
 

 

  

Abstract— This article states and solves the multi-criteria 

maximum flow problem in discrete dynamic networks for the case of 

two objective functions. This represents a generalisation of the 

maximum flow of minimum cost problem for the case of minimizing 

the travelling cost (minimum cost flow) and travelling time (quickest 

flow). The approach is actually based on generating efficient extreme 

points in the objective space by iteratively solving a series of 

maximum flow problems with different single objective functions. 

Each time, the dynamic flow is augmented along a cheapest 

(minimum cost) path from the source node to the sink node in the 

time-space network avoiding the explicit time expansion of the 

network.  

 

Keywords— Bi-criteria flow, Discrete dynamic network, 

Dynamic maximum flow, Successive shortest path. 

I. INTRODUCTION 

ETWORK flow problems form a large area of 

optimization and are central problems in operations 

research, computer science, applied mathematics, and many 

fields of engineering. Static network flow problems have been 

in the focus of interest for many years and they represent a 

very successful area of combinatorial optimization. Classical 

(static) network flow models have been well known as 

valuable tools for many applications [1] and therefore efficient 

algorithms have been developed. However, they fail to capture 

the dynamic property of many real-life problems, such as 

traffic planning, production and distribution systems, 

communication systems, and evacuation planning. Dynamic 

flows are widely used to model different network-structured, 

decision-making problems over time, but because of their 

complexity, dynamic flow models have not been investigated 

as well as classical flow models. The time is an essential 

component, either because the flows take time to pass from 

one location to another, to rest at certain nodes [6] or because 

the structure of the network changes over time. Not 

surprisingly, dynamic flow problems are significantly more 

difficult to tackle, yet much closer to reality than the static 

ones. Dynamic networks were introduced by Ford and 

Fulkerson [12]. They introduced flows which take time, called 

travel time, to pass an arc of the network, called dynamic flows 
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or flows over time. For the maximum flow problem in discrete 

time they developed a technique, based on reducing the 

dynamic problem to the classical static problem on a time-

expanded network, which is still widely used.  

On the other hand, in many combinatorial optimization 

problems, the selection of the optimum solution takes into 

account more than one criterion. For example, in 

transportation problems or in network flows problems, the 

criteria that can be considered are the minimization of the cost 

for selected routes, the minimization of arrival time at the 

destinations, the minimization of the deterioration of goods, 

the minimization of the load capacity that would not be used in 

the selected vehicles, the maximization of safety, reliability, 

etc. Often, these criteria are in conflict and for this reason, a 

multi-objective network flow formulation of the problem is 

necessary, as for example in [22]. In this paper, the case of 

discrete dynamic maximum flow of bi-criteria cost problem is 

considered where the two criteria consists in minimizing the 

travelling time and the travelling cost for a maximum possible 

flow which can be sent from a source to a sink within a time 

horizon T. The proposed method consists in iteratively 

generating efficient extreme points in the objective space by 

solving a series of single objective maximum flow problems 

with different objective functions. On each of the iterations, 

the flow is augmented along a cheapest path from the source 

node to the sink node in the time-space network, avoiding the 

explicit time expansion of the network. Another similar but yet 

different approach is that of solving a maximum flow problem 

with a parametric objective function. The case of the parametric 

flows is more detailed described in [8], [9] and [23]. 

Further on, in Section II some basic dynamic network flow 

terminology is presented together with some results used in the 

rest of the paper. More specialized terminology is developed in 

later sections. Section III deals with the successive shortest path 

algorithm for solving the maximum flow of minimum cost 

problem in discrete dynamic networks while Section IV presents 

the formulation and a possible solution for the discrete dynamic 

maximum flow of bi-criteria minimum cost problem. In Section 

V is given an example that helps understanding the steps 

performed by the former algorithm in a discrete dynamic 

network. In the presentation to follow, some familiarity with 

flow algorithms is assumed and many details are omitted, since 

they are straightforward modifications of known results. The 

notions and results presented in Section II and Section III are 

taken from [1], [3], [5], [7], [19] and [27].  
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II. TERMINOLOGY AND NOTATIONS 

