvectors of
the pencil.

Remark 4: The vector v0 is an eigenvector of At corresponding
to eigenvalue λ0, So, λ0 is an eigenvalue of the matrix A, and the
corresponding eigenvector u0 is a left eigenvector of the matrix At.

Definition 1: An eigenvalue λ0 of a system (A, B) is called
simple if it is simple as eigenvalue of A.
Observe that an eigenvalue of A is not necessarily an eigenvector of
(A, B).

Proposition 5 ([13]): Let λ0 be a simple eigenvalue of (A, B).
Then we can choose u0 such that ut

0v0 6= 0.
Sometimes an eigenvalue of (A, B) is not simple but there may

be a feedback such that the resulting closed-loop system has a simple
eigenvalue.

Let λ0 be a multiple eigenvalue of At which is a simple eigenvalue
of At + KtBt for some feedback K.

Proposition 6: Let λ0 be an eigenvalue and v0 a corresponding
eigenvector of (A, B). Then λ0 is an eigenvalue and v0 the corre-
sponding eigenvector of (A + BK, B) for all K.

Proof: If Atv0 = λ0v0 and Btv0 = 0 then KtBtv0 = 0 and
(At + KtBt)v0 = λ0v0.

Reciprocally, if (At + KtBt)v0 = λ0v0 and Btv0 = 0, then
Atv0 = Atv0 +KtBtv0−KtBtv0 = (At +KtBt)v0−KtBtv0 =
λ0v0.

Corollary 2: Let K such that µ0 is an eigenvalue of At + KtBt

and w0 a corresponding eigenvector. If µ0 is not an eigenvalue of
(A, B), then Btw0 6= 0.

Let (A, B) be a linear system and we assume that the matrices
A, B smoothly depend on the vector of a real parameters p =
(p1, . . . , pr). The function (A(p), B(p)) is called a multi-parameter
family of linear systems. Eigenvalues of linear system function are
continuous functions λ(p) of the vector of parameters. In this section
we are going to study the behavior of a simple eigenvalue of the
family of linear systems (A(p), B(p)).

Let us consider a point p0 in the parameter space and assume that
λ(p0) = λ0 is a simple eigenvalue of (A(p0), B(p0)) = (A0, B0),
and v(p0) = v0 an eigenvector, i.e.

At
0v0 = λ0v0, Bt

0v0 = 0.

Equivalently

(At
0 + KtBt)v0 = λ0v0, Bt

0v0 = 0, ∀K.

Now, we are going to review the behavior of a simple eigenvalue
λ(p) of the family of standard linear systems.

The eigenvector v(p) corresponding to the simple eigenvalue λ(p)
determines a one-dimensional null-subspace of the matrix operator(

At

Bt

)
smoothly dependent on p. Hence, the eigenvector v(p) can be

chosen as a smooth function of the parameters. We will try to obtain
an approximation by means their derivatives.

We write the eigenvalue problem as

(At(p) + Kt(p)Bt(p))v(p) = λ(p)v(p)
Bt(p)v(p) = 0.

}
(30)
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equivalently
At(p)v(p) = λ(p)v(p)

Bt(p)v(p) = 0.

}
(31)

Taking the derivatives with respect to pi

∂At(p)

∂pi
v(p) + At(p)

∂v(p)

∂pi
=

∂λ

∂pi
v(p) + λ(p)

∂v(p)

∂pi

∂Bt(p)

∂pi
v(p) + Bt(p)

∂v(p)

∂pi
= 0





At the point p0 we have.
(
∂At(p)

∂pi
− ∂λ

∂pi
In

)

|p0

v0 =(λ0In −At(p0))
∂v(p)

∂pi |p0

∂Bt(p)

∂pi |p0

v0 + Bt(p0)
∂v(p)

∂pi |p0

= 0





(32)

This is a linear algebraic system of equations for the unknowns
∂λ

∂pi
and

∂v(p)

∂pi
where the matrix λ0In − At(p0) is singular with

rank equal n− 1 because of λ0 is a simple eigenvalue.
Lemma 3 ([13]): The matrix (λ0In−At(p0)−u0u

t
0 is invertible.

