
 

 

  
Abstract— The measurement of the precision of a DSM model in 

relation to another model of the same physical surface is done 
primarily by estimating the expectation of the squares of differences 
between pairs of points (called homologous points) which correspond 
to the same feature of the physical surface. But frequently there aren’t 
homologous points. In these cases, the procedure that is generally 
used has been to square the vertical distances between the models at 
selected points in a preferred (relative to a ‘natural’ horizontal plane) 
direction. This procedure only addresses the vertical component of 
the error, thus giving a biased estimate when the surface is not 
horizontal. In this paper we describe the Perpendicular Distance 
Evaluation Method (PDEM). The PDEM allows the estimation of 
planimetric errors in the x,y plane, not obtainable by other methods, 
and estimates for the vertical component which are superior to those 
obtained from the vertical distances method because they are not 
affected by the bias introduced by slanted surfaces. The planimetric 
estimates improve if the surface is relatively irregular. The PDEM 
provides estimates for the three dimensional error components when 
applied to a DSM (general case). This is the case of Dem obtained by 
IFSAR technology that has also a problem of correlation. When 
planimetric isometry is acceptable, a considerable simplification of 
the method is possible. For this last case we present the utilities 
allowing better understand the method and apply it appropriately. 
The PDEM is a useful tool for evaluating digital three 
dimensional surface model precision. 
 

Keywords— Digital Surface Model (DSM); Digital Elevation 
Model (DEM) geometric accuracy assessment, Digital three 
dimensional surface model precision, Perpendicular Distance 
Evaluation Method (PDEM). 

I. INTRODUCTION AND DESCRIPTION OF CHALLENGES 
Digital Surface Model (DSM) is a numerical surface 

model which is formed by a set of points, the coordinates 
of which are the result of measurements of points of the 
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surface of a real object. In the case of a terrain surface, this 
model is called a Digital Elevation Model (DEM). The points 
might be arranged over a regular square grid or over a 
triangular grid. As a result the altitude is known at vertices of 
squares or triangles and the altitude within any square or 
triangle is obtained by an often linear interpolation which 
results in a representation of the object’s surface formed by 
squares or triangles. In this paper we use the triangular grid. 
The set of all these triangles is referred to as { }iT . 

Here we are concerned with the measurement of the 
precision of a DSM model, which we call the evaluated DSM 
(e-DSM). This is done by comparing this e-DSM to a 
numerical surface model of a certain surface which we 
consider to be exact, and which we refer to as the reference 
DSM (r-DSM). We assume that the errors in the r-DSM are 
negligible. Indeed, there is no way to compare the e-DSM with 
the real surface, except through the use of an r-DSM obtained 
by any mean. Therefore, we obtain the precision of the e-DSM 
with reference to the r-DSM, and not with reference to the real 
surface. 

The evaluation of the precision of the e-DSM model in 
relation to the r-DSM consists mainly in estimating the 
standard deviation of the discrepancies between them. The 
expectation of the squares of differences between both 
surfaces gives the variance—under the assumption of a null 
mean. For the rest of this paper, we assume the hypothesis that 
the measurement errors are independent random variables with 
components zyx eee ,,  in the three main orthogonal 

directions, with a three dimensional normal (Laplace-Gauss) 
distribution, as is the usual case. This is the setting for a DEM 
obtained by optical techniques. Otherwise, it is a standard 
statistical procedure to obtain the main components by suitable 
rotations of the coordinate system. 

To carry out this comparison, two methods stand out in the 
literature. We describe them briefly in the following two 
paragraphs. 

The measurement of vertical distances between the models 
has been the procedure of choice. These distances are taken 
from the points in one model to the interpolated surface of the 
other model. It is natural to choose the points iM  in the e-
DSM, and intersect vertical lines through these points with the 
r-DSM calling these intersections iW . The distances between 

the iM  and the iW  give the measured vertical distances. The 

PDEM Estimator for Digital Elevation Model: 
Utilities 

José Francisco Zelasco, Patrick Julien, Gaspar Porta, Kevin Ennis, Judith Donayo 

A 

Issue 1, Volume 7, 2013 24

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

mailto:jfzelasco@fi.uba.ar
mailto:gaspar.porta@washburn.edu
mailto:kevinennis@fibertel.com.ar
mailto:juddonay@gmail.com


 

 

limitation of this standard method is that the expectancy of the 
vertical square distance between a point iM  in the e-DSM 

and points iW  on the r-DSM has a systematic bias as an 
estimator of the vertical component of the variance because the 
surfaces of the r-DSM are not always horizontal. 

