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Abstract—By adding penalty functions to con-
strained minimum problems in finite dimensional
spaces, one deals with unconstrained augmented prob-
lems for which the derivation of necessary optimality
conditions can be obtained. Also, this technique yields
in a natural way a method of multipliers for finding
numerical solutions. In this paper we show how cer-
tain classes of optimal control problems with equality
and inequality constraints can be treated in a similar
way. A new notion of augmentability in optimal con-
trol is introduced and, without the usual assumption of
normality, we derive first and second order necessary
conditions for optimality.

Keywords—Augmentability, optimal control prob-
lems, equality and/or inequality constraints, normality

I. I NTRODUCTION

In certain areas of optimization theory, the role of the
theory of augmentability and penalty functions is well
established. We refer to [10, 11] for an explanation
of its importance in the literature. In particular, one
type of augmentability can be seen as an alternative
approach to that of regularity in the study of minimum
problems involving equality and inequality constraints
in finite dimensional spaces. For that kind of problems,
a regularity assumption is usually imposed in order to
derive the first and second order Lagrange multiplier
rule (see [10]). However, it is generally rather difficult
to verify if a certain point satisfies the notion of reg-
ularity and therefore one has to assume other simpler
criteria to verify, such as that of normality, that imply
regularity.

In the study of that kind of constrained minimum
problems it is well known (see [10, 11]) that it is much
simpler to derive both the first and second order La-
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grange multiplier rules assuming that the problem is
augmentable at a certain point than assuming instead
either normality or regularity of the point. Another ad-
vantage of this approach is that it provides a method
of multipliers used to find numerical solutions of con-
strained minimum problems. This method has been
successfully generalized to a convex programming set-
ting in [14]. The significance of this theory both in the
finite dimensional case and in convex programming is
well established (see, for example, [1, 2, 7, 8, 13–15,
20] and references therein, where a wide range of ap-
plications illustrate the use of the theory). However,
this theory has received little attention in the develop-
ment of other areas of optimization.

In Hestenes [10, 11], Rupp [19] and, more recently,
in [16–18], several attempts to call attention to the role
of augmentability in optimization theory have been
made. In particular, in [17], a notion of augmentability
was proposed for optimal control problems involving
equality constraints both in the control and the state
functions.

In this paper we shall generalize that notion for opti-
mal control problems involving mixed equality and in-
equality constraints. Some fundamental properties of
this kind of problems have been studied and we refer to
[5] (and references therein) for a very general develop-
ment of first order necessary conditions. The new no-
tion of augmentability proposed in this paper provides
an alternative approach to the development of not only
first but also second order necessary conditions.

In order to clearly understand the type of aug-
mentability we are dealing with, we shall first state
some of the main aspects of the theories of regular-
ity and augmentability for the finite dimensional case
when equality and inequality constraints are present.
We shall then summarize the main results applicable
to optimal control problems with equality constraints
and, finally, introduce the new notion for problems in-
volving also inequality constraints.
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II. T HE FINITE DIMENSIONAL CASE

In this section we shall briefly explain the alternative
approaches of regularity and augmentability which, for
minimum problems with equality and inequality con-
straints in finite dimensional spaces, can be used in or-
der to derive the first and second order Lagrange mul-
tiplier rule. We refer to Hestenes [10, 11] for a full
account of the theory to follow.

A. Equality Constraints

Our starting point will be the case of minimum prob-
lems involving only equality constraints. As men-
tioned in the introduction, the augmentability approach
is based on the removal of constraints. Thus we shall
invoke well known optimality conditions for uncon-
strained problems, which are summarized in the fol-
lowing result.

Theorem 2.1Suppose we are given S ⊂ Rn open and
a function f :S → R of class C2 on S. If x0 affords a
local minimum to f on S then f ′(x0) = 0, f ′′(x0) ≥
0. Conversely, if x0 ∈ S, f ′(x0) = 0 and f ′′(x0) > 0,
then there exist δ,m > 0 such that

|x− x0| < δ ⇒ f(x) ≥ f(x0) +m|x− x0|2.

Let us now sate the constrained problem we shall
first study. Denote byA = {1, . . . ,m} with m < n
and suppose we are given functionsf, gα: Rn → R
(α ∈ A) and

S = {x ∈ Rn | gα(x) = 0 (α ∈ A)}.

Let us consider the problem, which we label (P), of
minimizingf onS.

For simplicity of exposition we shall assume that the
functionsf , g = (g1, . . . , gm) are of classC2 onS but,
as explained in [10], this assumption can be weakened.

For allx0 ∈ S define the set oftangential constraints
by

RS(x0) := {h ∈ Rn | g′α(x0;h) = 0 (α ∈ A)}.

