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Augmented Integrals for Optimal Control
Problems

Javier F. Rosenblueth

Abstract—BYy adding penalty functions to con- grange multiplier rules assuming that the problem is
strained minimum problems in finite dimensionalaugmentable at a certain point than assuming instead
spaces, one deals with unconstrained augmented prabther normality or regularity of the point. Another ad-
lems for which the derivation of necessary optimalityvantage of this approach is that it provides a method
conditions can be obtained. Also, this technique yieldef multipliers used to find numerical solutions of con-
in a natural way a method of multipliers for finding strained minimum problems. This method has been
numerical solutions. In this paper we show how cersuccessfully generalized to a convex programming set-
tain classes of optimal control problems with equalityting in [14]. The significance of this theory both in the
and inequality constraints can be treated in a simildinite dimensional case and in convex programming is
way. A new notion of augmentability in optimal con- well established (see, for example, [1, 2, 7, 8, 13-15,
trol is introduced and, without the usual assumption 020] and references therein, where a wide range of ap-
normality, we derive first and second order necessaplications illustrate the use of the theory). However,
conditions for optimality. this theory has received little attention in the develop-

. . ment of other areas of optimization.
Keywords—Augmentability, optimal control prob- P

lems, equality and/or inequality constraints, normality In Hestenes [10, 11], Rupp [19] and, more recently,
in [16—18], several attempts to call attention to the role
of augmentability in optimization theory have been
made. In particular, in [17], a notion of augmentability

In certain areas of optimization theory, the role of théVas Proposed for optimal control problems involving
theory of augmentability and penalty functions is We||equa.I|ty constraints both in the control and the state
established. We refer to [10, 11] for an explanatiofunctions.

of its importance in the literature. In particular, one |n this paper we shall generalize that notion for opti-

type of augmentability can be seen as an alternativ@al control problems involving mixed equality and in-

approach to that of regularity in the study of minimumequality constraints. Some fundamental properties of
problems involving equality and inequality constraintshis kind of problems have been studied and we refer to
in finite dimensional spaces. For that kind of problemgs] (and references therein) for a very general develop-
a regularity assumption is usually imposed in order tgnent of first order necessary conditions. The new no-
derive the first and second order Lagrange multipliefion of augmentability proposed in this paper provides
rule (see [10]). However, it is generally rather difficultan alternative approach to the development of not only

to verify if a certain point satisfies the notion of reg-first but also second order necessary conditions.
ularity and therefore one has to assume other simpler

criteria to verify, such as that of normality, that imply
regularity.

In the study of that kind of constrained minimum
problems it is well known (see [10, 11]) that it is much
simpler to derive both the first and second order L

. INTRODUCTION

In order to clearly understand the type of aug-
mentability we are dealing with, we shall first state
some of the main aspects of the theories of regular-
ity and augmentability for the finite dimensional case
when equality and inequality constraints are present.
%we shall then summarize the main results applicable

*IIMAS-UNAM, Universidad Nacional Auinoma de Mxico, to opt_imal C_Ontr0| problems with ?qua”ty ConStrair_]ts
Apartado Postal 20-726, &ico DF 01000, Mxico (e-mail: and, finally, introduce the new notion for problems in-
jfrl@unam.mx). volving also inequality constraints.
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Il. THE FINITE DIMENSIONAL CASE Regularity

In this section we shall briefly explain the alternative For all zy € S define the se€s(z) of curvilinear
approaches of regularity and augmentability which, fotangent vectors aof' at 2y as the set of alh € R for
minimum problems with equality and inequality con-which there exist > 0 andz: (—e,e) — S such that
straints in finite dimensional spaces, can be used in or{0) = x¢ andi(0) = h.
der to derive the first and second order Lagrange mul- As one readily verifiesCs(x9) C Rgs(zo) for all
tiplier rule. We refer to Hestenes [10, 11] for a full 4 € S, but the converse may not hold.

account of the theory to follow. L , _ ,
Definition. A pointxg € S is called aregular point of