Alternatively, measurements of discrepancies are done by 
comparison with benchmark points of the r-DSM. We call the 
collection of these benchmark points { }iP  and the 

corresponding points in the e-DSM { }iM . A drawback of this 
method is that the measurements between homologous 
points—pairs of these benchmark points with their 
corresponding points in the e-DSM—might be subjected to 
special conditions. These special conditions may include better 
measurements because of some outstanding feature which 
might imply a precision different to that of the rest of the e-
DSM. Also, given a point iM  of the e-DSM, it is often 
impossible to obtain the homologous point of the r-DSM 
because the latter is not easy to recognize since the grids 
seldom coincide. To summarize, the points in the e-DSM have 
no identifiable homologous points in the r-DSM model, or 
those points that do have identifiable homologous points are 
either too few or do not form a representative sample of the 
surface (in particular, they might come from a privileged part 
of the surface) to evaluate precision. 

In this paper we describe a method for measurement of 
vertical standard deviations which uses the perpendicular 
distances according to the normal vectors of the planes of the 
triangles in the set { }iT . This method is called Perpendicular 
Distance Estimation Method (PDEM). The PDEM does not 
introduce a systematic error in the evaluation of the vertical 
error, like the vertical distance model does. 

II. BACKGROUND AND PREVIOUS TREATMENTS OF THE 
PROBLEM 

The evaluation of a DEM error is an important topic 
[1] [2] [3] [4] [5] [6]. In the literature several attempts 
have been made for the evaluation of a DSM error with 
respect to a more precise reference DSM. 

Somewhat analogous problems were studied for horizontal 
errors in maps [7] [8] [9]. These authors found that the 
discrepancy model-reference was the most important factor to 
determine corresponding pairs. They use Hausdorff distances 
to evaluate the errors in maps which does not allow for 
decomposition of errors in the two main directions (x ans y). 

Several solutions have been proposed for the punctual 
control method (recognition algorithms, filtering methods, 
adjustment of histograms to theoretical laws) without obtaining 
practical results [10]. We also mention some work concerning 
the DEM´s quality [1] [2] [3] [4] [5] [6] [10] [11], but no 
solution to the simultaneous evaluation of vertical and 
horizontal errors is proposed. 

A critical problem for error estimation is to establish 

the corresponding (homologous) point in the r-DSM for 
each selected point of the e-DSM. In some cases, even 
though there are pairs of homologous points available 
these are either special ones, or there are not enough of 
them to establish a good random sample [12]. 

The DEM Quality Assessment chapter in [13], states 
that horizontal accuracy, although recognized as a part 
of DEM quality, is generally considered difficult to 
evaluate in the absence of an image coincident with the 
e-DEM (check points or benchmarks), or of clearly 
discernable surface features. 

We note that most of the existing methods for quality 
control of an e-DSM are confined to computing 
distances between check points, or benchmarks, or 
vertical distances from the points of one of the models to 
the surface of the other (with the inconvenient bias we 
have mentioned above). This explains the lack, or at 
least scarcity, of work devoted to the horizontal 
accuracy of a DEM. 

Regarding the solution proposed here, see [14] [15] 
and [16]: in the first one, the method was intuitively 
described and a study was undertaken, using simulated 
r-DEM, according to the type of surface and the number 
of sample points. The subsequent papers are mostly 
users’ tutorials of the method. 

In the present paper we give a better description of the 
PDEM. The PDEM allows us to get statistical information 
about the horizontal and vertical standard deviations without 
forming full three dimensional error vectors. Indeed, we show 
that only the component perpendicular to the r-DSM surface is 
required. 