A point x0 is said to satisfy theLagrange multiplier
rule if it belongs to

L(λ) := {x0 ∈ S | F ′(x0) = 0 and

F ′′(x0;h) ≥ 0 for all h ∈ RS(x0)}

where
F (x) := f(x) + 〈λ, g(x)〉

denotes the standard Lagrangian for problem (P).

Regularity

For all x0 ∈ S define the setCS(x0) of curvilinear
tangent vectors ofS at x0 as the set of allh ∈ Rn for
which there existε > 0 andx: (−ε, ε) → S such that
x(0) = x0 andẋ(0) = h.

As one readily verifies,CS(x0) ⊂ RS(x0) for all
x0 ∈ S, but the converse may not hold.

Definition. A point x0 ∈ S is called aregular point of
S if CS(x0) = RS(x0).

First and second order necessary optimality condi-
tions for the problem posed above, under the usual as-
sumption of regularity, are the content of the following
result. If that assumption is not imposed, one can eas-
ily find examples for which the optimality conditions
on a local minimum tof onS may not hold.

Theorem 2.2If x0 affords a local minimum to f on S
and x0 is a regular point of S then there exists λ ∈ Rm

such that x0 ∈ L(λ).

This result requires the regularity assumption in or-
der to assure that a local solution to the problem sat-
isfies the Lagrange multiplier rule. However, it is in
general difficult to test for regularity, and one simple
widely used criterion is that of normality. A point
x0 ∈ S is said to be anormal point ofS if the linear
equations

g′α(x0;h) = 0 (α ∈ A)

in h are linearly independent. It is well known that nor-
mality implies regularity and, moreover, the multiplier
λ in Theorem 2.2 is unique. It should be noted that the
converse, however, may not hold so that the normality
assumption is strictly stronger than that of regularity.

Augmentability

For any(λ, σ) ∈ Rm × R, consider the function

H(x) = f(x) + 〈λ, g(x)〉+ σG(x)

where

G(x) =
1
2

m∑
1

gα(x)2

and define a setA(λ, σ) as the set of allx0 ∈ S such
that x0 affords a local minimum toH. Note that no
constraints are present in this augmented problem.

Definition. We shall say that the problem (P) isaug-
mentable atx0 if x0 ∈ A(λ, σ) for some(λ, σ) ∈
Rm × R.
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Observe thatH(x) = f(x) for all x ∈ S. Clearly
this implies that, if the problem (P) is augmentable at
x0, thenx0 affords a local minimum tof onS.

A derivation of the Lagrange multiplier rule can be
obtained through the notion of augmentability. As the
next results shows, if the problem (P) is augmentable
at a pointx0, then the Lagrange multiplier rule holds
at that point.

Theorem 2.3For all (λ, σ) ∈ Rm × R,

A(λ, σ) ⊂ L(λ).

Proof: Let x0 ∈ A(λ, σ) and note that the following
two equalities hold:

H(x) = F (x) + σG(x),

S = {x ∈ Rn | G(x) = 0}.
Sincex0 affords an unconstrained local minimum to
H, it follows by Theorem 2.1 that

H ′(x0) = 0 and H ′′(x0) ≥ 0.

SinceG(x0) = 0 andG(x) ≥ 0 for all x ∈ Rn, x0

minimizesG. We invoke Theorem 2.1 once more to
conclude thatG′(x0) = 0. Therefore,

0 = H ′(x0) = F ′(x0) + σG′(x0) = F ′(x0),

0 ≤ H ′′(x0) = F ′′(x0) + σG′′(x0)

and soF ′′(x0;h) ≥ 0 wheneverG′′(x0;h) = 0.
Now, since

G′′(x0;h) =
m∑
1

g′α(x0;h)2,

we haveF ′′(x0;h) ≥ 0 whenever

g′α(x0;h) = 0 (α ∈ A),

and sox0 ∈ L(λ).

Though we shall not treat sufficiency in this paper,
it is important to mention that the classical sufficient
conditions for optimality imply augmentability. Since
a pointx0 affords a local minimum tof on S if the
problem (P) is augmentable atx0, this result provides
an alternative way of proving the classical sufficiency
theorem. It also justifies the use of the augmentability
approach in the theory of optimality conditions.

A point x0 is said to satisfy thestrengthened La-
grange multiplier ruleif it belongs to

L′(λ) := {x0 ∈ S | F ′(x0) = 0 and

F ′′(x0;h) > 0 for all h ∈ RS(x0), h 6= 0}

and, as one can easily verify, the following result holds
(see [10]) by a simple application of Theorem 2.1.