A. Equality Constraints Sif Cs(xo) = Rs(xo)-

Our starting point will be the case of minimum prob—t_ Flrsft a?k? sec%r;d order gecl;essary odptlr?r?llty COTd"
lems involving only equality constraints. As men- lons for'the problem posed above, under the usual as-

tioned in the introduction, the augmentability approacﬁumptlon of regularity, are the content of the following

is based on the removal of constraints. Thus we sh Sfl_JItc'j If that a:ssufmptl(})wr? 'r? ;Ot |m$ose|_(i|, one gf?.n cas-
invoke well known optimality conditions for uncon- ly find examples for which the optimality conditions

strained problems, which are summarized in the folon & local minimum tof on 5 may not hold.

lowing result. Theorem 2.2If x affords a local minimum to f on S

and xq is a regular point of S then there exists A € R™

Theorem 2.1Suppose we are given S C R™ open and
PP g P such that xg € L(\).

a function f: S — R of class C? on S. If x( affords a

local minimum to f on S then f'(zo) = 0, f"(x¢) > This result requires the regularity assumption in or-
0. Conversely, if zo € S, f'(x0) = 0 and f"(z0) > 0,  der to assure that a local solution to the problem sat-
then there exist §, m > 0 such that isfies the Lagrange multiplier rule. However, it is in

general difficult to test for regularity, and one simple
widely used criterion is that of normality. A point

Let us now sate the constrained problem we shaffo € 5 is said to be aormal point ofS'if the linear
first study. Denote byl = {1,...,m} with m < n  €Quations /
and suppose we are given functiofigjo: R” — R 9a(zo;h) =0 (a € A)

(e € 4) and in h are linearly independent. Itis well known that nor-
S={zeR"| ga(z) =0 (ac A)} mglity implies regglarit_y and, moreover, the multiplier
Ain Theorem 2.2 is unique. It should be noted that the
Let us consider the problem, which we label (P), otonverse, however, may not hold so that the normality
minimizing f on S. assumption is strictly stronger than that of regularity.
For simplicity of exposition we shall assume that the
functionsf, g = (g1,...,9m) are of clas€? onSbut, Augmentability
as explained in [10], this assumption can be weakened.
Forallzy € S define the set aingential constraints

by H(z) = f(z) + (M g(#)) + 0G(x)
Rg(xg) :=={h € R" | g/, (x0; h) = 0 (a € A)}.

|z — xo| < 8= f(x) > f(xo) +mlz — xo|*.

For any(\, o) € R™ x R, consider the function

where
. . . . T 1 m
A pqlnt xo is said to satisfy thé.agrange multiplier Gz) = - Zga($)2
rule if it belongs to 249
L) = {zg € S| F'(x¢) = 0 and and define a setl(\, o) as the set of alky € S such

F"(zo;h) > 0forall h € Rg(wo)} that x gffords a local minimum tad. Note that no
constraints are present in this augmented problem.

where Flg) = 3 Definition. We shall say that the problem (P)asig-
(@) = f(@) + (A g(x)) mentable atzg if 2o € A(), o) for some(\,0) €

denotes the standard Lagrangian for problem (P). R™ x R.
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Observe thati(z) = f(x) forallz € S. Clearly and, as one can easily verify, the following result holds
this implies that, if the problem (P) is augmentable afsee [10]) by a simple application of Theorem 2.1.
zg, thenz affords a local minimum tg' on S.

A derivation of the Lagrange multiplier rule can be
obtained through the notion of augmentability. As the
next results shows, if the problem (P) is augmentable

Theorem 2.4Suppose ¢ € L'(\) for some A\ € R™.
Then there exist oy, k > 0 and a neighborhood N of
Lo such that, for alloc > ogandx € N,

at a pointzg, then the Lagrange multiplier rule holds H(z) > H(xo) + k|l — xo|2.

at that point. n

Theorem 2.3Forall (A, o) € R™ x R, I;gegfticular, (P) is augmentable at xq and, for all x €
A\, 0) C L(N). f(x) > f(wo) + K|z — x0)?.

Proof: Let zy € A()\, o) and note that the following

o To illustrate these two approaches, consider the
two equalities hold:

problem of minimizingf: R? — R on the set

H(z) = F(z) + 0G(), S ={(z,y) € R* | g(z,y) = 0}.

S={xeR"|G(x)=0}.

Sincez affords an unconstrained local minimum toExample 2.5 The point (0,0) is not regular with re-
H, it follows by Theorem 2.1 that spect to problem (P) but the problem is augmentable at
this point.

