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Cones of Critical Directions in Optimal Control

Javier F. Rosenbluetand Gerardo & chez Liceh

Abstract—In this paper we study a fundamental as{ution is derived by solving numerically a Riccati equa-
pect of the theory of second order necessary conditioti®n. The question on the nonnegativity of a quadratic
for certain classes of optimal control problems involvform posed in this paper plays a fundamental role in
ing equality and/or inequality constraints in the contesting for possible candidates as optimal controls for
trol. It is well-known that, under certain normality as-such problems.
sumptions, a certain quadratic form is nonnegative on aBefore we state the problem we shall deal with,
cone of critical directions (or differentially admissible and for comparison reasons, let us first give a brief
variations). The purpose of this paper is to characterizaverview of well-known second order necessary con-
normality in terms of some regularity assumptions anditions for other optimization problems which also in-
to illustrate through several examples the fact that, byolve equality and/or inequality constraints. We shall
assuming those types of regularity, the result may fagxplicitly state, for those problems, two different con-
to hold on the former and larger sets of critical direcditions of second order which can be found in the lit-
tions. erature and for which one implies the other, being the

. . former in this sense a stronger condition than the latter.
Keywords—Optimal control, second order condi- 9

tions, equality and/or inequality constraints, normalityA The finite dimensional case

The approach we follow for the finite dimensional
|. INTRODUCTION case, which yields well-known first and second order
necessary conditions, is based on the notions of regu-
This paper deals with second order necessary coprity and normality. A full account of these ideas can
ditions for certain classes of optimal control problemse found in [7].
posed over piecewise continuous controls and involv- | et us begin with a problem involving nonlinear

ing equality and/or inequality constraints in the controkquality constraints. Suppose we are given functions
functions. The importance of deriving such conditionsf 4, ... ¢,, mappingR™ to R (m < n) and we are

from a theoretical point of view as well as due to gnterested in minimizing’ on S where
wide range of applications is fully explained in [1, 2,

5, 8-13, 15-21] and references therein. S={x€R"|ga(z) =0(axe€ A)}
There is an extensive literature on second order con- ]
ditions for optimal control problems and how the the@ndA4 = {1,..., m}. It will be assumed that the func-

ory can be applied to practical problems. Different aptions f; ga (o € A) are of clasg”? ons.

plications can be found in [11, 12] and, in particular, FOr allzo € S define the set ofurvilinear tangent
two problems posed in [12] can be studied by applyY€ctors ofS atzo as

ing the theory that follows. One is the classical prob- o n ,

lem of a planar Earth-Mars orbit transfer with minimal Cs(0) == {h € R" | there exise > 0 and
transfertime, while the second deals with the Rayleigh .. (—e,¢) — S such thate(0) = zo andi(0) = A}
problem with control constraints, that is, the control of O '
currentin a tunnel-diode oscillator. We refer to [12] forand the set of vectors satisfying th@ngential con-
a full discussion of the two applications and how a sostraints ofS atz as

Rs(wo) i= {h € R" | gl(a0)h = 0 ( € A)}.

*IIMAS-UNAM, National Autonomous University of Mex-

ico, Apartado Postal 20-726, Mexico DF 01000, Mexico (e-mail: . -
ifd@unam.mx). As one readily verifiesCs(xg) C Rg(zo) for all

"Faculty of Sciences, National Autonomous University of0 € S, but the converse may not hold. dfs(zo) =
Mexico, Av Universidad 3000, Mexico DF 04510, Mexico (e-mail: 2s(z0), o € S is said to be aegular point of S.
gesl@ciencias.unam.mx). This notion yields first and second order conditions
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in terms of the standard Lagrangian defined, for all (i € I(zg) UB)}.

((z,4) € R" x R™), by Supposer, affords a local minimum tof on S. If

m ga(z0) < 0, lete, > 0 be such thafr — zg| < €4 =
F(z,A) = f(x) + Z)\aga(az). go(x) < 0 and let
1

N ={reR": |z - <
Theorem 1.1Suppose xq affords a local minimum to f (w0) := {2 e = zof <€}

on S. If xg is a regular point of S then there exists \ €  \yheree — min{es | ga(zo) < 0}. If A = I(z), set
R™ such that F,(z9,\) = 0 and (h, Fy.(z9,\)h) > 0 N(zo) := R™.

for all h € Rg(xo). SinceS(zo) N N(xz¢) C S, xo also affords a local
minimum to f on S(zp). By Theorem 1.2, ifzq is