Theorem 2.4Suppose x0 ∈ L′(λ) for some λ ∈ Rm.
Then there exist σ0, k > 0 and a neighborhood N of
x0 such that, for all σ ≥ σ0 and x ∈ N ,

H(x) ≥ H(x0) + k|x− x0|2.

In particular, (P) is augmentable at x0 and, for all x ∈
S ∩N ,

f(x) ≥ f(x0) + k|x− x0|2.

To illustrate these two approaches, consider the
problem of minimizingf : R2 → R on the set

S = {(x, y) ∈ R2 | g(x, y) = 0}.

Example 2.5The point (0, 0) is not regular with re-
spect to problem (P)but the problem is augmentable at
this point.

Consider the functions

f(x, y) = x2 − y4 − 4y2, g(x, y) = y2.

Clearly (0, 0) is not a regular point ofS since
CS((0, 0)) coincides with the liney = 0, while
RS((0, 0)) is R2.

However, the problem is augmentable at(0, 0) since

H(x, y) = x2 +
(
σ − 2

2

)
y4 + (λ− 4)y2

is minimized at the origin withλ = 4 andσ > 2.

Example 2.6The point (0, 0) is regular with respect to
problem (P)but the problem is not augmentable at this
point.

Consider the functions

f(x, y) = x2 + 2x+ y4, g(x, y) = xy − x.

It is clear thatf has a strict local minimum at(0, 0)
onS. Sinceg′(0, 0) 6= (0, 0), it is a normal point and
hence regular for (P).

However, the problem is not augmentable at(0, 0).
To prove it, note that

H(x, y) = x2
(

1+
σ

2
(y−1)2

)
+(2−λ)x+λxy+y4.

If H ′(0, 0) = (0, 0), we must haveλ = 2. Hence,

H(x, y) = x2
(

1 +
σ

2
(y − 1)2

)
+ 2xy + y4.
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We can suppose thatσ ≥ 0. If (y − 1)2 ≤ 4, y2 <
1/(1 + 2σ) andx = −y/(1 + 2σ), we see that

H(x, y) ≤ y2
(
y2 − 1

1 + 2σ

)
< 0 = H(0, 0)

and so (P) is not augmentable at(0, 0).

Let us briefly mention that one of the main advan-
tages of the augmentability approach is that it provides
in a natural way a method for solving the original prob-
lem. Using the notation

H(x, λ, σ) = f(x) + 〈λ, g(x)〉+
σ

2
|g(x)|2

the method consists in choosingλ0 and σ > 0,
hopefully so thatH(x, λ0, σ) is convex inx. Select
ξ0, ξ1, . . . with ξk ≥ ξ0 > 0 and choosexk, λk succes-
sively so thatxk minimizes

H(x, λk−1, σ + ξk−1)

and set
λk = λk−1 + ξk−1g(xk).

Then, as explained in [11], usually{xk} converges to
a solutionx0 of the original problem. Moreover, in
this case,{λk} converges to the Lagrange multiplier
associated withx0.

B. Inequality Constraints

Let us now present the main features related to the
regularity and augmentability approaches for problems
involving equality and inequality constraints. This will
allow us to compare it with the notion of augmentabil-
ity introduced in the following section for optimal con-
trol problems.

Suppose we are given functionsf mappingRn to R
andg = (g1, . . . , gm) mappingRn to Rm. Let now

S := {x ∈ Rn | gα(x) ≤ 0 (α ∈ A),
gβ(x) = 0 (β ∈ B)}

whereA = {1, . . . , p} andB = {p + 1, . . . ,m}, and
consider the problem, which we label (Q), of minimiz-
ing f on S. As before, we shall assume thatf andg
areC2(S).

For this problem, theLagrangian(with respect toλ
in Rm) coincides with the one for equality constraints,
that is,

F (x) = f(x) + 〈λ, g(x)〉 (x ∈ Rn).

We define the set ofLagrange multipliersatx ∈ S as

P (x) = {λ ∈ Rm | λα ≥ 0 (α ∈ A),
λα = 0 if gα(x) < 0}.

The setRS(x) of tangential constraintsatx ∈ S cor-
responds to

{h ∈ Rn | g′α(x;h) ≤ 0 (α ∈ A, gα(x) = 0),

g′β(x;h) = 0 (β ∈ B)},

and the set̃RS(x, λ) of modified tangential constraints
is given by

{h ∈ RS(x) | g′α(x;h) = 0 (α ∈ A, λα > 0)}.

A point x0 is said to satisfy theLagrange multiplier
rule if it belongs to

L(λ) := {x0 ∈ S | λ ∈ P (x0), F ′(x0) = 0 and

F ′′(x0;h) ≥ 0 for all h ∈ R̃S(x0, λ)}

Note that the second order condition holds not on the
set of tangential constraints but on the modified one.

