
 

 

  

Abstract—This paper presents results of research on formulating 
and solving the problem of capacitor placement in distribution 

systems within the framework of monocriteria and multicriteia 

models. The application of the multicriteria approach is aimed, first 
of all, at overcoming the difficulties of simultaneous observation of 

contradictory constraints for the upper and lower permissible voltage 

limits at different buses of distribution systems as well as other 
important conditions in operating capacitors. The solution of the 

capacitor placement problem in the monocriteria statement is based 

on applying the generalized algorithms of discrete optimization. The 
solution of the problem in the multicriteria statement is based on 

combining the Bellman-Zadeh approach to decision making in a 

fuzzy environment with the application of the generalized algorithms 
of discrete optimization. The paper results are illustrated by 

computational experiments with a real distribution system. 

 

Keywords—Discrete optimization, Distribution systems, 

Muticriteria decision making, Reactive power compensation. 

I. INTRODUCTION 

APACITORS are widely used in distribution systems for 

reactive power compensation to achieve power and 

energy loss reduction and to improve the system voltage 

profile. Traditionally, the problem solution is directed at the 

determination of the locations, sizes, and types of capacitors to 

minimize the objective function of an economical character, 
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while the constraints on voltage magnitudes at different load 

levels are satisfied. 

The methods for solving the reactive power compensation 

problem are analyzed and classified in [1]. The following 

groups of methods are classified: analytical methods, 

numerical methods, heuristic methods, and artificial 

intelligence based methods (associated with applying genetic 

algorithms, expert systems, simulated annealing, artificial 

neural networks, and fuzzy set theory). All works considered 

in [1] are directed at solving the problem within the 

framework of monocriteria models.  

The majority of more recent works related to reactive power 

compensation in distribution systems (for example, [2]-[6]) is 

also directed at solving the problem within the monocriteria 

framework.  

The present paper is devoted to formulating and solving the 

capacitor placement problem within the framework of 

monocriteria as well multicriteria models. The results of the 

work are based on applying the generalized algorithms of 

discrete optimization (with the use of the Bellman-Zadeh 

approach to decision making in a fuzzy environment in the 

case of the multicriteria statement). The rationality of the 

utilization of the multicriteria approach is associated with the 

following considerations. 

The necessity to simultaneously observe constraints on the 

upper and lower permissible voltage limits at different buses 

of distribution systems creates essential difficulties (it is not 

uncommon that these constraints generate situations when the 

corresponding feasible regions are empty). These difficulties 

can be overcome by minimizing the objective function of an 

economical character as well as the objective function which 

reflects a volume of poor energy (energy consumed with 

voltage magnitudes outside of the permissible limits) 

consumption. The flexibility of including the objective 

function reflecting energy quality is confirmed by the results 

of [7]. These results are based on application of fuzzy logic. 

However, they do not permit one to take directly into account 

the discrete nature of the capacitor placement problem.  

Thus, if the problem is associated with the determination of 

the locations and sizes of fixed capacitors, it can be 

approximated by a bicriteria model. At the same time, if we 

talk about the determination of the locations, sizes, and types 

(fixed or switched) of capacitors, the number of the objective 
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functions is to be more. In particular, one of the most 

important questions in operating switched capacitors is the 

observation of a desirable (permissible) number of their 

commutations per time unit [8]. However, although the paper 

results are of a general character, considering its limited size, 

the problem formulation is related to the determination of 

locations and sizes of capacitors.  

II. PROBLEM STATEMENT 

Considering the discrete nature of the capacitor placement 

problem, the generalized algorithms of discrete optimization 

are used for its solution. These algorithms, firstly, have been 

presented in [9]. The results of their development are 

reflected, for instance, in [10]-[12]. The algorithms are 

associated with the method of normalized functions [13] and 

combine formal and informal procedures. In particular, the 

algorithms are based on applying the ideas of greedy 

heuristics [14], [15] which provide the best heuristic among 

possible heuristics with a priori estimates and offer a basis for 
effective approximated approaches. The algorithms allow one 

to obtain quasi-optimal solutions after a small number of 

steps, overcoming the NP-completeness. They do not require 

analytical specification of objective functions and constraints. 

This ensures the flexibility and the possibility to correctly 

reflect diverse types of initial data using the so-called discrete 

sequences  

 

iisss vsx
iii

1,...,    ,...,,, =τρ  (1) 

 

where ,...,
ii ss τρ  are technical, economical, and other 

characteristics required for forming objective functions, 

constraints, and their increments, which correspond to the sth 
discrete (integer, Boolean) value of the variable ix . 