Many dynamic network flow problems are considered as 

extensions of static network flow problems. These include 

maximum dynamic flow and minimum cost dynamic flow 

problems. The maximum dynamic flow problem seeks a 

dynamic flow which sends as many as possible a commodity 

from a single source to a single sink of the network within the 

time horizon T. The minimum cost dynamic flow problem 

seeks a dynamic flow that minimizes the total shipment cost of 

a commodity in order to satisfy demands at certain nodes 

within T. 

 

A. Dynamic network flows 

A discrete dynamic network ),,( TANG =  is a directed 

graph where },,{ …… iN =  is a set of nodes i  with nN =|| , 

},,{ …… aA =  is a set of arcs a  with mA =|| , and T  is a 

finite time horizon discretized into the set },,,{ T…10 . An arc a  

from node i  to node j  is usually also denoted by ),( ji . The 

following functions are associated with each arc Ajia ∈= ),( : 

the time-dependent capacity (upper bound) function 

);,( θjiu , 
+ℜ→× },,,{: TAu …10  which represents the 

maximum amount of flow that can enter the arc ),( ji  at time 

θ  , the time-dependent transit time function );,( θjih , 

ℵ→× },,,{: TAh …10 , and the time-dependent cost function 

);,( θjic , 
+ℜ→× },,,{: TAc …10  which represents the cost for 

sending one unit of flow through the arc ),( ji  at time θ . The 

time horizon T  is the time until which the flow can travel in 

the network. The demand-supply function );( θiv , 

ℜ→× },,,{: TNv …10  represents the demand of node 

Ni∈ at the time-moment },,,{ T…10∈θ , if 0<);( θiv  or 

the supply of node i  at the time-moment },,,{ T…10∈θ , if 

0>);( θiv . The network has two special nodes: a source node 

s  with 0≥);( θsv  for },,,{ T…10∈θ and there exists at 

least one moment of time },,,{ T…10
0

∈θ  such that 

0);( 0 >θsv ; and a sink node t  with 0≤);( θtv  for 

},,,{ T…10∈θ and there exists at least one moment of time 

},,1,0{1 T…∈θ  such that 0
1

<);( θtv . The condition 

required for the flow to exist it that 0
10

=∑ ∑
∈ ∈},,,{

);(
T Ni

iv
…θ

θ  

A feasible dynamic flow );,( θjif  (feasible flow over time) 

on ),,,,,( TchuANG =  with time horizon T  is a function 

+ℜ→× },,,{: TAf …10  that satisfies the following flow 

conservation constraints },,1,0{ T…∈∀θ : 

),;());,(;,();,(

);,(
),(|),(|

θθθθ

θθ

ivijhijfjif

ijh
AijjAjij

=−− ∑∑
≥−

∈∈
0

;Ni∈∀   (1.a) 

where );,( θjif  determines the rate of flow (per time unit) 

entering arc ),( ji  at time θ . 

Capacity constraints (1.b) mean that in a feasible dynamic 

flow, at most );,( θjiu  units of flow can enter the arc ),( ji  at 

the time-moment θ . 

;),(},,,,{),;,();,( AjiTjiujif ∈∀∈∀≤≤ …100 θθθ   (1.b) 

TjihTAjijif ,);,(,),(,);,( 10 +−∈∈∀= θθθ . (1.c) 

It is easy to observe that the flow does not enter arc ),( ji  at 

time θ  if it has to leave the arc after time T; this is ensured by 

condition (1.c). The total cost of the dynamic flow );,( θjif  

in a dynamic network is defined as: 

∑ ∑
∈ ∈

⋅=
},,,{ ),(

);,();,()(
T Aji

jicjiffC
…10θ

θθ .          (2) 

 

B. Time-space network 

In the discrete time model, a useful tool for studying the 

minimum cost flow over time problem is the time-space 

network. The time-space network is a static network 

constructed by expanding the original network in the time 

dimension by considering a separate copy of every node 

Ni∈  at every time step in the time horizon T , 

},,,{ T…10∈θ .  