Regularity

For this problem we begin by recalling the notion of
tangent cone of a set inRn at a given point.

A sequence{xq} ⊂ Rn will be said toconverge to
x0 in the directionh if h is a unit vector,xq 6= x0, and

lim
q→∞

|xq − x0| = 0, lim
q→∞

xq − x0

|xq − x0|
= h.

Given x0 ∈ C ⊂ Rn, the tangent cone ofC at x0,
denoted byTC(x0), is the (closed) cone determined by
the unit vectorsh for which there exists a sequence
{xq} in C converging tox0 in the directionh.

One can find other equivalent definitions of this
set but the one we are using corresponds to that of
Hestenes [9, 10].

Now, as one readily verifies, for the setS of con-
straints delimiting our problem (Q),TS(x0) ⊂ RS(x0)
for all x0 ∈ S but the converse may not hold.

Definition. A point x0 ∈ S will be called aregular
point ofS if TS(x0) = RS(x0).

The regularity approach, as in the case of the previ-
ous problem (P), provides first order optimality condi-
tions for problem (Q), and it can be stated as follows.

Theorem 2.7If x0 affords a local minimum to f on
S and x0 is a regular point of S then there exists λ ∈
P (x0) such that F ′(x0) = 0.
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Second order necessary conditions hold again if a
regularity assumption is imposed on a local solution
satisfying the first order Lagrange multiplier. This as-
sumption, however, is not imposed on the setS but
on a subset ofS which takes into account positive La-
grange multipliers. The following result summarizes
those conditions.

Theorem 2.8Let x0 ∈ S and suppose there exists λ ∈
P (x0) such that F ′(x0) = 0. Let

S̃ := {x ∈ S | gα(x) = 0 (α ∈ A, λα > 0)}.

If x0 affords a local minimum to f on S and x0 is a
regular point of S̃ then x0 ∈ L(λ).

The derivation of the Lagrange multiplier rule
through this approach usually requires several funda-
mental results on the theory of convex cones. On the
other hand, it is generally difficult to test for regularity
and, as in the case of equality constraints, one criterion
is that of normality. A pointx0 ∈ S is said to be a
normal point ofS if the relations

m∑
i=1

λig
′
i(x0) = 0 and λ ∈ P (x0)

imply thatλ = 0. One can then prove, by making use
of the implicit function theorem, that normality implies
regularity.

Augmentability

Let us turn now to the augmentability approach. As
explained in the introduction, the main purpose of this
approach is to simplify the original problem by remov-
ing constraints.

To begin with, let

Ŝ = {(x, y) ∈ Rn × Rp | yα ≤ 0,
gα(x)− yα = 0 (α ∈ A), gβ(x) = 0 (β ∈ B)}

and, for all(λ, σ) ∈ Rm × R, define

H(x, y) = f(x) +
p∑
1

λα(gα(x)− yα)

+
m∑

p+1

λβgβ(x) + σG(x, y)

where

G(x, y) =
1
2

( p∑
1

{gα(x)− yα}2 +
m∑

p+1

gβ(x)2
)
.

Note that we can expresŝS as

Ŝ = {(x, y) : G(x, y) = 0, yα ≤ 0 (α ∈ A)}.

Observe that
H(x, y) = f(x)

whenever(x, y) ∈ Ŝ. Consequently, ifx0 ∈ S and
yα
0 = gα(x0) (α ∈ A), (x0, y0) affords a local mini-

mum toH on Ŝ if and only if x0 is a local solution to
our original problem (Q).

Definition. We shall say that (Q) isaugmentableat
x0 ∈ S if there exists(λ, σ) ∈ Rm × R such that
(x0, y0), with yα

0 = gα(x0) (α ∈ A), affords a local
minimum toH on the set

K = {(x, y) ∈ Rn × Rp | yα ≤ 0 (α ∈ A)}.

Clearly, if (Q) is augmentable atx0, thenx0 affords
a local minimum tof onS.

Let us state necessary conditions for the problem
of minimizing H on K. Define the augmented La-
grangian with respect tof , g andλ ∈ Rm by

F̂ (x, y) = f(x) + 〈λ, g(x)〉 −
p∑
1

λαy
α

and observe that

H(x, y) = F̂ (x, y) + σG(x, y).

LetCF̂ (x, y) to be the set of points(h, k) in Rn × Rp

such that
kα ≤ 0 if yα = 0,

and
kα = 0 if F̂yα(x, y) = −λα < 0.