Proposition 7: With the same conditions. The system (32) has a
solution if and only if

ut
0

(
∂λ

∂pi |p0

In − ∂At(p)

∂pi |p0

)
v0 = 0

∂Bt(p)

∂pi |p0

v0 + Bt(p0)
∂v(p)

∂pi |p0

= 0





(33)

where u0 is a left eigenvector for the simple eigenvalue λ0 of the
matrix At.

Proof: From first equation of (33) we obtain a solution for
∂λ

∂pi |(λ0;p0)

:

∂λ

∂pi
(ut

0v0) = ut
0
∂At(p)

∂pi
v0,

∂λ

∂pi
=

ut
0
∂At(p)

∂p
v0

ut
0v0

. (34)

We can choice u0 in such away that ut
0v0 = 1

Replacing this solution in first equation of (32) we obtain

∂v(p)

∂pi
= (λ0In −At(p0)− u0u

t
0)
−1

(
∂At(p)

∂pi |pi

− ∂λ

∂pi
In

)
v0.

Now we need to see if this expression verifies the second equation
of (32).
Taking the partial derivative ∂2/∂pi∂pj of both sides of eigenvalue
problem (30) we have:

∂2At(p)

∂pi∂pj
v(p) +

∂At(p)

∂pi

∂v(p)

∂v(p)
∂pj+

∂At(p)

∂pj

∂v(p)

∂v(p)
∂pi + At(p)

∂2v(p)

∂pi∂pj
=

∂2λ(p)

∂pi∂pj
v(p) +

∂λ(p)

∂pi

∂v(p)

∂pj
+

∂λ(p)

∂pj

∂v(p)

∂pi
+ λ(p)

∂2v(p)

∂pi∂pj
,

∂2Bt

∂pi∂Pj
v(p) +

∂Bt(p)

∂pi

∂v(p)

∂pj
+

∂Bt(p)

∂pj

∂v(p)

∂pi
+ Bt ∂2v(p)

∂pi∂pj
= 0





At p0 and premultiplying the equation by ut
0 we can deduce an

expression for derivatives
∂2λ(p)

∂pi∂pj |p0

∂2λ(p)

∂pi∂pj |p0

ut
0v0 = ut

0
∂2At(p)

∂pi∂pj |p0

v0+

u0
∂At(p)

∂pj |p0

∂v(p)

∂pi |p0

+ u0
∂At(p)

∂pi |p0

∂v(p)

∂pj |p0

−ut
0
∂λ(p)

∂pj |p0

∂v(p)

∂pi |p0

− ut
0
∂λ(p)

∂pi |p0

∂v(p)

∂pj |p0

Knowing
∂2λ

∂pi∂pj |p0

we can deduce the values of
∂2v(p)

∂pi∂pj |p0

calling S = (At(p)− λ(p)I − u0u
t
0)
−1

∂2v(p)

∂pi∂pj |p0

=

S

(
∂2λ(p)

∂pi∂pj
v(p) +

∂λ(p)

∂pi

∂v(p)

∂pj
+

∂λ(p)

∂pj

∂v(p)

∂pi

−∂2At(p)

∂pi∂pj
v(p)− ∂At(p)

∂pi

∂v(p)

∂pj
− ∂At(p)

∂pj

∂v(p)

∂pi

)
.

VI. PERTURBATION ANALYSIS OF SIMPLE EIGENVALUES
OF SINGULAR SYSTEMS

Finally, we consider systems in the form Eẋ = Ax + Bu with
E, A ∈ Mn(C) and B ∈ Mn×m(C), we will write the systems as a
triple of matrices (E, A, B).

Let M(λ) = (λE + A, B) be a matrix pencil associated to the
triple (E, A, B), λ0 is an eigenvalue of (E, A, B), if rank M(λ0) <
rank M(λ). (In the case where the matrix pencil λE + A is regular
this is equivalent to det(λ0E + A) = 0.

v0 ∈ Cn is an eigenvector corresponding to the eigenvalue λ0, if
(λ0E

t + At)v0 = 0 and Btv0 = 0.
Proposition 8: Let λ0 be an eigenvalue and v0 a corresponding

eigenvector of (E, A, B). Then λ0 is an eigenvalue and v0 the
corresponding eigenvector of (E + BK1, A + BK2, B) for all K.