In general it is difficult to test for regularity and one | point ofS that is. the li i
criterion, easier to verify, is that of normality. We Sha”a/norma poin i 0fS(zo) (tha IS, the€ linéar equations
(xo;h) =0 (i € I(zg) U B) in h are linearly inde-

say thatx is anormal point ofS if the linear i . .
eqﬁations? <7 P 5 pendent), then there exists a unique R? (¢ denotes

the cardinality of/ (z¢) U B) such thatG,(z¢, \) = 0
gh(z0;h) == g(z0)h =0 (a € A) where, for all((z, A\) € R™ x RY),

in h are linearly independent, that is, if the gradients G(z, ) := f(z) + Z Aigi(x).
g1 (xo0), ..., q.,(xo) are linearly independent, which is i€l(zo)UB
equivalent to the requirement that the matrix

Moreover, for allh € Rs(mo)(azo),

9ga(0) C i
< Bt > (a:l,...,m,l—l,...,n) <h7Gmx(x0,)\)h>ZO.

be of rankm. It is well-known that, ifzy is a normal It can be shown that, in this ever, > 0 for all o €
point of S then itis a regular point o§ and, moreover, I(x) and so, if we let

the multiplier\ in Theorem 1.1 is unique. This yields

the following result. P(z9) :={A € R™ | Ay > 0 (a € I(m0)),

Theorem 1.2Suppose xq affords a local minimum to Ao = 0 (ga(z0) < 0)}

fon S. If xg is a normal point of S then there exists _ _ .
a unique A € R™ such that F,(z0, \) = 0. Moreover. and defineF’ as before, we obtain the following set of
X b - * >

(h, Fyp (0, \Vh) > 0 for all h € Rg(x0). first and second order necessary conditions.

Let us now change the data of the problem and sug-"€0rém 1.3Suppose zy affords a local minimum to f
on S. If z¢ is a normal point of S(x¢) then there exists

pose that :
a unique A € P(xz¢) such that F,;(xo, \) = 0. More-
S={r€R"|ga(z) <0 (ac A, over, (h, Fyz (w0, \)h) > 0 forall h € Rg(y,)(70)-
gs(x) =0 (8 € B)} This result does provide second order necessary con-
ditions but, as we shall see next, they can be improved
whereA = {1,...,p}, B={p+1,...,m}. considerably. To do so, let us consider not curvilin-

We shall first show how the theory of the previousear tangent vectors but thangent cone of5 at x,
case can be applied to this problem. Foralle S denoted byI's(z), which is the (closed) cone deter-

define the set odctive indicesatz by mined by the unit vectoré for which there exists a
' sequencqx,, } in S converging taz in the direction
I(wg) := {a € A| ga(wo) = 0} h in the sense that,, # z,, and
and let _
lim |z, —xo| =0, T

m—o00 m—00 |1;m — x0| o

S(zp) :={z € R" | ga(z) =0 (a € I(xy)),
B Define the set of vectors satisfying ttemgential con-
9s(z) =0 (5 € B)} straints ofS at zo by
together with its corresponding set of tangential con-
straints atcy, that is, Rs(zo) := {h € R"| g, (z0; h) <0 (a € I(z0)),

Rg(zg)(20) := {h € R" | gi(xo;h) =0 gh(zo;h) = 0 (3 € B)}.
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As before we havds(xg) C Rs(x) forall g € S, Note that, for any\ € P(z¢), Rg(a,)(z0) is a sub-
but the converse may not hold. Tk (z0) = Rs(70),  set of Rg(o; A), and usually the contention is proper.
we say thatrg € S is aregular point ofS. Let In fact, one can easily find examples for which a

_ point xy belongs tof so that, for some\ € P(x),
&= {.CL‘O es ‘ there exists\ € P(.ZE()) such that F:L’(an A) — 0 and, moreover(h,Fm(xg, A)h> > 0

Fu (0, A) = 0. forall h € Rg,,) (7o), butzo is a reg~ular pointS),
_ _ ) and(h, Fy,(xo, \)h) < 0 for someh € Rg(xp; A). In
Itis well-known thatz, € £ if and only if this event, Theorem 1.3 gives no information, but one

concludes from Theorem 1.4 that the paigtdoes not
afford a local minimum tgf on S. For this reason, we
shall call the second order conditions given in Theo-
rems 1.3 and 1l.4veakand strong conditions respec-
tively.

f/(x(); h) >(0forallh e Rs(xo)

and, if xo is a regular point of5 which affords a local
minimum to f on S, thenz € &.
Now, supposery € £ and\ € P(x() is such that

Fy(x0,A) = 0. LetD' := {a € A | Ay > 0} and  B. Isoperimetric control problem of Lagrange

define the sef, of modified constraintas ) ) )
Let us consider now the following optimal control