Theorem 2.9Let (x0, y0) ∈ Ŝ and suppose that, for
some σ ∈ R, (x0, y0) affords a local minimum to H
on K. Then (x0, y0) affords a local minimum to F̂ on
Ŝ and the following holds:

a. F̂x(x0, y0) = 0, F̂yα(x0, y0) ≤ 0 with equality if
yα
0 < 0.
b. F̂ ′′((x0, y0); (h, k)) ≥ 0 for all (h, k) in

CF̂ (x0, y0) satisfying G′′((x0, y0); (h, k)) = 0.

Based on this result, one can easily prove (see [10])
that the Lagrange multiplier rule is a consequence of
augmentability.

Theorem 2.10Let x0 ∈ S and suppose (Q) is aug-
mentable at x0. Then the Lagrange multiplier rule
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holds at x0. Moreover, x0 affords a local minimum
to f on S.

As in the case of only equality constraints, the classi-
cal sufficient conditions imply augmentability. A point
is said to satisfy thestrengthened Lagrange multiplier
rule if it belongs to

L′(λ) := {x0 ∈ S | λ ∈ P (x0), F ′(x0) = 0 and

F ′′(x0;h) > 0 for all h 6= 0 in ∈ R̃S(x0, λ)}

Theorem 2.11Let x0 ∈ S and suppose that, with re-
spect to λ, the strengthened Lagrange multiplier rule
holds at x0. Set yα

0 = gα(x0). Then there exist
σ0, k > 0 and a neighborhood N of x0 such that, if
σ ≥ σ0, x ∈ N and (x, y) ∈ K, then

H(x, y) ≥ H(x0, y0) + k|x− x0|2.

In particular, (Q) is augmentable at x0 and, for all x ∈
N ∩ S,

f(x) ≥ f(x0) + k|x− x0|2.

III. O PTIMAL CONTROL PROBLEMS

The previous theory may provide some ideas in try-
ing to remove constraints for other optimization prob-
lems. In this section we shall give a possible direc-
tion in that respect for certain classes of optimal con-
trol problems. The main novelty of this paper corre-
sponds to problems involving equality and inequality
constraints.

It is worth mentioning that the role of penalty func-
tions in optimal control has been used to find solutions
to the problem and in the derivation of necessary con-
ditions (see [3] for a detailed explanation). To illustrate
the technique used in [3], consider an optimal control
problem where the cost is given by∫ t1

t0
L(t, x(t), u(t))dt

and constraints in the state are given by inequalities of
the type

h(t, x(t)) ≤ 0 a.e. in[t0, t1].

Then the constraints are removed by penalizing the
cost with the integral∫ t1

t0
max{0, h(t, x(t))}dt

thus obtaining a sequence of problems where one is
interested in minimizing∫ t1

t0
L(t, x(t), u(t))dt+K

∫ t1

t0
max{0, h(t, x(t))}dt

without constraints in the state functions.
This technique produces a nonsmooth optimal con-

trol problem since the the cost with the penalty term is
not differentiable. For that kind of problems, first order
optimality conditions are well established (see, for ex-
ample, [5]). However, in this paper, we shall propose
an augmentable integral with a penalty term which is
differentiable and for which first and also second order
conditions are obtainable.

We also refer to [4] for a non-variational method for
solving a linear quadratic optimal control problem in-
volving inequality constraints which can be treated by
using the results of this section.

A. Equality Constraints

Suppose we are given an intervalT := [t0, t1] in R,
two pointsξ0, ξ1 in Rn, and functionsL, f mapping
T × Rn × Rm to R andRn respectively. Let

A := {(t, x, u) ∈ T × Rn × Rm | ϕ(t, x, u) = 0},

whereϕ is a function mappingT × Rn × Rm to Rq

(q ≤ m). We assume thatϕ isC2 onA and the matrix
ϕu(t, x, u) has rankq onA.

Denote byX the space of piecewiseC1 functions
mappingT to Rn, byU the space of piecewise contin-
uous functions mappingT to Rm, setZ := X × U ,

D := {(x, u) ∈ Z | ẋ(t) = f(t, x(t), u(t)) (t ∈ T )},

Ze(A) := {(x, u) ∈ D | (t, x(t), u(t)) ∈ A (t ∈ T ),

x(t0) = ξ0, x(t1) = ξ1},

and

I(x, u) :=
∫ t1

t0
L(t, x(t), u(t))dt.

The problem we shall deal with, which we label (CP),
is that of minimizingI overZe(A).

The elements ofZ are calledprocesses, ofZe(A)
admissible processes, and a process(x, u) solves(CP)
if (x, u) is admissible andI(x, u) ≤ I(y, v) for all
admissible processes(y, v).

Assume thatf, L areC2 onA and denote by ‘∗’ the
transpose.