Considering this, it is rational to formulate the problem of 

capacitor placement as follows. 

If capacitors can be installed on the middle and low voltage 

levels, then information on capacitors can be presented as the 

increasing discrete sequences 

 

pmKQ mmm ,...,1    ,   tg,   , )()()( =δ  (2) 

 

for capacitors of the middle voltage level and  

 

qlKQ lll ,...,1    ,   tg,   , )()()( =δ  (3) 

 

for capacitors of the low voltage level, respectively. 

In (2) and (3), )(mQ  and )(lQ  are standard sizes of the mth 

and lth capacitors for the middle and low voltage levels, 
respectively; )(mK  and )(lK  are their total costs; )(tg mδ  

and )(tg lδ are their specific losses. It is natural that different 

discrete sequences can be applied to different buses. However, 

without loss of generality, we consider the same discrete 

sequences for the middle and low voltage buses to simplify the 

problem statement. 

From the discrete sequences (2) and (3), it is necessary to 

choose ≡∈= MM
im

IipmQ M  ,,...,1 ,
)(

{1,..., Mn } ( MI  is a 

set of the middle voltage buses where capacitors can be 

installed) and ≡∈= LL
il

IiqlQ L  ,,...,1 ,
)(

{1,…, Ln } ( LI  is a 

set of the low voltage buses where capacitors can be installed) 

to minimize the following objective function of the net present 

value (NPV) of the project's lifetime: 
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where Tt ,...,1=  is a current index of load curve steps; pt ∈  

means that a step belongs to power system peak load time; 

opt ∈  means that a step is out of power system peak load 

time; if ←  means that load of bus i flows through branch f; 
Mif ←  means that reactive power of a capacitor Mi  flows 

through branch f; Lif ←  means that reactive power of a 

capacitor Li  flows through branch f; V is a network nominal 
voltage; gfR f ,...,1, =  is a resistance of branch f; Ω= ,...,1ω  

is a current year; r is a discount rate; mop &  and dp  are 

relative expenses associated with capacitor operation and 
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maintenance and depreciation, respectively; ec  is energy cost; 

pc  and opc  are transportation tariffs for power system peak 

load time and out of power system peak load time. 

The minimization of (4) must be executed while the 

constraints on voltage magnitudes at different load levels are 

satisfied. These constraints can be related to the most remote 

consumers and to the nearest consumers of low voltage 

networks. Considering this, the constraints for the inferior 

permissible voltage levels can be presented as 
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where −J  is a set of the most remote consumers of low 

voltage networks with voltage levels −< VV tre
j
,  ( −V  is the 

permissible inferior voltage level); fX  is a reactance of 

branch f ; jWf ∈  means that branch f  belongs to the way 

of supplying a low voltage network Jj ,...,1= .  

The constraints for the nearest consumers of low voltage 

networks can be presented as follows: 
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where tne
jV ,  is a voltage level of the nearest consumer of a low 

voltage network j ; +V  is the superior permissible voltage 

level. It is straightforward to construct the constraints related 

to voltage magnitudes of middle voltage buses similar to (5) 

and (6). 

The constraints (5) can be presented in the following form: 
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At the same time, the constraints (6) can be presented as 
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III. MONOCRITERIA BASED PLACEMENT OF CAPACITORS 

Let us consider the Boolean problem of maximization of  

 

∑
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while satisfying the constraints 
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i
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where 0>ic , ni ,...,1= , 0>jia , mj ,...,1= , ni ,...,1= , 

0>jb , mj ,...,1= . 

The idea of one of the most popular methods, related to the 

class of heuristic methods, may be illustrated by considering 

the problem (9) and (10) for 1=j  (the 0-1 knapsack 

problem). It is possible to assume that ix , ni ,...,1=  are 

arranged as follows: 
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It permits one to try to maximize (9) on the basis of the largest 

i

i

a

c
, taking 11 =x , then 12 =x , and so on until (10) is 

observed. Similar methods are called greedy methods. In spite 

of their "naivety", in many cases they represent the best 

heuristic among other heuristics with a priori estimates. 
However, a range of problems is not restricted by the case of 

1=m . Considering this, the results of [9]-[11] permit one to 

construct algorithms for the general case ( 1>m ) to solve 

problems (linear as well as nonlinear), which can include not 
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only Boolean, but integer and discrete variables as well. 

When analyzing the model (9) and (10) for 1=m , 

maximization is reached by expending only one resource type. 