A node-time pair (NTP) ),( θi  refers to a particular node  

Ni∈  at a particular time step },,1,0{ T…∈θ , i.e., 

},,1,0{),( TNi …×∈θ . 

The NTP ),(
1

θi  is linked to the NTP ),(
2

θj  if  either 

(i) Aji ∈),(  and  );,(
112

θθθ jih+=  , or 

(ii) Aij ∈),(  and  );,(
221

θθθ ijh+= . 

Definition 1: The time-space network 
TG  of the original 

dynamic network G  is defined as follows: 

}},,,{,|),{(: TNiiNT
…10∈∈= θθ ;       (3.a) 

)},(,),(|))),(,(),,(({: jihTAjijihjiaAT −≤≤∈+== θθθθ 0 ; (3.b) 

TT Aaforauau ∈= θθ )(:)( ;          (3.c) 

TT Aaforacac ∈= θθ )(:)( .          (3.d) 

For every arc Aji ∈),(  with traversal time ),( jih , capacity 

),( jiu  and cost ),( jic , the time-space network 
TG  contains 
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arcs ))),(,(),,(( jihji +θθ  for ),(,,, jihT−= …10θ  with 

capacities ),( jiu  and costs ),( jic .  

For the flow );( θaf  in the dynamic network G , the 

function )( θaf T  that represents the corresponding flow in the 

time-space network 
TG  is defined as: 

TT Aaafaf ∈∀= θθ θ ),;()( .            (4) 

A dynamic path is defined as a sequence of distinct, 

consecutively linked NTPs: 

),(),(,),,(),,(),(:),(
221121 2211

θθθθθ iiiiiiiP
qq kkkkkk == … .   (5) 

 

C. Time-dependent residual network 

The time-dependent residual network corresponding to a 

feasible flow f can be viewed as the static residual network of 

the time-space network corresponding to the dynamic network. 

For );,( θjif  being the flow entering arc ),( ji  at time θ , 

an additional flow );,();,( θθ jifjiu −  departing from node i  

at time θ  to node j  along the arc ),( ji  can be sent. Also, 

);,( θjif  units of flow can be sent from node j  departing at 

time );,( θθ jih+  and consequently arriving at node i  at 

time θ  over the arc ),( ji , which amounts to cancelling the 

existing flow on the arc. Here, an arc with negative travel time 

(i.e. departing at );,( θθ jih+  and arriving at θ ) is 

considered. Whereas sending a unit of flow from i  at time θ  

to j  along ),( ji  increases the flow cost by );,( θjic  units, 

sending a unit of flow in reverse direction from j  departing at 

time );,( θθ jih+  to i  on the same arc decreases the flow 

cost by );,( θjic  units. Considering the above mentioned 

ideas, the residual network with respect to a current dynamic 

flow f  is defined as follows. 

Definition 2: The residual dynamic network with respect to 

a given feasible dynamic flow f  is defined as 

)),(,(:)( TfANfG =  with )()(:)( fAfAfA −+= ∪ , where 

)};,(,),(|),{(:)( θθ jihTAjijifA −≤∃∈=+
  

with 0>− );,();,( θθ jifjiu           (6.a) 

and 

)};,(,),(|),{(:)( θθ ijhTAijjifA −≤∃∈=−
  

with 0>);,( θijf .               (6.b) 

While the direct arcs )(),( fAji +∈  have the same transit 

times );,( θjih  and costs );,( θjic  as in the original dynamic 

network G , the artificial reverse arcs )(),( fAji −∈  in the 

residual dynamic network )( fG  are provided with the 

following attributes: 

),;,(:));,(;,( θθθ ijhijhjih −=+             (7) 