III. DESCRIPTION OF THE PDEM 

The Perpendicular Distance Estimation Method 
(PDEM), as opposed to the vertical distance methods, 
yields vertical standard deviation results and allows us 
to obtain the horizontal variance under the condition of 
enough surface roughness [21]. 

The r-DSM is a parameterized three dimensional surface – 
that is to say, a surface whose 

points [ ] { }nizyxV T
iiii ,,2,1,,, ∈= , are determined by 

the two dimensional position parameters yx, – and the e-
DSM has points which are also functions of yx, , and will be 

denoted [ ] ( )yxMzyxM T
iiii ,,, == . The error is the 

vector function which denotes the discrepancy between both 
surfaces, and is defined for each point iM  and its 

homologous point iP  in the r-DEM. The points iM  define the 

e-DSM surface, but their homologous points iP  are in general 
not necessarily vertices of the r-DSM surface triangles. If they 
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were, their identification would be easy, and our problem 
would be trivial. However, we want to deal with the more 
common case in which the homologous points are not readily 
identifiable. The error vector is assumed to be the result of 
three stochastically independent components, zyx eee ,,  one 

in each of the basic axis of the zyx ,,  coordinate system. 
Notice that this error vector is not constrained to be vertical, 
nor necessarily orthogonal to any of the surfaces. 

( ) ( ) 3,, R
e
e
e

PyxMyx

z

y

x

iiiiii ∈















=−=θ  (1) 

If the r-DSM has no systematic error, the expectation is 

( ) ( ) ( ) ( )( ) 0,, == T
zyx eEeEeEeE  (2) 

For each [ ]T
iiii zyxP ,,= , the error vector 

( ) ( ) { }niPyxMyx iiiiii ,2,1,, ∈−=θ cannot usually 
be determined because of the difficulties in establishing the 
homologous point iP , as we mentioned above. However, even 

if the homologous point iP  cannot be identified, the triangle 

∈iT  r-DSM containing it can usually be identified (The 
difficulties are addressed in section 4.4). 

Fundamental property: an important property is that the 
projection of the error vector ( ) ( ) iiiiii PyxMyx −= ,,θ  

on a unitary vector iN  orthogonal to the surface ∈iT  r-DSM 

remains invariant if the point iP  is replaced by any other point 

iTQ ∈ . 
For the projection of the error vector on Ni the scalar 

product is 
( )[ ] [ ] iiiiiiii MMNPQNyxM ′−=⋅−=⋅,  (3) 

where iM  is the normal projection of iM  relative to 
the surface of the triangle iT  (the point of the triangle 
determined by the line normal to that triangle and which 
passes through iM ). 

For any point Q  belonging to the surface of the triangle iT , 

we define a vector, which we will also call Q , the projection 

of the difference QM i −  on N  coincides with the 

projection, on N , of ( ) ( ) iiiiii PyxMyx −= ,,θ . Both 

projections are equal to ii MM ′− . The fundamental property 
resulting from relation (3) is the reason for the choice of the 
name PDEM (Perpendicular Distance Estimation Method). 

This relation implies that the length of the projection of the 
error vector may be computed knowing only the triangle ∈iT  

r-DSM that contains iP , even without knowing the exact 

position of iP . 
The mathematical expectation of the length of the projection 

of the error vector is 
{ } ( ){ }

( ){ } 0cos0cos
cos

=⋅=⋅′−=
=⋅′−=′−

φφ
φ

ii

iiii

PME
PMEMME

 
where φ  is the angle between the error vector and the 

unit vector iN  orthogonal to the surface iT  and where 

( ){ } 0=′− ii PME  because it is the expectation of the 
error, which in (2) we have assumed to be zero. 