Sy:={z€R"| ga(z) <0 (a € A, N\ =0), problem involving isoperimetric constraints (see [6]
for details), and briefly explain how a situation simi-
g3(z) =0 (el UDB)} lar to that of the finite dimensional case occurs.
which satisfies Suppose we are interested in minimizing
~ t1
Sy = {x€S|ga(z)=0(xel)} I(z,u) = / L(t,z(t),u(t))dt
= {z eS| FxN = f()}. v
subject to
Define a set ofmodified tangential constraints z:T — R" piecewiseC'; u:T — R™ piecewise
. . continuous;
Rs(zo; A) :={h € R" | go(z0;h) <0 i(t) = f(t,z(t),u(t) (t € T), andz(ty) = &,
z(t1) = &1,
(o € I(xg), A\ = 0), g'ﬂ(xo;h) =0(BeTUB)} Io(z,u) <0 (a € R), Is(z,u) =0 (3 € Q),
which satisfies whereR and@ are two disjointindex set§, = [to, t1],
and

Rg(xg; A\) = {h € Rs(x0) | g, (w0;h) =0 (a € T)}

Limu)may+ [ Lyt (), u(t))d.

= {h € Rs(xq) | f'(xo; h) = 0}. to
The improved second order conditions correspond to Assuming thayf, L, L. areC?, the strong second or-
the following result. der conditions established in [6] state that(af), uo)

. is an “extremal” which solves the problem (with, for

Theorem 1.4 Suppose o affords a local minimum to  gimpjicity, all indices active) then, under certain “nor-

fronSandxy € £ Let A € P(x) be such that mality” assumptions, a quadratic form is nonnegative
Fy(zg,\) = 0. If zo is a regular point of Sy then  gn the set of ally, v) satisfying

(h, Fro(@o, \Jh) 2 O forall b € Rs(@o; ). L 9(t) = A@)y(t)+ B(o(t) (¢ € T), andy(to) =
Let us briefly mention some simple criteria for regu—y(t}) :, 0; ] _
larity. Givenz in S, the following are equivalent: ii. 15, (0, u0); (y,v)) <0 (a € Rwith 1o = 0);

el ' = :
a. {g5{) | 3 € B} s lineatly independent and, if HEIQI ((wo,u0); (y,v)) = 0 (B € Rwith ug > 0, or

p > 0, there exists, € R™ such that whereA andB are given byA(t) = f.(t, zo(t), uo(t))

gh(wo;h) < 0 (a € I(xo)), ghzozh) =0 (8 € B).  ANABE = fullz0o(b), uo(0)).
The weak version of this result states that the above
b. The relationsy 7" \igl(z0) = 0 and\ € P(z,) relation holds for al(y, v) satisfying (i) and
imply that\ = 0. /
I ,up); (v, =0 € RU
These conditions imply that, is a regular point of (0, w0); (9,0) o @)
S, andz is said to benormalif it satisfies (a) or (b).  (instead of (ii) and (iii)).
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C. Mayer problem with endpoint constraints problem such as convexity of the control set and, even

- o _ _ in that case, the conditions are shown to hold only for
A similar situation occurs with the optimal controll particular problems.

problem considered in [S] where one is interested in | ot g finally mention that an entirely different ap-

minimizing a functionalgo(z (o), x(t1)) subject t0  hr5ach for optimal control problems involving equal-
(t) = f(t,x(t),u(t)) a.e.inT and constraints of the j, constraints can be found, for example, in [20],

form where results from abstract optimization theory on Ba-
$a(2(to), 2(t1)) < 0 (a € R), nach spaces are applied to the optimal control problem
d(x(to),z(t1)) =0 (B € Q). posed overl*°-controls, a technique which does not

work in our setting. In more recent works (see [1, 2])
. ; : 4 special emphasis has been laid on conditions with-
normality assumptions, from results obtalned for a ut a priori normality assumptions, and powerful new
abstract opt_lmlzatlon'problerg. r\]Nhen certain ngrm%lfechniques such as that of using the normal cone intro-
ity assumptions are imposed, however, second OrA§, e hy Mordukhovich [14] have produced important

conditions are expressed in terms of solutions.) 10, nrintions to the subject, but no strong conditions of
the linear systemj(t) = fu(t)n(t) + fu(t)w(t) satis- 44 type we refer to are present,

fying strong conditions, as in the previous two cases, |, ‘section 2 we state the optimal control problem

given by we shall be concerned with as well as first and sec-
Bian(to) + Gum(t) <O (i € Ia, A = 0), ond order conditions and the notions of “extremal” and
Gunto) + Giynts) SO (0 € Lo, X =0) “strong normality.” In Section 3 we introduce a weak

bizn(to) + diyn(t1) =0 (i € 14, \; > 0, ori € Q), notion of normality together with three different no-

here I d h ¢ . i tions of regularity in terms of certain convex cones,
where I denotes the set of active inequality con-y,q ghoy the relation between normality and regular-
straints. Again, the weak version would produce s

luti he i D Oﬁy. Section 4 includes four examples for which the
utions to the linear system satisfying corresponding quadratic form may be negative on dif-

Gian(to) + diyn(t1) =0 (i € I4UQ). ferent cones of critical directions.