),;,(:));,(;,( θθθ ijcijhjic −=+             (8) 

for 00 >≤+≤∈ );,(,);,(,),( θθθ ijfTijhAij  

The residual capacities of the arcs ),( ji  in the residual 

dynamic network )( fG  are defined as follows: 

),;,();,(:);,( θθθ jifjiujir −=  

TjihAji ≤+≤∈ );,(,),( θθ0          (9.a) 

),;,(:));,(;,( θθθ ijfijhjir =+  

TijhAij ≤+≤∈ );,(,),( θθ0          (9.b) 

Definition 3: A dynamic path ),,,( iiiisP q == …
21

 from 

node s  to node i  is said to be a dynamic augmenting path if  

0
1

>+ );,( kkk iir θ  for )(),( fAii kk ∈+1
 and 11 −= qk ,,… . 

Definition 4:  Given a dynamic flow ,f  the residual 

capacity of a dynamic augmenting path ),,,( iiiisP q == …
21  

is defined by:   

);,(min:)( kkk
qk

iirPr θ
1

11
+−≤≤

= , for )(),( 1 fAii kk ∈+  and 11 −= qk ,,… . (10) 

Definition 5:  The cost of a dynamic augmenting path 

),,,( iiiisP q == …
21

 is defined by: 

∑
∈

+

+

=
)(),(

1

1

);,(:)(
fAii

kkk

kk

iicPC θ   for  1,,1 −= qk … . 

A dynamic augmenting path ),,,( iiiisP q == …
21

 is 

referred to as a dynamic shortest augmenting path (DSAP) 

from node 
1
is =  to node iiq =  if )'()( PCPC ≤ for all 

dynamic augmenting paths 'P  from node s  to node i . 

A dynamic path ),(,),,(),,(:),( qqq iiiiiP θθθ …
22111

 is 

called a dynamic cycle if 
1
iiq =  and 

1
θθ =q . A negative cycle 

is defined as a dynamic cycle whose total cost is negative and 

whose capacity is greater than zero.  

 

D. The Maximum dynamic flow–minimum dynamic cut theorem 

A dynamic cut is considered as a dynamic extension of the 

static cut. 

Definition 6:  A node j  is said to be reachable from another 

node i , if there exists a dynamic augmenting path from i  to j .  

Considering two set-valued functions )(θS  and 

)()( θθ SNS −=  for all },,,{ T…10∈θ , the collection of all 
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)(θS  is referred to as a generalized cut of separating node s  

and t  and is defined as follows: 

Definition 7:  The generalized ts −  dynamic cut S  is a set 

of valued function of time defined as: 

},,,),(),(,)(|)({: TStSsNSSS …10=∉∈⊂= θθθθθ . 

Definition 8:  The capacity of the generalized ts −  

dynamic cut S  is defined as: 

∑ ∑
= ∈

+∈

=
T

Ki

jihKj

jiuSCap
0θ θ

θθ

θ
),(

));,((

);,(:)( . 

The minimum ts −  dynamic cut is the ts −  dynamic cut 

having the minimum value of the capacity among all ts −  

dynamic cuts. 

Theorem 1: Let v  be the value of any feasible dynamic 

flow f  in ),,( TANG=  and )(SCap  be the value of any 

generalized cut S . Then, )(SCapv ≤ . (see. [3]) 

Theorem 2 (Maximum dynamic flow - minimum dynamic 

cut): The value of the maximum dynamic flow from a source 

node s  to the sink node t  equals the value of minimum ts −  

dynamic cut.  (see. [27]). 

 

 

III. SUCCESSIVE SHORTEST PATH ALGORITHM FOR DYNAMIC 

MAXIMUM FLOW OF MINIMUM COST 

The dynamic minimum cost flow problem is to determine 

how a given amount of flow that minimizes the total shipment 

cost should be sent from a source node to a sink node within 

the time horizon T, subject to the capacity limits on the arcs of 

the network.  