Consequently, the variance of ii MM ′−  is 

{ } { }
iziyix

Niiii i
MMEMMVar

γσβσασ

σ
222222

22

coscoscos ⋅+⋅+⋅=

==′−=′−
 (4) 

where αcos , βcos , γcos  are known, because they are 
the direction cosines of the normal unit vector, obtained from 
the data of the surface triangle ∈iT  r-DSM, with 

1coscoscos 222 =++ γβα  (5) 

An estimator for this
 

2
iNσ
 
is therefore the ii MM ′−  If n  

observations were available, the estimator would be 

n

MM
n

j
ii∑

=

′−
1

2

 

 
Fig. 1: IFSAR Geometry 

 
Fig. 2: Previous Method PDEM Histogram. 
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(the mean of the modulus of the vectors ii MM ′−  is 
zero and we divide by n  instead of by 1−n  because it 
is assumed that the r-DEM does not have any errors, and 
it is not the result of a mean therefore it gives one more 
degree of freedom). We will usually have only one 
observation to estimate 2

iNσ  for each triangle iT , 
because there will be only one normal unit vector to 
each triangle ∈iT r-DSM. But we have n  triangles for 
which the homologous points are not readily 
identifiable. 

For different triangles we have different normal vectors, and 
different values of 2

iNσ . Moreover, we have one observation 

for each, and one estimate for each. This gives us one relation 
(4) for each. In these expressions, the coefficients iα2cos , 

iβ2cos , iγ2cos  are known, and 2
xσ , 2

yσ , 2
zσ  are 

unknown, and they are what we need to estimate. Our n  
expressions (4) give us an observation matrix, or design matrix 



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 (6) 

The n  expressions (4) allow us to establish n  estimates for 
2

iNσ , which form a vector 



























=

2

2

2

2

2

1

n

i

N

N

N

N

L

σ

σ

σ
σ





 (7) 

We may now estimate 2
xσ , 2

yσ , 2
zσ  as if they were the 

parameters of an ordinary linear regression of the output 
variable 2

iNσ  as a linear function of the three variables 

iα2cos , iβ2cos , iγ2cos , given by (4). We have at our 
disposal n  points, and the estimates may be obtained by the 
usual least squares regression method. We seek the values of 

2
xσ , 2

yσ , 2
zσ , which we may write as a vector 






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
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



=
2

2
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σ
σ
σ
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and we seek to minimize the sum of squares of differences 
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IV. DISCUSSION 
In this section we discuss a variety of limitations, 

simplifications, computational particularities, extensions, and 
potential adaptations to our method. 

A. Horizontal estimation 

The estimate of 2σ  will improve if the values of the 
observations are spread adequately, which means that our 
design matrix M  should have sufficiently different values of 
the observations iα2cos , iβ2cos , iγ2cos . In other words, 

if the values of the angles iα , iβ , iγ  are very similar, the 

estimate of 2σ  will have a larger variance. This implies that a 
relatively uneven surface will improve the precision of the 
estimate of the DEM error in the x , y  components. The 
estimates of the horizontal components of the errors will be 
more unreliable in a relatively flat surface where all angles are 
small. 

B. Error Correlation of the DEM Obtained by IFSAR 
The DEM’s obtained by means of the interferometry radar: 

IFSAR (Interferometry Synthesis Aperture Radar) needs a 
Reformulation. 

The IFSAR geometry carries a vertical correlation between 
y  –axes (range axis) and the z  –axis (Fig. 1). 

It is get a diagonal covariance-matrix from a rotation round 
x  –axis. The rotation joins the z′–axis with the direction of 

the radar. This hypothesis is justified by the formulas 
presented in articles [10] and [11] [20]. After the rotation, in 
the new referential, the x  –axis parallel to the trajectory of the 
satellite don’t change of position, and the y′  and z′  
correspond to the normal plane of the trajectory and this way 

 
Fig. 3: Data entry screen. 
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the random variables in the three directions are not correlated. 

B  is the base (distance between antennas 1A  y 2A ), H  
is the height of the antennae 1A  and R  is the distance from 

1A  to the bull-eye C . The value of z  (height of the bull-eye) 
is given by: θcosRHz −=  where H  and R  are known 
and θcos  is incognito. 

Been: ( ) ( )εθεεθεθ −−−⋅= sinsincoscoscos  y, 

( ) ( )( ) 212sin1cos εθεθ −−=−  
In the triangle of vertices 1A  2A  C  formed by the two 

antennas and the bull-eye, rR +  is the distance between 2A  
and the bull-eye C , and a the angle in 1A . 