Suppose that matrices E, A, B, defining the singular system,
smoothly depend on the vector of a real parameters p = (p1, . . . , pr).
The function (E(p), A(p), B(p)) is called a multi-parameter family
of singular systems.

We write the eigenvalue problem as

(λEt(p) + At(p))v(p) = 0
Bt(p)v(p) = 0

}

equivalently

(λ(Et(p) + K1(p)Bt(p)) + (At(p) + Kt
2(p)Bt(p)))v(p) = 0

Bt(p)v(p) = 0

}

Taking derivatives
(

∂λ

∂pi
Et(p) + λ

∂Et(p)

∂pi
+

∂At(p)

∂pi

)
v(p)+

(λEt(p) + At(p))
∂v(p)

∂pi
= 0

∂Bt(p)

∂pi
v(p) + Bt(p)

∂v(p)

∂pi
= 0





At the point (λ0, p0) is
((

∂λ

∂pi
Et(p) + λ

∂Et(p)

∂pi
+

∂At(p)

∂pi

)
v(p)+

(λEt(p) + At(p))
∂v(p)

∂pi

)

|(λ0,p0)

= 0
(

∂Bt(p)

∂pi
v(p) + Bt(p)

∂v(p)

∂pi

)

|(λ0,p0)

= 0
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Premultiplying by ut
0 the first equality we have

ut
0

(
∂λ

∂pi
Et(p) + λ0

∂Et(p)

∂pi
+

∂At(p)

∂pi

)

|(λ0,p0)

v0 = 0

∂Bt(p)

∂pi |(λ0,p0)

v0 + Bt
0
∂v(p)

∂pi |(λ0,p0)

= 0





∂λ

∂pi |(λ0,p0)

ut
0E

t(p0)v0 =

−λ0u
t
0
∂Et(p)

∂pi |(λ0,p0)

v0 − ut
0
∂At(p)

∂pi |(λ0,p0)

v0 = 0

∂Bt(p)

∂pi |(λ0,p0)

v0 + Bt
0
∂v(p)

∂pi |(λ0,p0)

= 0





Suppose that rank (λ0E(p0) + A(p0)) = n − 1, in this case we
can chose u0 in such away that ut

0v0 6= 0.
Using the normalization condition ut

0v(p) = 1 (it is possible
because the function ut

0v(p) in p = p0 is non zero) we have that

ut
0
∂v(p)

∂pi |(λ0,p0)

= 0.

Lemma 4: There exists a left eigenvector such that ut
0E(p0)v0 6=

0.
Proof: Taking into account that λ0 is a simple eigenvalue

Etv0 + (λEtv1 + Atv1) 6= 0 for all vector v1. Taking v1 = 0
we have that Etv0 6= 0.

If ut
0E

tv0 = 0 we have that Eu0, Au0 ∈ [v0]
⊥, so u0 is

an eigenvector of the linear map (λ0E + A)|[v0]perp for the zero
eigenvalue of, but zero is a simple eigenvalue of λ0E + A.

Lemma 5: The matrix T0 = λ0E
t(p0) + At(p0) + u0u

t
0 is

invertible.
Proof: u0u

t
0 is a symmetric map of rank 1, u0 is an eigenvector

of eigenvalue ‖u0‖2 and [u0]
⊥ is the null-space.

Let w ∈ Ker T0, we can write w = αu0 + w1 with w1 ∈ [u0]
⊥.

Then 0 = T0w and

0 = ut
0T0w = ut

0(λ0E
t(p0) + At(p0) + u0u

t
0)(αu0 + w1) =

ut
0(u0u

t
0)(αu0 + w1) = α(ut

0u0)
2.

Then α = 0 and w = w1 ∈ Ker u0u
t
0, consequently (λ0E

t(p0) +
At(p0))w = 0, and taking into account that λ0 is a simple eigenvalue
we have w = w1 = βv0 ∈ [u0]

⊥. Finally, condition ut
0v0(p0) 6= 0

implies β = 0 and T0 is invertible.

VII. CONCLUSION

In this paper the perturbation of a multiple eigenvalue with a
simple eigenvector of a monic polynomial matrix smoothly depending
on parameters is analyzed, as well as the perturbation of a simple
eigenvalue of a standard and a singular linear system smoothly
depending on parameters.
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