If 1>m , the optimization process is stopped when a 

remaining amount of only one of resources is not sufficient for 

next incrementing any of ,ix  ni ,...,1= . It is possible to speak 

about "equivalence" of different types of resources from the 

standpoint of termination of the process of maximizing (9). 

Thus, it is expedient to have a single measure for different 

resources. This consideration leads to the idea of 

normalization [13]. For example, the constraints (10) are 

reduced to a single arbitrary resource b  as 
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where θ is the optimization step number. 
Using (12), it is possible to convert the constraints (10) to 

equal conditions. For instance, before the first optimization 

step we have  
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The algorithms of [9]-[11], based on the idea of 

normalization as well as on the use of elements of greedy 

heuristics, permit one to solve two types of problems:  

1) maximization of an objective function interpreted as 

concave while satisfying constraints interpreted as 

convex; 

2) minimization of an objective function interpreted as 

convex while satisfying constraints interpreted as 

concave. 

The modification of the algorithm of analyzing the 

minimization problem is used below to solve the problem of 

determining locations of installation and sizes of fixed 

capacitors. However, it is applied at the second stage of the 

solution process. The first stage is associated with minimizing 

(4) observing only the constraints (8). The second stage is 

associated, if necessary, with the continuation of the 

optimization process (the initial state for the second stage is a 

result obtained at the first stage) to satisfy the constraints (7). 

 

A. Algorithm of the first stage 

1. The increments of the constraints (8) 
)(θ

jig∆ , Jj ,...,1= , )()()( θθθ LM IIIi ∪=∈  are calculated 

as  
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In (14) and (15), )(θMI  and )(θLI  are sets of variables for 

the middle voltage level and the low voltage level, 

respectively, for the θth optimization process step. For the 

first step (θ=1), )1(
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2. Refine the set )(θIi ∈  of variables on which optimization 

is possible at θth step: 
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go to operation 4; otherwise go to operation 11. 

4. The components of the increment vector of the objective 
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5. Refine the set )(θI of variables on which optimization is 

possible at the θth step: 
 

},0|{ )()()( θθθ IiZiI i ∈<∆= . (19) 

 

6. Check for nonemptiness of the set )(θI . If Ø)( ≠θI , then 

go to operation 7; otherwise go to operation 11. 

7. The index θsi = of the most promising variable to be 

incremented is determined from 
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Issue 3, Volume 5, 2011 243

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

8. Recalculate the current values of the quantities: 
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10. Make a check for nonemptiness of the set )(θI . If 

Ø)()()( ≠∪= θθθ LM III , then go to operation 1 taking 

θ=θ+1; otherwise go to operation 11. 
11. The calculations are completed because the solution is 

obtained. 

 

When applying the algorithm of the second stage, it is 

assumed that the constraints (7) are already normalized and 

have the following form: 
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The algorithm of solving the problem of minimization of 

(4) while satisfying the constraints (7) and (8) can be written 

as follows: 
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5. The components of the increment vector of the objective 

function ( )}{ θ
iZ∆ , )()()( θθθ LM IIIi ∪=∈  are calculated 

with the use of (17) and (18). 
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8. Recalculate the current values of the quantities )(

)(

θ
Mim

Q , 

)(θMM Ii ∈  and )(

)(

θ
Lil

Q , )(θLL Ii ∈  using (21) and (22), 

respectively, and  
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9. Refine the set )(sJ − : 

 

} ,0{| )()1()( θθ −−− ∈>= JjbJ t
j

s . (34) 

 

10. Check for nonemptiness of the set )(θ−J . If Ø)( ≠− sJ , 

then go to operation 11; otherwise go to operation 14. 

11. Refine the sets )(θMI  and )(θLI  in accordance with (24) 

and (25), respectively. 

12. Check for nonemptiness of the set )(θI . If 

Ø)()()( ≠∪= θθθ LM III , then go to operation 1, taking 

Issue 3, Volume 5, 2011 244

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

θ=θ+1; otherwise go to operation 13. 
13. The calculations are completed because the problem has 

no solution. 

14. The calculations are completed because the problem 

solution is obtained. 

IV. MULTICRITERIA BASED PLACEMENT OF CAPACITORS 

As it was indicated above, the simultaneous observation of 

(5) and (6) meets difficulties. In particular, any violation of 

the constraint (6) for any bus stops the optimization process. 

Considering this, it is rational to change the monocriteria 

problem (2)-(6) by the problem (2)-(4) and the following 

additional objective function 
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  (35) 

 

reflecting a volume of poor energy consumption. 