The successive shortest path approach adapted to the 

dynamic residual network is based on solving a series of 

successive shortest path problems, where each is solved in a 

residual time-space network. An amount of flow equal to the 

capacity of each minimum cost path obtained is augmented, 

until the entire flow has been sent from the source to the sink. 

The main difference among the algorithms consists in solving 

the shortest path problem in the dynamic residual network. 

 

A. Dynamic shortest paths 

Solution approaches for classical shortest path problems are 

divided into two classes: label-setting and label-correcting 

[25]. Label setting algorithms can be applied only on acyclic 

networks whereas label-correcting algorithms are more general 

and applicable for all classes of problems. The residual time-

space network is composed of two sub-networks: a forward 

network consisting of the set of forward arcs, denoted by 

)( fA+
, having positive travel times and travel costs; and a 

reverse network consisting of the set of reverse arcs, denoted 

by )( fA−
 and having negative travel times and travel costs. 

Each of the two sub-networks, alone, is acyclic. 

 

 

 
There are two approaches in exploring the residual time-

space network to compute minimum cost paths. The first 

approach is to explore the two sub-networks successively, 

making use of the acyclicity property. In this approach, the 

forward sub-network is explored first, and minimum cost 

labels at nodes are computed. Next the reverse network is 

explored to update the minimum cost labels, using as initial 

values the labels computed from the forward sub-network. The 

forward and reverse sub-networks are explored successively 

 
 

Table 1. The Dynamic Shortest Path (DSP) procedure 
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until the minimum cost labels at all nodes, as obtained from 

both sub-networks, are equal.  

The second approach to compute minimum cost paths is to 

explore the forward and reverse arcs simultaneously. For every 

augmentation, a set L  of candidate nodes is maintained, which 

initially includes only the source node. The set L  holds all 

node-time pairs which have been reached so far by the 

algorithm and which are to be visited. The minimum cost 

labels ),( θπ i  of all node-time pairs are initialised to infinity 

with the exception of the minimum cost labels of the source 

node which are initialised to zero,  0=:),( θπ s ,  },,,{ T…10∈∀θ . 

For every node-time pair ),( θi  selected from L , the arcs 

with positive residual capacity connecting ),( θi  to ),( ϑj  are 

explored, where Tjih ≤+=< );,( θθϑ0  if the arc connecting 

),( θi  to ),( ϑj  is a forward arc and Tijh ≤−=≤ );,( ϑθϑ0  

if it is a reverse arc. Then the minimum cost labels are updated 

and the node-time pair ),( ϑj  is added to the candidate set if it 

is not already in L . The process is repeated until there are no 

more candidate nodes in L . The travel cost of the minimum 

cost path computed based on predecessor vector p  is given by 

)},({)(
},,,{

θππ
θ

tmint
T…10∈

= . 

The Dynamic Shortest Path (DSP) procedure is presented in 

Table 1. 

Cai, Sha, and Wong [3] proved that the complexity of finding 

a shortest dynamic flow-augmenting path, by exploring the two 

sub-networks successively, is )( 2mnTO . For algorithms which 

explores the forward and reverse arcs simultaneously, Miller-

Hooks and Patterson [18] reported a complexity of )( 22TnO .  

By using special node addition and selection procedures, 

Nasrabadi and Hashemi [19] succeeded to reduce significantly 

the number of node time pair that needs to be visited. The 

worst-case complexity of their algorithm is ))(( TnnTO + , 

and the Fibonacci heap implementation  runs in 

))log(( TnTnTmO + . 

 

B. Successive shortest path algorithm 

The successive shortest path algorithm for finding a 

maximum flow of minimum cost will repeatedly perform the 

following operations:  

(i) Compute a minimum cost path P  from the source node 

to the sink node ; 

(ii) Find the residual capacity )(Pr  of the minimum cost 

path; 

(iii) Augment the flow along the minimum cost path and 

update the residual network. 