H'(z0) = 0 and H" (o) > 0. Consider the functions

SinceG(zp) = 0 andG(z) > 0 for all z € R", zg

.2 A 42 .2
minimizesG. We invoke Theorem 2.1 once more to flay) == Y 7 gy =y

conclude that+'(zo) = 0. Therefore, CIearIy (0,0) is not a regular point ofS since
0 = H'(20) = F'(x0) + oG (o) = F'(0), EE ig cc;.;;c.des with the liney = 0, while
is

0 < H"(zg) = F"(x0) + 0G" (x0) However, the problem is augmentablg@t0) since

and soF" (xo; h) > 0 wheneveiG” (zy; h) = 0. _9

Now, since H(z,y) = 2* +< 5 )y + (A= 4)y?
G"(wo;h) = gh(wo; h)?, is minimized at the origin withh = 4 ando > 2.
' Example 2.6The point (0, 0) is regular with respect to
we havel"(zo; h) > 0 whenever problem (P) but the problem is not augmentable at this
gh(zosh) =0 (a€A), point.

Consider the functions
and sazg € L£(A).1

f($,y):$2+2$+y4, g(xvy):xy_x
Though we shall not treat sufficiency in this paper,

it is important to mention that the classical sufficientt is clear thatf has a strict local minimum g, 0)
conditions for optimality imply augmentability. Since on S. Sinceg’(0,0) # (0,0), it is a normal point and
a pointz affords a local minimum tof on S if the  hence regular for (P).

problem (P) is augmentable a§, this result provides  However, the problem is not augmentable@to).
an alternative way of proving the classical sufficiencyTo prove it, note that

theorem. It also justifies the use of the augmentability

approach in the theory of optimality conditions. H(z,y) = z° <1 + E(y — 1)2> +(2=Nz+Azy+yt.
A point z( is said to satisfy thestrengthened La- 2
grange multiplier rulef it belongs to If H'(0,0) = (0,0), we must have = 2. Hence,
L' N :={zg€ S| F'(xg) =0and o
2 2 4
F"(z0;h) > Oforall h € Rg(xo), h # 0} H(z,y) == (1 +5y—1) > + 22y + .
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We can suppose that > 0. If (y — 1)? < 4, 3% <  We define the set dfagrange multipliersatz € S as

1/(1 +20) andz = —y /(1 + 20), we see that
/(1 +20) andz = —y/(1 + 20) P@) = (AER™ [ Ay >0 (a € A),

)<O:H(0,0) Aa = 01if go(z) < 0}.

The setRg(z) of tangential constraintsitz € .S cor-
and so (P) is not augmentable(at0). responds to

H(z,y) SZ/2<Z/2—1+20

Let us briefly mention that one of the main advan-  {h € R" | g,(z;h) <0 (a € 4, go(x) =0),
tages of the augmentability approach is that it provides

in a natural way a method for solving the original prob- g5(x;h) =0 (8 € B)},
lem. Using the notation and the seRs(x, ) of modified tangential constraints
o ) is given by
H(z, A 0) = f(x) + A g(@)) + Slg(2)]
2 {h € Rs(z) | gh(x;h) =0 (a € A, Ay > 0)}.

the method consists in choosing, and o > 0,
hopefully so thatH (z, Ao, o) is convex inx. Select
£o,&1, ... with & > & > 0 and choosey, A\, succes-
sively so thatz;, minimizes L) :={xg € S|\ P(xg), F'(z0) =0and
F"(x0;h) > 0forall h € Rg(zo,\)}

A point xq is said to satisfy thé.agrange multiplier
rule if it belongs to

H(z, Ng—1,0 + Ek—1) .
Note that the second order condition holds not on the
and set set of tangential constraints but on the modified one.

A = Mo—1 + Ep—19(xg).

Then, as explained in [11], usual{yt; } converges to

a solutionz, of the original problem. Moreover, in  For this problem we begin by recalling the notion of

this case {\;} converges to the Lagrange multipliertangent cone of a set R" at a given point.

associated withg. A sequencgz,} C R™ will be said toconverge to
xq in the directionh if i is a unit vectory, # xo, and

Regularity

B. Inequality Constraints Ty — o

lim |z — 29| =0, lim h.