So: ( ) αcos2222 BRRBrR ++=+  
Where R , B , r  ( r  is functional to the phase-difference 

and the wave length) are known and εθα −+= 90 . It means: 
( )εθα −= sincos , the height z  of the bull-eye is: 

θcos⋅−= RHz  (4) 
θsin⋅= Ry  (5) 

After rotation, see the histogram Fig. 2, slopes are increased 
which favors the accuracy of the assessment of the error in the 
y direction. 

C. Isotropic horizontal error 
In most practical problems (with the mentioned exception of 

the IFSAR case among others) we may consider the 
measurement process to have the same planimetric errors in 

the horizontal directions 22
yx σσ = . This isotropy allows for 

some simplifications. 
The error vector is no longer assumed to be the result of 

three stochastically independent components, xe , ye , ze , one 

in each of the basic axis of the x , y , z , coordinate system, 
but of only two: one planimetric component, pyx eee == , 

and a vertical component ze . The pairs of measurements in the 
“horizontal” components are considered as different 
realizations of the same random variable. Relation (1) takes 
the form 

( ) ( ) 2,, R
e
e

PyxMyx
z

p
iiiiii ∈








=−=θ  (1’11) 

We assume that the e-DSM has no systematic error. But, 
relation (2) is replaced by 

( ) ( ) ( )( ) 0, == T
zp eEeEeE   

and our equation (4) is replaced by 
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 (where we used relation (5)). Our estimates of pe , ze  are 

now obtained from the linear regression problem of fitting (4´) 
where 
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 (9’14) 

Notice that only the iγ  are measured. Only the inclination 
of the surface is of interest, regardless of the direction of 
inclination. In the three dimensional problem knowledge of the 
direction of the surface inclination was necessary to 
distinguish the errors in each of the x , y  directions. 

D. How to avoid ambiguous cases 

If the line normal to the triangle which passes through iM  
intersects that triangle near to on one of its sides, a doubt 
arises about whether that particular triangle contains the 
homologous point. The homologous point might instead be in 
a neighboring triangle. When this happens, it is safe to avoid 
using that point in the estimation of the error by eliminating 
the square of the length of the modulus of that particular vector 

 
Fig. 4: Data entry screen. 1 
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ii MM ′−  when appropriate. In practice, we compute the 

distance between iM ′  and the corresponding triangle edge, 
and discard the estimate if that distance is significantly small. 
Equivalently, one needs to verify that the error ellipse has a 
high enough probability (based on the probability distribution 
assumed for errors) of not containing any triangle edges. 

V. SOME EXAMPLES OF APPLICATIONS AND SIMULATIONS 
Knowledge of the discrepancy between a numerical surface 

model and a reference surface is of interest in many 
applications. Examples of these include face recognition using 
three dimensional models obtained by stereoscopic techniques, 
evaluation of the deformation of pathological organs or cells 
regarding healthy surfaces, or in search algorithms for certain 
multidimensional structures, etc. In other words, our focus is 
on situations in which tests for discrepancies require error 
estimates. The most frequently analyzed application seems to 
be in cartography, for the DEMs stored in a Geographic 
Information System (GIS). In particular, the DEMs of a GIS 
frequently overlap, which allows us to evaluate the precision 
of one measurement in terms of another. The second 
measurement would be our new reference model whose 
fidelity would be considered unquestionable. The motivation 
for this study is rooted in this very application pertaining to a 
particular, very large GIS and the need to compare the DEMs 
in it. 

An idea that is currently being considered is to use the 
PDEM in the evaluation of the existing topographical 
framework in a country in which a telecommunication investor 
wants to build a tower network. Before embarking on the 
expensive process of starting from scratch, it makes sense to 
evaluate whether the error of the existing framework is within 
the tolerance of the project requirements. A representative, 
small portion of the large area to be covered is measured very 
carefully with a much more precise (and thus expensive) 
method over a small area and the resulting DEM is used as an 

r-DEM. Then the overlapping part is compared to this 
measurement as the e-DEM. Depending on how well it 
measures up, the expensive measurement of the whole area can 
be avoided. 