The algorithm will terminate when none of the sink node-

time pairs ),( θt , },,,{ T…10∈∀θ  is reachable from any of 

the source node-time pairs ),( θs , },,,{ T…10∈∀θ  which 

represent that there is no feasible dynamic flow augmenting  

path from s  to t . The Successive Shortest Path (SSP) 

procedure is presented in Table 2. 

 

 

 

Theorem 3: Procedure Successive Shortest Path (SSP) 

computes correctly the maximum dynamic flow of minimum 

cost for a given time horizon T .  

Proof: The procedure terminates when the sink node is not 

reachable from the source node, i.e. there does not exist a 

dynamic augmenting path from the source node to the sink 

node in the time-depending residual network, meaning that a 

maximum flow is obtained. Since in every step the 

augmentation is performed over the current minimum cost 

path, the obtained flow is also a minimum cost flow.     ■ 

Denoting by u  the maximum value for the upper bounds of 

all arcs, the following theorem can be formulated:  

Theorem 4: Procedure Successive Shortest Path (SSP) can 

be implemented in )( 2mnTuO  time.  

Proof: For the labelling operation, all arcs at all times may 

be examined, so the running time is )(mTO . Updating the 

residual networks also requires a running time of )(mTO , 

 
 

Table 2. The Successive Shortest Path (SSP) procedure 
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hence the complexity of one iteration is bounded by )(mTO . 

Since at each time T≤≤ θ0  there may be no more than n  

paths sending flow to the sink node t  and the maximum flow 

on any possible path is at most u , the maximum flow value is 

bounded by )( unTO . Considering that each iteration at least 

augments one unit of flow, i.e. the algorithm terminates in 

unT  iterations, the total running time is bounded by 

)( 2mnTuO .                    ■ 

 

 

IV. BI-CRITERIA MINIMUM COST MAXIMUM DYNAMIC FLOW 

A. Problem formulation 

Let us consider a dynamic network flow problem which 

searches for the optimum solution by taking into account more 

than one criterion. By setting the two objective functions to 

minimizing the travelling time and the travelling cost, the bi-

criteria problem of finding the maximum dynamic flow of 

minimum travel time and travel cost can be formulated as 

follows:  

∑ ∑ ∑
= ∈ =+

=
T

Ati tih

tifvmaximize
0θ θϑϑϑ

ϑ
),( );,(|

);,(      (11.a) 

∑ ∑
= ∈

⋅=
T

Aji

c jifjicfyminimize
0θ

θθ
),(

);,();,()(    (11.b) 

∑ ∑
= ∈

⋅=
T

Aji

h jifjihfyminimize
0θ

θθ
),(

);,();,()(    (11.c) 

subject to: 

},{);,();,(
),(| );,(|),(|

tsNiijfjif
Aijj ijhAjij

−∈∀=− ∑ ∑∑
∈ =+∈

0
θϑϑϑ

ϑθ     (11.d) 

.),(},,,,{),;,();,( AjiTjiujif ∈∀∈∀≤≤ …100 θθθ   (11.e) 

Here, the value of the maximum dynamic flow for a time 

horizon T  is denoted by v  where f  is the vector of flow on 

arcs.  Any vector f  that satisfies the flow conservation 

constraint (11.d) at the different node-time pairs and the bound 

constraint (11.e) is called a feasible solution of the dynamic 

maximum flow of bi-criteria minimum cost (DMFBiMC) 

problem. 

The set of feasible solutions or decision space is denoted by 

F  and its image through  }|))(),({()( FffyfyFY hc ∈=  is 

called objective space. 

In general, there is no feasible solution of the DMFBiMC 

problem that simultaneously minimizes both objectives. In 

other words, an optimum global solution does not exist. For 

this reason, the solutions of these problems are searched for 

among the set of efficient points. 