Let us now present the main features related to the 97 ¢=00 |zg — zo|
regularity and augmentability approaches for problemg;;an 2o € C C R", thetangent cone of” at z;
involving equality and inequality constraints. This will yanoted bYI(x0), is the (closed) cone determined by

allow us to compare it with the notion of augmentabilyne ynit vectorss for which there exists a sequence
ity introduced in the following section for optimal con- {,} in C converging taz, in the direction:
q .

trol problems. . . - One can find other equivalent definitions of this
Suppose we are given functiofismappingR™ toR gt pyt the one we are using corresponds to that of
andg = (g1, ..., gm) mappingR”™ to R™. Let now Hestenes [9, 10].
" Now, as one readily verifies, for the s8tof con-
Si={zr €R"[ga(z) <0(a € 4), straints delimiting our problem (Q)s(z0) C Rs(zo)
gs(x) = 0(68 € B)} for all zo € S but the converse may not hold.

whereA = {1,...,p} andB = {p+1,...,m}, and Definition. A pointz, € S will be called aregular
consider the problem, which we label (Q), of minimiz-point of S if Tis(xo) = Rs(wo).

ing f2°” S. As before, we shall assume thaendg ¢ reqularity approach, as in the case of the previ-
areC=(5). ous problem (P), provides first order optimality condi-

_ For this problem, thé.agrangian(with respect to\ s for problem (Q), and it can be stated as follows.
in R™) coincides with the one for equality constraints,

that is, Theorem 2.71If x( affords a local minimum to f on

S and xq is a regular point of S then there exists \ €
F(z) = f(z)+ (N g(x)) (z€R"). P(x0) such that F'(x¢) = 0.
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Second order necessary conditions hold again if Bote that we can expressas
regularity assumption is imposed on a local solution
satisfying the first order Lagrange multiplier. This as- S = {(z,y) : G(z,y) =0, y* <0 (a € A)}.
sumption, however, is not imposed on the Sebut

on a subset of which takes into account positive La- OPServe that
grange multipliers. The following result summarizes H(z,y) = f(z)
those conditions. whenever(z,y) € S. Consequently, if;y € S and

Theorem 2.8Let xy € S and suppose there exists A € Yo = a(0) (9. € 4), (:Co,.yo) "?‘ﬁords a local mint-
P(x0) such that F'(xo) = 0. Let mum to H on S if and only if z( is a local solution to

our original problem (Q).

S={z €S8 [ga(z) =0(a €A Aa>0)}. Definition. We shall say that (Q) isugmentableat

xzo € S if there exists(\,0) € R™ x R such that
(x0,Y0), With y§' = ga(z0) (o € A), affords a local
minimum to H on the set

If xq affords a lgcal minimum to f on S and x is a
regular point of S then zg € L(\).

The derivation of the Lagrange multiplier rule
through this approach usually requires several funda- K = {(z,y) € R" xRV [ y* <0 (a € A)}.
mental results on the theory of convex cones. On the
other hand, it is generally difficult to test for regularity  cjearly, if (Q) is augmentable at), thenz, affords
and, as in the case of equality constraints, one criteriof|gcal minimum tof on S.
is that of normality. A pointzy € S'is said to be a | et ys state necessary conditions for the problem
normal point ofS if the relations of minimizing H on K. Define the augmented La-
m grangian with respect tf, g andA € R™ by
Z )\Zg;(xo) =0 and \¢ P(CL‘(]) »
= Fw,y) = f(2) + (0 g(2)) = 3" Ay
imply that A = 0. One can then prove, by making use 1

of the implicit function theorem, that normality implies
regularity.

and observe that

5 H(z,y) = F(z,y) + 0G(z,y).
Augmentability

LetC; to be the set of point&h, k) in R™ x R?
Let us turn now to the augmentability approach. Assuch fh(:t’ v) pointsh, k) %

explained in the introduction, the main purpose of this

. o - EC <0if y* =0,
approach is to simplify the original problem by remov-
ing constraints. and R
To begin with, let E* =0if Fya(z,y) = —Xa < 0.
S={(z,y) eR" xRV | y* <0, Theorem 2.9 Let (g, y0) € S and suppose that, for
ga(z) —y* =0 (a € A), gg(z) =0 (6 € B)} some o € R, (xg,y0) affords a local minimum to H
on K. Then (xg,yo) affords a local minimum to F on
and, for all(A, o) € R™ x R, define S and the following holds:
» a. Fx(xo, yo) = 0, Fya (z0,y0) < 0 with equality if
H(z.y) = () + Y Aalg0(@) ~ 4°) i <0
1 b.  F"((zo,y0);(h,k)) > 0 for all (h,k) in