In (35), +W  is an overall volume of energy consumption 

with the voltage levels superior +V ; −W  is an overall volume 

of energy consumption with the voltage levels inferior −V ; 
t

jW +  is a volume of poor energy consumption with the voltage 

levels superior +V  by the jth low voltage network for tth load 

curve step; t
jW −  is a volume of poor energy consumption with 

the voltage levels inferior −V  by the jth low voltage network 
for tth load curve step. 
If parameters of a low voltage network as well as its loads 

are available, the evaluation of t
jW +  or t

jW −  creates no 

difficulties. If they are not available, it is possible to apply so-

called low voltage network models.  

A. Evaluation of Poor Energy Consumption 

Suppose that active t
jaI , and reactive 

t
jrI ,  loads of the jth 

low voltage network have an uniform distribution along the 

length L  of its model. This model can be defined as a 
function of a maximum voltage drop max,jV∆  corresponding 

to a maximal load max,jI . The estimation of max,jV∆  is 

associated with difficulties. Taking this into account, it is 

possible to utilize a value defined by project norms of the 

utility. 

A voltage drop t
jV∆  can be defined as 
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A current flow through an elementary section of the model 

corresponding to a distance X  from the nearest consumer can 

be defined by 
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The corresponding voltage drop then can be calculated as  
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where 0,jZ  is a specific impedance. 

A voltage drop from the nearest consumer to the point t
jX  

includes two components. The first one is associated with an 

uniform load distribution along t
jX . The second one is 

associated with a concentrated load, which is equal to a total 

load obtained along of t
j

t
j XL - . Thus, considering (37) and 

(38), it is possible to write the following expression: 
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which can be reduced to 
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The ratio 
t
j

t
jt

j
L

X
=Ψ′  reflects part of consumers of a low 

voltage network with a voltage drop less than or equal to 

t
jX

V∆ . Considering this, the expression (40) can be presented 

as 
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The solution of (41) is 

 

t
j

X

V

V t
j

∆

∆
−−=Ψ′ 11 .  (42) 

 

At the same time, part of consumers placed between the point 
t
jX  and the end of the line is 

 

t
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Considering tre
jV , = tne

jV , – t
jV∆  and applying (42) and (43), it 

is possible to estimate the energy t
jW ,+  as 
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and the energy t
jW −  as 
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B. The Bellman-Zadeh Approach to Decision Making in a 
Fuzzy Environment as Applied to Multicriteria Based 
Placement of Capacitors 

When analyzing multicriteria models, a vector of objective 

functions )}(,...,)({)( 1 XFXFXF q=  is considered, and the 

problem consists in simultaneous optimizing all objective 

functions, i.e., 

 

qpXF
LX

p ,...,1    ,extr→)(
∈

=  (46) 

 

where L  is a feasible region in nR . 

The first step in analyzing (46) is associated with 

determining a set of Pareto solutions L⊆Ω  [16]. This step is 

useful. However, it does not permit one to obtain unique 

solutions. It is necessary to choose a particular Pareto solution 

on the basis of information provided by a decision maker 

(DM).  

Three approaches to using this information are classified in 

[17]: a priori, a posteriori, and adaptive. The most preferable 
approach is the adaptive one. In this approach, the procedure 

of successive improving the solution quality is performed as a 

transition from LX ⊂Ω∈0α  to LX ⊂Ω∈+
0
1α , considering 

the information αI  provided by a DM.  

When analyzing multicriteria problems, it is necessary to 

solve questions related to normalizing criteria, selecting 

principles of optimality, and considering priorities of criteria. 

Their solution and, therefore, the development of multicriteria 

methods are carried out in several directions [18]. Without 

discussion of them, it is necessary to point out that an 

important question in multicriteria decision making is the 

solution quality. It is considered high if levels of satisfying 

criteria are equal or close to each other (harmonious 

solutions), when all objective functions have the same 

importance [19], [21]. It is not difficult to extend this concept 

for the case when the importance levels of objective functions 

are different. From this point of view, it should be recorded 

the validity and advisability of the direction related to the 

principle of guaranteed result, which can be realized [17], [19] 

on the basis of applying the Bellman-Zadeh approach to 

decision making in a fuzzy environment [20]. 

The Bellman-Zadeh approach permits one to realize a 

computationally effective and rigorous (from the standpoint of 

obtaining solutions LX ⊆Ω∈0 ) method of analyzing 

multicriteria models. Its use also allows one to preserve a 

natural measure of uncertainty in decision making and to take 

into account indices, criteria, and constraints of qualitative 

character.  