Definition 9: A feasible solution Ff ∈  of the bi-criteria 

minimum cost flow problem is called efficient if, and only if, 

there does not exist another feasible solution Ff ∈'  so that 

)()'( fYfY ≤  with )()'( fYfY ≠  (i.e. )()'( fyfy kk ≤ , 

with at least one strict inequality , },{ 21∈k ). 

Definition 10: )( fY  is a non-dominated criterion vector if 

f  is an efficient solution. Otherwise   )( fY  is a dominated 

criterion vector. 

The set of efficient solutions of F  will be denoted by ][FE  

while, by extension, )]([ FYE  is called the set of non-

dominated solutions of )(FY . It is well known that to 

characterize )]([ FYE  for the bi-criteria continuous minimum 

cost flow problem, it is only necessary to identify the extreme 

efficient points of the )(FY . The set of efficient extreme points 

of F  will be denoted by and by ][FFex  and the corresponding 

points of )(FY  will be denoted by )]([ FYYex . The set of non-

extreme efficient points on the efficient boundary of F  will be 

denoted by ][FFnex  and the corresponding set in the objective 

space by )]([ FYYnex . In the DMFBiMC problem all the 

efficient solutions lie on the efficient boundary of )(FY . 

 

B. The algorithm 

Aneja and Nair [2] developed a simple algorithm for bi-

criteria transportation problems. Their procedure generates 

efficient extreme points on the objective space )(FY  rather 

than on the decision space F . A series of single objective 

problems are solved with different objective functions and 

each problems leads to either a new efficient extreme point or 

changes the direction of search in the objective space. The 

algorithm terminates when no extreme point or no improving 

direction is available.  

Let 
1

Y  and 
2

Y  be two efficient extreme points in the 

objective space )(FY  which correspond to the efficient 

solutions 
1
f  and 

2
f  obtained by solving the two single 

objective problems )( fymin c  and )( fymin h  respectively. 

Setting )()(:
12
fyfy cc −=α  and )()(:

21
fyfy hh −=β , the 

slope between the two efficient extreme points in the objective 

space 
1

Y  and 
2

Y  is αβ /λ −= . New artificial costs 

));,();,(:);,(' θαθβθ jihjicjic ⋅+⋅=  are computed for all 

the arcs in the network and another single objective problem is 

solved with the objective function: 

 ∑ ∑
= ∈

⋅=
T

Aji

jifjicfy
0θ

θθ
),(

);,();,(')( .  

The algorithm maintains two sets Q  and R , containing 

pairs of indices of the  extreme points in the objective space 

Issue 3, Volume 5, 2011 271

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

which may or may not have additional extreme points between 

them. Without loosing the generality, it is assumed that 

)()( rcc fyfy <
ℓ

 for any  pairs of indices Qr ∈),(ℓ . Then the 

algorithm makes a call to the successive shortest path 

algorithm )SSP( 'c with the cost function defined as 

);,(' θjic . The efficient extreme points in the objective space 

'Y  is computed for the obtained solution 'f  and, whether 'Y  

equals 
ℓ

Y  or 'Y  equals rY , no other efficient extreme point is 

needed to be searched for between 
ℓ

Y  and rY . The algorithm 

terminates when the set Q  becomes empty, meaning that there 

is no need to search for other efficient extreme points between 

any of the adjacent efficient extreme points which are already 

found.  The bi-criteria minimum cost maximum dynamic flow 

is presented in Table 3. 

 

 

 
Denoting by K the number of extreme non-dominated points 

in the objective space, the following theorem can be 

formulated: 

Theorem 5: The Bi-criteria Minimum Cost Maximum 

Dynamic Flow (BiMCMDF) algorithm computes the set of 

extreme non-dominated points in the objective space in 

)( 2mnTuKO ⋅  time.  