m Cp (w0, yo) satisfying G"((zo,yo); (h, k)) = 0.
+ Z Aggp(x) + oG (z,y) E

p+1 Based on this result, one can easily prove (see [10])
that the Lagrange multiplier rule is a consequence of

where augmentability.
1(¢ S Th 2.10L S and '
Gz, y) = ( 2) — 2 4 " 2>. eorem 2. et zop € S and suppose (Q) is aug-
(@9) 2 zlj{ga( )=y p%:lgﬁ( ) mentable at x¢. Then the Lagrange multiplier rule
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holds at x¢. Moreover, x( affords a local minimum  thus obtaining a sequence of problems where one is
tofonS. interested in minimizing

Lt 2(8), u(t)dt + K [ max{o, h(t, 2(£)) dt

As in the case of only equality constraints, the classi-/h
to

cal sufficient conditions imply augmentability. A point t

is said to satisfy thetrengthened Lagrange multiplier
rule if it belongs to without constraints in the state functions.

This technique produces a nonsmooth optimal con-

L'(N) :={zg€ S| \e P(xy), F'(zo) =0and trol problem since the the cost with the penalty term is
F'(zg;h) > 0forallh £ 0in € Rg(zo, \)} not differentiable. For that kind of problems, first order

optimality conditions are well established (see, for ex-
ample, [5]). However, in this paper, we shall propose
an augmentable integral with a penalty term which is
differentiable and for which first and also second order
conditions are obtainable.

We also refer to [4] for a non-variational method for
solving a linear quadratic optimal control problem in-
volving inequality constraints which can be treated by
using the results of this section.

Theorem 2.11Let 2y € S and suppose that, with re-
spect to )\, the strengthened Lagrange multiplier rule
holds at zy. Set y§ = ¢ga(zo). Then there exist
00, k > 0 and a neighborhood N of x( such that, if
o> oo, € N and(z,y) € K, then

H(x7y) Z H(JUanO) + k’.’l? - xO‘Q'

In particular, (Q) is augmentable at x and, for all z € _ .
NNS, A. Equality Constraints

f(x) > flxo) + k| — @0, Suppose we are given an interfak= [to, 1] in R,
two pointséy, & in R™, and functionsl, f mapping
T x R™ x R"™ to R andR" respectively. Let
[1l. OPTIMAL CONTROL PROBLEMS

A:={(t,x,u) € T x R" x R™ t,x,u) =0},
The previous theory may provide some ideas in try- i ) 4 ) }

ing to remove constraints for other optimization probwhere¢ is a function mapping” x R” x R™ to R?
lems. In this section we shall give a possible direc¢; < m). We assume that is C2 on .4 and the matrix
tion in that respect for certain classes of optimal cong,, (¢, z, ) has rank; on A.
trol problems. The main novelty of this paper corre- Denote byX the space of piecewisé! functions
sponds to problems involving equality and inequalitymappingZ” to R”, by i/ the space of piecewise contin-
constraints. uous functions mapping to R™, setZ := X x U,

It is worth mentioning that the role of penalty func-
tions in optimal control has been used to find solutionsD := {(z,u) € Z | &(t) = f(¢t,z(t),u(t)) (t € T)},
to the problem and in the derivation of necessary con-
ditions (see [3] for a detailed explanation). To illustrate Ze(A) := {(z,u) € D [ (t,z(t),u(t)) € A(t € T),
the technique used in [3], consider an optimal control z(to) = &o, x(t) = &1},

problem where the cost is given by

and
t1

L(t, z(t), u(t))dt I(x,u) = [ L(t,z(t),u(t))dt.

to

The problem we shall deal with, which we label (CP),
and constraints in the state are given by inequalities @f 15t of minimizing over Z,(A)

t1

Jto

the type The elements of are calledprocesses, o, (A)
admissible processes, and a prodess:) solveg(CP)
if (z,u) is admissible and (z,u) < I(y,v) for all

: - dmissible processés, v).
Then th traint db lizing th@ )
en the constrainis are removed by penalizing Assume thaff, L areC? on A and denote by* the

cost with the integral
transpose.