Another application is to use the PDEM to verify the 
integrity of a DEM from a GIS. Comparisons of the 
overlapping parts of different measurements can be used as e-
DEM and r-DEM pairs. Then the consistency of the 
measurement of error can be measured. Since there is less bias, 
and less systematic error in the PDEM, a more accurate 
reading of the uniformity of errors in overlapping parts can be 
detected. For a study showing the concern with this kind of 
situation see [17]. 

If we think of the measurements in the vertical direction as 
the values of a random variable, the surface inclination causes 
us to record values that are sometimes smaller and sometimes 
larger than the actual error would give. The sum of the squares 

 
Fig. 5: Data entry screen. 

 
Fig. 6: Data entry screen. 

 
Fig. 7: Data entry screen. 
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of these longer and shorter distances will be systematically 
larger than the sum of squares of the vertical components’ 
actual errors. Although it is possible to fabricate situations 
where this does not happen, generically it will—this 
conclusion is a corollary to the Cauchy-Schwartz theorem 
[18]. In consequence, the estimate of the vertical component of 
the variance based on those squares of vertical distances is a 
biased estimate, unless the surfaces of all triangles were 
horizontal—that is, a uniformly flat plane—which is not a very 
interesting case. 

The Perpendicular Distance Evaluation Method (PDEM) 
described in the present paper provides estimates for vertical 
and horizontal components of errors, and avoids the bias in the 
error estimates that is present when vertical distances are used. 
The exaggerated estimates of the error in measurement 
indicated by the vertical distance strategy can be a cause for 
concluding that the practical error is more significant than 
would be appropriate. For comparisons between the vertical 
distance method and the PDEM as well as simulations to 
evaluate the quality of the PDEM see [19]. 

VI. AN EXAMPLE OF AN IMPLEMENTATION USING A JAVA 
APPLICATION 

We have developed a Java application to measure the error 
of an e-DEM in relation to an r-DEM. In what follows we 
describe the use of this application to gage the error of a 
measurement with introduced errors of a real topographic 
surface. 
1) First we select the file having the list of points that make 

up the r-DEM. In this example this list consists of 2471 
three dimensional points formatted as a .csv file. The file 
is uploaded as the r-DEM. (Fig. 3) 

2) We make a triangulation from the r-DEM in the XY 
plane; the application allows viewing the triangulation 
although we do not show it here. In this case we have 
obtained 1157 triangles. (Fig. 4) 

3) Next, we upload the e-DEM. In this example this is 
another .csv file containing it. (Fig. 5) 

4) The application identifies the triangles iT  of the r-DEM 

corresponding to each point iP  of the e-DEM. (Fig. 6) 
5) The application allows entering a threshold corresponding 

to the minimal distance (in the XY plane) between the 

projection of the point and the edges of the triangle. The 
application discards ambiguous triangles based on this 
threshold. When pertinent, we refer to this process as 
addressing a boundary problem. (Fig.7 y 8) 

6) Finally, the application calculates the vertical and 
horizontal errors. (Fig. 9) 

Eventually, a histogram can be established to monitor the 
level of surface irregularity. (Fig. 10) 

In this example we have made the e-DEM selecting 1157 
triangles from the r-DEM. We have added a Gaussian noise to 
the three coordinates of the triangles’ centre of mass with the 
same standard deviation (equal to 2) in each dimension. 

Consequently, the error results presented by the PDEM can be 
compared with the actual error value. The PDEM results are 
1.9986 in the vertical direction and 2.1407 in the horizontal 
plane. The relative differences with the expected values are 
less than 1% and around 7% respectively. 

VII. CONCLUSION 
The PDEM (Perpendicular Distance Estimation Method) 

 
Fig. 8: Data entry screen. 

 
Fig. 9: Data entry screen. 

 
Fig. 10: Histogram 
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provides estimates for the three dimensional error components 
when applied to a DEM. This includes the planimetric errors 
in the x,y plane, not obtainable by other methods, and 
estimates for the vertical component which are superior to 
those obtained from the vertical distances method because they 
are not affected by the bias introduced by slanted surfaces. The 
planimetric estimates improve if the surface is relatively 
irregular. When planimetric isotropy is acceptable, a 
considerable simplification of the method is possible. Thus, 
the PDEM provides a useful tool for evaluating the error of 
Digital Surface Models (DSM). 
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