Proof: The proof results directly from Theorem 4.     ■ 

 

 

V. EXAMPLE 

In the discrete-time dynamic network presented in Fig. 1, 

node 1 is the source node s  and node 5 is the sink node t ; the 

value indicated on every arc denotes the upper bound (capacity) of 

the arc. The time horizon is set to 4=T  and the transit rimes and 

costs of the arcs are the followings: 
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In the initialisation step, the discrete dynamic maximum flow 

of minimum cost 
1f  is computed by procedure )SSP(c   and 

the maximum flow of minimum transit time 
2f  is computed 

by procedure )SSP(h . The two efficient extreme points in the 

objective space, ))(),((
111
fyfyY hc=  and ))(),((

222
fyfyY hc= , 

corresponding to the computed efficient flows 
1
f  and 

2
f , will 

take the following values: )11,25(1 =Y  and )7,34(2 =Y . 

 

 
Fig. 1 The dynamic network G considered for exemplifying how the 

BiMCMDF algorithm works 

 
Table 3. Bi-criteria Minimum Cost Maximum Dynamic Flow 

(BiMCMDF) algorithm 
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The flows 1f  and 2f  are added to the set of efficient extreme 

flows in the decision space exF  and the efficient extreme 

points in the objective space 1Y  and 2Y  are added to the set 

exY .  Since 
21

YY ≠ , the set Q  is initialised as )},{( 21=Q  

and the slope between the two efficient extreme points 
1

Y  and 

2
Y  is investigated. For 9)()(: 12 =−= fyfy ccα  and 

4)()(: 21 =−= fyfy hhβ , the following artificial costs are 

computed: 
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The algorithm makes a call to procedure )SSP( 'c  which 

will initialize to 0  the flow values over all the arcs and the 

predecessor vector to 01 =:),( θp  for all }10{ T,,,θ …∈ . 

Then, while the sink node 5  is reachable from the source node 

1 , at any moment }10{ T,,,θ …∈ , the algorithm finds a 

shortest augmenting path from the source to the sink relative to 

the artificial costs and augments the flow along this path with 

the corresponding residual capacity. The shortest augmenting 

paths, in increasing order of their artificial cost values are: 

)),(),,(),,(( 251301
1
=P , )),(),,(),,(),,(( 45342311

2
=P  and 

)),(),,(),,(( 352201
3
=P  with 1

321
=== )()()( PrPrPr , 

54)(' 1 =Pc , 59
2

=)(' Pc  and 71
3

=)(' Pc . 

The new efficient point, corresponding to the computed flow 

'f , is )8,28())'(),'((' == fyfyY hc . Since both 
1
YY ≠'  

and 
2

YY ≠' , the value of the index k  is incremented to 3, 

indicating that there have been found 3 efficient extreme points 

in the objective space so far. The flow ':3 ff =  is added to the 

set of efficient extreme flows in the decision space exF , the 

corresponding value ':3 YY =  is added to the set of efficient 

extreme point in the objective space and the set Q  is updated by 

removing the pair )2,1(  from it and adding the two new pairs of 

indices )3,1(  and )2,3( .  

Then the algorithm selects the pair of indices )3,1( , 

computes the slope between 1Y  and 3Y  for which 

3)()(: 13 =−= fyfy ccα  and 3)()(: 31 =−= fyfy hhβ . For 

the new artificial costs )()()(' i,j;θhi,j;θci,j;θc ⋅+⋅= 33 , the 

shortest augmenting paths, in increasing order of their cost 

values are: )),(),,(),,(( 2513011=P , )),(),,(),,(),,(( 45342311
2
=P  

and )),(),,(),,(( 352201
3
=P , leading to the  efficient point 

)8,28('=Y . Since 3' YY = , the pair )3,1(  is simply 

removed from the set Q . Finally, the algorithm selects the last 

pair of indices from Q  and, based on the slope between the 

two extreme points 3Y  and 
2

Y  computes the efficient point 

)8,28('=Y . Since 3' YY =  again, the pair of indices )2,3(  

is removed from the set Q  which becomes empty and the 

algorithm terminates. The objective space with the three 

efficient extreme points is presented in Fig. 2. 
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