Denote by, the space of piecewise continuous
functions mapping toR" (r € N).

h(t,z(t)) <0 a.e.infty,t1].

" mas{0, h(t, 2(t)) bt

to
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For all (¢, z,u,p, ) IN T x R® x R™ x R™ x R
define

H(t7x7 u7p7u) =

<p7 f(tal'v u)> - L(ta x?“)

- <:U’v <P(tv €, u)>
For any(z,u,p, ) € Z x X x U, and(y,v) € Z let

t1

2Q(t, y(t),

Jto

J((z,u, p, p); (y,v)) : v(t))dt

where, for all(¢,y,v) € T x R" x R™,

[(y, Haa (t)y)

+ 2(y, Hyo (t)v) + (v, Hyy (t))]
andH (t) denotesH (t, z(t), u(t), p(t), u(t)).

2Q(ta Y, U) =

Normality

Definition. A process(z, ) is said to benormal if,
givenp € X andu € U, satisfying

pt) = =A% ()p(t) + @5 (¢, (), u(t)) u(t),
0= B*()p(t) — ¢yt z(t), u(t))u(t)

thenp = 0, where

A(t) i= folt, 2 (1), u(t)), B(8) := fult,z(t), u(t)).

Augmentability

Associated with the integral, consider the aug-
mented integral

t1
K(z,u;p,0) = F(t,z(t),

to

u(t))dt

where

F(t,z,u) = L(t,z,u) + (u(t), p(t, z,u))

+o(t,z,u)G(t,x,u),

ngzta:u

txu

Definition. We shall say that (CP) iaugmentable
at (xo,up) if there exists(u, o) such that(zg, up)
solves the unconstrained problem of minimizing
K(x,u;p,0) over all (x,u) € D with z(ty) = &,
z(t1) = &1, and is normal with respect to that prob-
lem, that is,z = 0 is the only solution of the system
2(t) = —A*[t]z(t), DB*[t]z(t) = 0.

Note that, in this eventiz, uo) solves (CP) since,

for any (x, ) admissible process for (CP), we have

I(zp,up) = K(zo,u0) < K(z,u) = I(x,u).

With this definition of augmentability the following

A derivation of the following set of necessary con-resylt holds (see [17]).
ditions, under normality assumptions, can be found in

[6]. In the remaining of this paper we shall denote b

[t] the point(t, zo(t), uo(t)).

Theorem 3.1Suppose (o, ug) is a normal solution of
(CP). Then there exists(p, ;1) € X x Uy such that

p(t) = —Hy (¢, xo(t), uo(t), p(t), (),
Hu(ta xﬂ(t)7u0(t)7p(t)nu(t)) =0 (t € T)
Moreover,
J((i[}o, uo, p, :u)ﬂ (y7 U)) > 0
for all (y,v) € Z satisfying
y(to) = y(t1) =0,
y(t) = foltly(t) + fultlo(t) (t€T),
ea[tly(t) + eultlu(t) =0 (€T).

yTheorem 3.2Suppose (CP)is augmentable at (xg, ug)

with respect to (u,0). Then there exists p € X such
that (p, 1) satisfies the conclusions of Theorem 3.1.

The following simple example shows that a solution
of a problem may not be normal but the problem is
augmentable at that point.

Example 3.3Consider the problem of minimizing

I(a,u) = / (u2(t) — 22(0)}dt
0
over all (z,u) € X x U satisfyingi = u, z(0) =
xz(m) =0andsinu(t) =0 (t € T).

Note first that(zo, ug) = (0,0) solves the problem.
Now, from the definition ofA andB we haveA(t) = 0
andB(t) = 1. Clearly(zo, up) is not normal since, if
(p, u) satisfies

—A(t)p(t) + @a[tlu(t) =0,

p(t)
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0 = B(t)p(t) — pultlu(t) = p(t) — u(t) Normality
then the condition = 0 does not necessarily follows. Denote byV(z, u) the set of all multiplierg: € U,
Thus we cannot apply Theorem 3.1. such thafu, (t) = 0 wheneverp, (¢, z(t), u(t)) < 0.