Denote byUr the space of piecewise continuous
functions mappingT to Rr (r ∈ N).
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For all (t, x, u, p, µ) in T × Rn × Rm × Rn × Rq

define

H(t, x, u, p, µ) := 〈p, f(t, x, u)〉 − L(t, x, u)

− 〈µ, ϕ(t, x, u)〉.

For any(x, u, p, µ) ∈ Z ×X × Uq and(y, v) ∈ Z let

J((x, u, p, µ); (y, v)) :=
∫ t1

t0
2Ω(t, y(t), v(t))dt

where, for all(t, y, v) ∈ T × Rn × Rm,

2Ω(t, y, v) := − [〈y,Hxx(t)y〉

+ 2〈y,Hxu(t)v〉+ 〈v,Huu(t)v〉]

andH(t) denotesH(t, x(t), u(t), p(t), µ(t)).

Normality

Definition. A process(x, u) is said to benormal if,
givenp ∈ X andµ ∈ Uq satisfying

ṗ(t) = −A∗(t)p(t) + ϕ∗x(t, x(t), u(t))µ(t),

0 = B∗(t)p(t)− ϕ∗u(t, x(t), u(t))µ(t)

thenp ≡ 0, where

A(t) := fx(t, x(t), u(t)), B(t) := fu(t, x(t), u(t)).

A derivation of the following set of necessary con-
ditions, under normality assumptions, can be found in
[6]. In the remaining of this paper we shall denote by
[t] the point(t, x0(t), u0(t)).

Theorem 3.1Suppose (x0, u0) is a normal solution of
(CP). Then there exists(p, µ) ∈ X × Uq such that

ṗ(t) = −H∗
x(t, x0(t), u0(t), p(t), µ(t)),

Hu(t, x0(t), u0(t), p(t), µ(t)) = 0 (t ∈ T ).

Moreover,

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying

y(t0) = y(t1) = 0,

ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T ),

ϕx[t]y(t) + ϕu[t]v(t) = 0 (t ∈ T ).

Augmentability

Associated with the integralI, consider the aug-
mented integral

K(x, u;µ, σ) =
∫ t1

t0
F (t, x(t), u(t))dt

where

F (t, x, u) = L(t, x, u) + 〈µ(t), ϕ(t, x, u)〉

+ σ(t, x, u)G(t, x, u),

G(t, x, u) =
1
2

q∑
1

ϕi(t, x, u)2.

Definition. We shall say that (CP) isaugmentable
at (x0, u0) if there exists(µ, σ) such that(x0, u0)
solves the unconstrained problem of minimizing
K(x, u;µ, σ) over all (x, u) ∈ D with x(t0) = ξ0,
x(t1) = ξ1, and is normal with respect to that prob-
lem, that is,z ≡ 0 is the only solution of the system

ż(t) = −A∗[t]z(t), B∗[t]z(t) = 0.

Note that, in this event,(x0, u0) solves (CP) since,
for any(x, u) admissible process for (CP), we have

I(x0, u0) = K(x0, u0) ≤ K(x, u) = I(x, u).

With this definition of augmentability the following
result holds (see [17]).

Theorem 3.2Suppose (CP)is augmentable at (x0, u0)
with respect to (µ, σ). Then there exists p ∈ X such
that (p, µ) satisfies the conclusions of Theorem 3.1.

The following simple example shows that a solution
of a problem may not be normal but the problem is
augmentable at that point.

Example 3.3Consider the problem of minimizing

I(x, u) =
∫ π

0
{u2(t)− x2(t)}dt

over all (x, u) ∈ X × U satisfyingẋ = u, x(0) =
x(π) = 0 andsinu(t) = 0 (t ∈ T ).

Note first that(x0, u0) ≡ (0, 0) solves the problem.
Now, from the definition ofA andB we haveA(t) = 0
andB(t) = 1. Clearly(x0, u0) is not normal since, if
(p, µ) satisfies

ṗ(t) = −A(t)p(t) + ϕx[t]µ(t) = 0,
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0 = B(t)p(t)− ϕu[t]µ(t) = p(t)− µ(t)

then the conditionp ≡ 0 does not necessarily follows.
Thus we cannot apply Theorem 3.1.

On the other hand, the functionF is given by

u2 − x2 + µ(t) sinu+ 1
2σ(t, x, u) sin2 u.

Therefore, ifµ ≡ σ ≡ 0, then(x0, u0) solves the un-
constrained problem of minimizing

K(x, u; 0, 0) =
∫ π

0
{u2(t)− x2(t)}dt

over all (x, u) ∈ X × U satisfyingẋ = u, x(0) =
x(π) = 0. Also, z ≡ 0 is the only solution of the
system

ż(t) = −A(t)z(t) = 0, B(t)z(t) = z(t) = 0.