When using the approach, each objective function )(XFp  

is replaced by a fuzzy objective function or a fuzzy set: 

 

qpLXXXA
pAp ,...,1    ,∈    )},( ,{ == µ  (47) 

 

where )(X
pAµ  is a membership function of pA  [17]. 

A fuzzy solution D  with the given fuzzy sets (47) is turned 

out as a result of the intersection ∩
q

p
pAD

1=

= with a 

membership function 
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    ),(min)(
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The use of the intersection (48) permits one to obtain the 

solution proving the maximum degree 
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of belonging to the fuzzy solution D . Therefore, the problem 

(18) is reduced to 
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To obtain the solution (50), it is necessary to build the 

membership functions ),(X
pAµ  qp ,...,1=  reflecting a 

degree of achieving "own" optima by ),(XFp  LX ∈ , 

qp ,...,1= . This condition is satisfied by the use of 

membership functions 
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for maximized objective functions or by the use of 

membership functions 
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for minimized objective functions. In (51) and (52), 

qpp ,...,1 , =λ  are corresponding importance factors. 

The construction of (51) and (52) demands to solve the 

following problems: 

 

LX
p XF

∈
→min)( , (53) 

LX
p XF

∈
→ max)(  (54) 

 

providing the solutions )( min arg0 XFX p
LX

p
∈

=  and 

)( max arg00 XFX p
LX

p
∈

= . In this manner, the solution of (18) 

demands analysis of 12 +q  monocriteria problems (53), (54), 

and (49), respectively. 

Since the solution 0X  is to belong to L⊆Ω , it is 

necessary to build 

 



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

=
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)( ),(min min)(

1
XXX

pA
qp

D πµµµ  (55) 

 

where 1)(µ =Xπ  if Ω∈X  or 0)(µ =Xπ  if Ω∉X . 

The procedures for solving the problem (21), discussed in 

[17], provide a line in obtaining LX ⊆Ω∈0  in accordance 

with (27). Thus, it can be said about equivalence of )(XDµ  

and )(XDµ . It permits one to give up the necessity of 

implementing a cumbersome procedure for building the set 

L⊆Ω . 

The existence of s additional conditions (indices, criteria, 
and/or constraints) of qualitative character, defined by 

linguistic variables [17], reduces (50) to 

 

)( minmaxarg
1

0 XX
pA

sqpLX
µ

+≤≤∈
=  (56) 

 

where )(X
pAµ , LX ∈ , sqp ,...,1+=  are membership 

functions of fuzzy values of linguistic variables which reflect 

these additional conditions. 

Taking the above into account, the solution of the 

multicriteria based capacitor placement problem is reduced to 

modifying the algorithms of discrete optimization discussed 

above to solve the maxmin problem (49). 

V. ILLUSTRATIVE EXAMPLE 

The presented results have served for elaborating a custom-

developed Electric Power Distribution Analysis (EPODIAN) 

software. This software is implemented in Java/C++ to 

provide flexible power flow model to optimization algorithms 

while supplying rich visualization and analysis capabilities to 

the user. A modified backward-forward sweep algorithm [22] 

is implemented along with the techniques of parallel 

processing for obtaining high performance results on large 

scale models (for instance, networks with over 10000 busses), 

allowing application of the paper results to the real-world 

networks on conventional desktop computers. 

Let us consider the results obtained from EPODIAN for the 

problem of placing fixed capacitors in a distribution network 

13.8/0.22 kV of one of substations 138/13.8 kV of the Minas 

Gerais State Energy Company (CEMIG). This network 

includes 3 feeders feeding 19 primary consumers and 2092 

distribution transformers with 19756 secondary consumers. 

The total length of networks is 1036 km.  

The following solution alternatives are presented in Table 

1: I – initial state; A – monocriteria solution which minimizes 
the objective function (4) observing the constraints for the 
superior voltage levels (6); B – monocriteria solution which 
minimizes the objective function (4); C – monocriteria 
solution which minimizes the objective function (35); M1 – 

multicriteria solution which provides a compromise between 

solutions A and B; M2 – multicriteria solution which provides 

a compromise between solutions B and C. 
 

Table 1. Solution results 

Alternative Objective 

function Z , R$ 

Objective 

function W, MWh 

I 2,048,495 63.40 

A 1,928,496 60.83 

B 1,844,457 66.44 

C 5,873,414 29.43 

M1 1,849,665 60.59 

M2 1,973,829 50.14 
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