On the other hand, the functidnis given b . .
nthe otherhan © unctan s given by Definition. A processx, u) will be said to benormal

u? — 22 + pu(t) sinu+ So(t, 2, u) sinw. to (CQ) if, given(p, u) € X x V(z,u) such that, for

allteT,
Therefore, ifu = o = 0, then(zg, up) solves the un- . . i}
constrained problem of minimizing p(t) = —A"()p(t) + @p(t, z(t), u(t))u(t)
K(ZL‘,U; 070) — /ﬂ-{UQ(t) _ l‘2(t)}dt 0= B*(t)p(t) - (p;(t,aj(t),u(t))ﬂ(t)
0 thenp = 0.

over all (z,u) € X x U satisfyingé = u, z(0) =
z(m) = 0. Also, z = 0 is the only solution of the
system

We refer to [6, 12] for the derivation of the fol-
lowing set of necessary conditions for problem (CQ).
Let o = (@iy,-..,i,) Whereiy,. .. i, are the ac-

At = —A@)=(t) =0, B(t)z(t) = 2(t) = 0. tive indices att], that is, those € R U @ such that
wi(t, xo(t),up(t)) = 0.
Hence the problem is augmentable(a§, uo), and an  rpeqrem 3.4Suppose (g, ug) is a normal solution of

application of Theorem 3.2 yields first and second Or(CQ) Then there exists (p, 1) € X x V(wo,uo) with
der necessary conditions. fia > 0 (a € R) such that

B. Inequality Constraints p(t) = —Hz(t, xo(t), uo(t), p(t), (1)),

Suppose the data are as before except for the set of (¢, z0(t), uo(t), p(t),u(t)) =0 (t€T).

constraints which is now given by
Moreover,

A={(t,z,u) €T x R" x R™ |
J((xo0, o, p, 1t); (y,v)) >0

pa(t,z,u) <0 (a € R), ps(t,z,u) =0(8 € Q)}

for all (y,v) € Z satisfying y(to) = y(t1) =0,
whereR ={1,...,r},Q ={r+1,...,q}.

Assume that the functiop: 7" x R™ x R™ — RY y(t) = fultly(t) + fultlo(t) (teT),
given byy = (1, ..., p,) is of classC? and theg x
(m + r)-dimensional matrix S[tly(t) + @ultlv(t) =0 (teT).
i 5
Juk P Augmentability

Associated with the integral, consider the aug-

i=1,....;a=1,....,r; k=1,...,m) :
mented integral

has rank;y on A.

This condition is equivalent to the condition that at . _[h
each poin{¢, z,u) in A, the matrix K(z,u,bip, 0) = o F(t,2(t), u(®), b(t))dt
i o . where
(85’“) (t=11,...,0p; k=1,...,m)
F(t,z,u,b) = L(t,z,u) + (u(t), ¥(t, z,u,b))
has rankp, whereiy,...,i, are the indicesi €
{1,...,q} such thatp;(t,z,u) = 0. + o(t,z,u, b)G(t, z,u,b),

Consider the mixed equality/inequality constrained
optimal control problem, which we label (CQ), of min-
imizing I over Z.(A).

q

Zwi(taxvuv b)2a

1

1
G(t,x,u, b) = 5
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and the function) is given by (p, f(t,x,u, b)) — F(t,z,u,b) — (v, 3)
oit,mu)— b fficR where S, (t, z,u,b) = b* (o € R). Denote byV(b)
Yi(t,z,u,b) = { %(t’lfu) iticQ. the set of multipliers € U, such that, (t) = 0 when-

everb®(t) < 0.
Consider now the problem (R,) of minimizing Since (CQ) is augmentable atzo,ug) with

K (x,u,b; u, o) subject to respect to (p,0), (xo,u0,bp) With b§(t) =
a. (z,u,0) € X x Up, x U,. walt,zo(t),uo(t)) solves the augmented problem
b. 2(t) = f(t,z(t), u(t),b(t)) (t € T). (Paug) and is normal with respect to that problem.
c. z(to) = &o, z(t1) = &1. An application of Theorem 3.4 yields the existence of
d.0%(t) <0(a € R, t€T) (p,v) € X x V(by) with v, > 0 (o« € R) such that
where; (i, z,u,b) = J{t, , u). plt) = —H(t,o(t), uo (1), bo(t), (1), (1)),