Hence the problem is augmentable at(x0, u0), and an
application of Theorem 3.2 yields first and second or-
der necessary conditions.

B. Inequality Constraints

Suppose the data are as before except for the set of
constraints which is now given by

A = {(t, x, u) ∈ T × Rn × Rm |

ϕα(t, x, u) ≤ 0 (α ∈ R), ϕβ(t, x, u) = 0 (β ∈ Q)}

whereR = {1, . . . , r},Q = {r + 1, . . . , q}.
Assume that the functionϕ:T × Rn × Rm → Rq

given byϕ = (ϕ1, . . . , ϕq) is of classC2 and theq ×
(m+ r)-dimensional matrix(

∂ϕi

∂uk
δiαϕα

)
(i = 1, . . . , q; α = 1, . . . , r; k = 1, . . . ,m)

has rankq onA.
This condition is equivalent to the condition that at

each point(t, x, u) in A, the matrix(
∂ϕi

∂uk

)
(i = i1, . . . , ip; k = 1, . . . ,m)

has rankp, where i1, . . . , ip are the indicesi ∈
{1, . . . , q} such thatϕi(t, x, u) = 0.

Consider the mixed equality/inequality constrained
optimal control problem, which we label (CQ), of min-
imizing I overZe(A).

Normality

Denote byV(x, u) the set of all multipliersµ ∈ Uq

such thatµα(t) = 0 wheneverϕα(t, x(t), u(t)) < 0.

Definition. A process(x, u) will be said to benormal
to (CQ) if, given(p, µ) ∈ X × V(x, u) such that, for
all t ∈ T ,

ṗ(t) = −A∗(t)p(t) + ϕ∗x(t, x(t), u(t))µ(t)

0 = B∗(t)p(t)− ϕ∗u(t, x(t), u(t))µ(t)

thenp ≡ 0.

We refer to [6, 12] for the derivation of the fol-
lowing set of necessary conditions for problem (CQ).
Let ϕ̂ = (ϕi1 , . . . , ϕip) where i1, . . . , ip are the ac-
tive indices at[t], that is, thosei ∈ R ∪ Q such that
ϕi(t, x0(t), u0(t)) = 0.

Theorem 3.4Suppose (x0, u0) is a normal solution of
(CQ). Then there exists (p, µ) ∈ X × V(x0, u0) with
µα ≥ 0 (α ∈ R) such that

ṗ(t) = −H∗
x(t, x0(t), u0(t), p(t), µ(t)),

Hu(t, x0(t), u0(t), p(t), µ(t)) = 0 (t ∈ T ).

Moreover,

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying y(t0) = y(t1) = 0,

ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T ),

ϕ̂x[t]y(t) + ϕ̂u[t]v(t) = 0 (t ∈ T ).

Augmentability

Associated with the integralI, consider the aug-
mented integral

K(x, u, b;µ, σ) =
∫ t1

t0
F (t, x(t), u(t), b(t))dt

where

F (t, x, u, b) = L(t, x, u) + 〈µ(t), ψ(t, x, u, b)〉

+ σ(t, x, u, b)G(t, x, u, b),

G(t, x, u, b) =
1
2

q∑
1

ψi(t, x, u, b)2,
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and the functionψ is given by

ψi(t, x, u, b) =

{
ϕi(t, x, u)− bi if i ∈ R
ϕi(t, x, u) if i ∈ Q.

Consider now the problem (Paug) of minimizing
K(x, u, b;µ, σ) subject to

a. (x, u, b) ∈ X × Um × Ur.
b. ẋ(t) = f̂(t, x(t), u(t), b(t)) (t ∈ T ).
c. x(t0) = ξ0, x(t1) = ξ1.
d. bα(t) ≤ 0 (α ∈ R, t ∈ T )

wheref̂(t, x, u, b) = f(t, x, u).
DefineB as the set of all(t, x, u, b) in T×Rn×Rm×

Rr satisfyingbα ≤ 0 (α ∈ R) andψ(t, x, u, b) = 0.
Observe that

K(x, u, b;µ, σ) = I(x, u)

whenever(t, x(t), u(t), b(t)) ∈ B. Consequently,
for any (µ, σ), if (x0, u0) ∈ Ze(A) and bα0 =
ϕ(t, x0(t), u0(t)) (α ∈ R, t ∈ T ), then the triple
(x0, u0, b0) solves the problem of minimizingK on the
set of all(x, u, b) ∈ X × Um × Ur satisfying

ẋ(t) = f̂(t, x(t), u(t), b(t)) (t ∈ T ),

x(t0) = ξ0, x(t1) = ξ1,

(t, x(t), u(t), b(t)) ∈ B (t ∈ T )

if and only if (x0, u0) solves the original problem
(CQ).