DefineB as the set of allt, x, u, b) in T x R™ x R™ x )
R" satisfyingb® < 0 (o € R) andy (¢, x,u,b) = 0. Hy(t, (), uo(t),bo(t), p(t),v(t) =0 (teT)

Observe that and, moreover,

K(@,u,bip, o) = I(z,u) T (0, w0, bo, py v); (,0)) > 0

whenever (¢, z(t),u(t),b(t)) € B. Consequently,

for any (u,0), if (0,u0) € Zo(A) and b3 — for all (y,v) € Z satisfyingy(ty) = y(t1) =0,
((px(;: ig,( 2)7)?(§f\zés(toréle€pr(])%tsletmeofjr;])i’nitrrrll?zr:nt@h’ eortlr'ltﬂls 00 = faltly®) + fuplile(®) - (&€ T),
set of all(x, u, b) € X x Uy, x U, satisfying Beltly(t) + By ltlv(t) =0 (t€T)
i(t) = f(t,z(t),u(t),bt)) (teT), where we have used the notation
w(to) =& x(t) =& T b s () = [ 20060, o0t

to

(t, z(t), u(?), b(t)) € B (t€T)
if and only if (zo,up) solves the original problem
(CQ) _ yaﬁx + 2 Z/, U Uaﬁu Ul t)v
The definition of augmentability we propose, based [<~ (E)u) < wB)o) + 4 (1))
on the one introduced for the finite dimensional caseand H () denotesH (t, z(t), u(t), b ) p(t),v(t)).
is the following. Sincey(t, zo(t), uo(t),bo(t)) = 0forallt € T, one
readily verifies that

2Q(t, y,v) is given by

Definition. We shall say that (CQ) iaugmentable at

(o, up) if there exists i, o) such thatzo, ug, bo) with H,(t) = Hy(t) and H,(t) = Hy(t),
bg(t) = walt,zo(t),up(t)) solves the augmented

problem (R.,) and is normal with respect to that prob-and so

lem.

_ _ p(t) = —Hy (L, 2o(t), uo(1), p(1), u(1)),
Clearly, if (CQ) is augmentable &tro,up), then
(0, up) is a solution to the problem (CQ). Hy(t,xo(t),up(t),p(t),u(t)) =0 (teT).
Based on this definition, we obtain the following re-5 the other hand, we have
sult.

Theorem 3.5Let (x¢, ug) € Z.(.A) and suppose (CQ) (0, w0, bo(t), p, v); (v, v)) =

is augmentable at (o, ug) with respect to (pu, o). Then t1

there exists p € X such that (p, ;1) satisfies the conclu- J (20, o, p, p); (y, v)) + ’ o(t,zo(t),uo(t), bo(t))
sions of Theorem 3.4. ’

Proof: Let us begin by defining the Hamiltonian cor- [, o(t), uo(t))y(t) + w“(t’$O(t)’u0(t))v(t>|2dt
responding to the augmented problem, that is, and therefore

FI(t,:c,u, b,p,v) = J((zo, vo, p, p1); (y,v)) >0
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for all (y,v) € Z satisfying

y(to) = y(t1) =0,

y(t) = fm[t]y(t) + fu[t]v(t)

@[ty (t) + ultlv(t) =0

(teT),

(teT). N

IV. CONCLUSIONS

This paper provides a new approach to the deriva-
tion of first and second order necessary conditions for
certain constrained optimization problems. It is based
on the theory of augmentability which has been suc-
cessfully applied to finite dimensional problems and
convex programming. In the former, it is well-known
that it is much simpler to derive the Lagrange multi-
plier rule under an assumption of augmentability than[9]
under the assumption of regularity. With the idea of il-
lustrating this approach for problems involving equal-

ity and inequality constraints, a brief summary of thg1(]

main techniques and results is given.
For optimal control problems involving mixed equal-

ity and inequality constraints, a notion of augmentabll—[ll] M.R. Hestenes, Augmentability in optimization

ity is proposed and optimality conditions are derived.

Itis

of interest to see if the set of variations where the

(5]

[6]

[7]

(8]

second order conditions hold can be enlarged through

this approach, to obtain conditions which imply aug 12

mentability, and to derive a method of multipliers for
finding numerical solutions of such problems.
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