The definition of augmentability we propose, based
on the one introduced for the finite dimensional case,
is the following.

Definition. We shall say that (CQ) isaugmentable at
(x0, u0) if there exists(µ, σ) such that(x0, u0, b0) with
bα0 (t) := ϕα(t, x0(t), u0(t)) solves the augmented
problem (Paug) and is normal with respect to that prob-
lem.

Clearly, if (CQ) is augmentable at(x0, u0), then
(x0, u0) is a solution to the problem (CQ).

Based on this definition, we obtain the following re-
sult.

Theorem 3.5Let (x0, u0) ∈ Ze(A) and suppose (CQ)
is augmentable at (x0, u0) with respect to (µ, σ). Then
there exists p ∈ X such that (p, µ) satisfies the conclu-
sions of Theorem 3.4.
Proof: Let us begin by defining the Hamiltonian cor-
responding to the augmented problem, that is,

H̃(t, x, u, b, p, ν) =

〈p, f̂(t, x, u, b)〉 − F (t, x, u, b)− 〈ν, β〉

whereβα(t, x, u, b) = bα (α ∈ R). Denote byṼ(b)
the set of multipliersν ∈ Ur such thatνα(t) = 0 when-
everbα(t) < 0.

Since (CQ) is augmentable at(x0, u0) with
respect to (µ, σ), (x0, u0, b0) with bα0 (t) :=
ϕα(t, x0(t), u0(t)) solves the augmented problem
(Paug) and is normal with respect to that problem.
An application of Theorem 3.4 yields the existence of
(p, ν) ∈ X × Ṽ(b0) with να ≥ 0 (α ∈ R) such that

ṗ(t) = −H̃∗
x(t, x0(t), u0(t), b0(t), p(t), ν(t)),

H̃u(t, x0(t), u0(t), b0(t), p(t), ν(t)) = 0 (t ∈ T )

and, moreover,

J̃((x0, u0, b0, p, ν); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfyingy(t0) = y(t1) = 0,

ẏ(t) = f̂x[t]y(t) + f̂(u,b)[t]v(t) (t ∈ T ),

βx[t]y(t) + β(u,b)[t]v(t) = 0 (t ∈ T )

where we have used the notation

J̃((x, u, b, p, ν); (y, v) =
∫ t1

t0
2Ω̃(t, y(t), v(t))dt,

2Ω̃(t, y, v) is given by

− [〈y, H̃xx(t)y〉+ 2〈y, H̃xub(t)v〉+ 〈v, H̃ubub(t)v〉]

andH̃(t) denotesH̃(t, x(t), u(t), b(t), p(t), ν(t)).
Sinceψ(t, x0(t), u0(t), b0(t)) = 0 for all t ∈ T , one

readily verifies that

H̃x(t) = Hx(t) and H̃u(t) = Hu(t),

and so

ṗ(t) = −H∗
x(t, x0(t), u0(t), p(t), µ(t)),

Hu(t, x0(t), u0(t), p(t), µ(t)) = 0 (t ∈ T ).

On the other hand, we have

J̃((x0, u0, b0(t), p, ν); (y, v)) =

J((x0, u0, p, µ); (y, v)) +
∫ t1

t0
σ(t, x0(t), u0(t), b0(t))

|ϕx(t, x0(t), u0(t))y(t) + ϕu(t, x0(t), u0(t))v(t)|2dt

and therefore

J((x0, u0, p, µ); (y, v)) ≥ 0
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for all (y, v) ∈ Z satisfying

y(t0) = y(t1) = 0,

ẏ(t) = fx[t]y(t) + fu[t]v(t) (t ∈ T ),

ϕ̂x[t]y(t) + ϕ̂u[t]v(t) = 0 (t ∈ T ).

IV. CONCLUSIONS

This paper provides a new approach to the deriva-
tion of first and second order necessary conditions for
certain constrained optimization problems. It is based
on the theory of augmentability which has been suc-
cessfully applied to finite dimensional problems and
convex programming. In the former, it is well-known
that it is much simpler to derive the Lagrange multi-
plier rule under an assumption of augmentability than
under the assumption of regularity. With the idea of il-
lustrating this approach for problems involving equal-
ity and inequality constraints, a brief summary of the
main techniques and results is given.

For optimal control problems involving mixed equal-
ity and inequality constraints, a notion of augmentabil-
ity is proposed and optimality conditions are derived.
It is of interest to see if the set of variations where the
second order conditions hold can be enlarged through
this approach, to obtain conditions which imply aug-
mentability, and to derive a method of multipliers for
finding numerical solutions of such problems.
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