D. Lagrange problem with control constraints Il STATEMENT OF THE PROBLEM

In this paper we shall be co_ncern_ed with a Lagrange In this section we shall pose the problem we shall
control problem posed over piecewise continuous con,

trols and h that th ntrol functionis restricted e dealing with together with some results on first
toossa'?sfy such that the control functionis restricted 54 second order necessary conditions which form the

frame of the questions related to the sign of a quadratic
_ form.
palu()) O(ac R), o(ult) =0(F€Q). Suppose we are given an interval := [tg, 1] in
The techniques used in [6] for the isoperimetric probR, two points&,, £ in R", and functionsL and f
lem of Lagrange, or in [5] for the Mayer problem with mapping?’ x R™ x R™ to R andR" respectively, and
endpoint constraints, do not apply to this problem since = (¢1, - .., ¢q) mappingR™ to R7 (¢ < m). Let
they are essentially pointwise in nature, while the prob- m
Iemywe shall deaIXNpith involves constraints Whicﬁ af- U:={u€R"[¢a(u) <0(a€R),
fect the whole underlying time interval. pp(u) =0 (8 €Q)}
In the literature, one can find different derivations of hereR = {1 _ 1 Denote b
second order conditions for such a problem (see, f N ""Zr}’ Q. _1{T+ o X . y
the space of piecewisé" functions mappind’ to

example, [4, 8, 13, 15-17]) and the conditions one effs,, /1o shace of piecewise continuous functions
counters in those references are of the weak type. Let’ y Bn P
appingl' toR™, setZ := X x U,

us point out that, in [8, 15], the main results on second’
order conditions are not proved and, quoting [8], “thep .= {(z,u) € Z | &(t) = f(t,x(t),u(t)) (t € T)},
derivation of the conditions is very special and diffi-
cult.” Ze(U) :==A{(z,u) € D[u) €U (teT),

An exception is to be found in [9, 10] where a set x(to) = &o, z(t1) = &1},
of “modified admissible variations” for the problem in
hand was proposed, thus yielding strong second ord&f
conditions. However, the technique used in [9, 10] re-
quires certain crucial assumptions on the data of the

d consider the functionél Z — R given by

Hau) = [ Lt a(t), u)dt (z,0) € Z).

to
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The problem we shall deal with, which we label (P), is b. On every interval of continuity of uy,
that of minimizing! over Z,.(U). _ .~
A common and concise way of formulating this B(t) = —Hz(Zo(t), p(t), u(t), Ao),

problem is as follows: Hy(Zo(t), p(t), u(t), Ao) = 0.

Minimize I (x,u) = tﬁj L(t,x(t),u(t))dt subjectto Forall (t,u) € T x U,

. n i 2l I M Aia~o
v — RY plecewiseC u:T" — RYPIECOWISE  pry 1 (4) u, p(t), 0, M) < H(Fo(£), p(£), 0, Ao)-

continuous;

L(t) = f(t7x(t)7“(t)> (t € T), andx(to) = &, Note that (a) and (c) are equivalent, respectively, to
z(t1) = &; the following conditions:
oFel) = Dandgslul®) = 00 € B FE T q ) 2 0 andyia(t)pa(uolt) = 0 (a € . t €

We have chosen this fixed-endpoint control problerr?)c’_ H(t, 20(t), u, p(t), (), Xo) + (u(t), o(u)) <
of Lagrange for simplicity of exposition, and to keepy (s (¢), p(¢), u(t), o) for all (t,u) € T x U.
notational complexity to a minimum, but no difficul-
ties arise in extending the theory to follow to Bolza Based on this theorem, let us introduce a/gét:, u)
problems with possible variable endpoints. of multipliers together with a sef whose elements,
Elements ofZ will be called processes, of.(U) Wwhich will be called “extremals,” have associated a
admissible processes, and a process:) solves(P) nonzero cost multiplier normalized to one.
if (z,u) is admissible and (z,u) < I(y,v) for all
admissible process,, v). For any(z,u) € Z we use
the notation(z(t)) to representt, z(t), u(t)), and *’

Definition 2.2 For all (z,u) € Z let M(z,u) be the
set of all(p, i1, \o) € X x U, x Rwith X\g + |p| # 0

denotes transpose. We assume fhaf andy arec2 ~ Satisfying
and theg x (m + r)-dimensional matrix a. fia(t) > 0, pra(t)pa(u(t)) = 0foralla € R,
tefT.
(890;' 5w%> b. p(t) = —H;(Z(t), p(t), u(t), Xo) (t € T).
ou C. Hy(2(t), p(t), u(t), o) = 0 (¢t € T).

(i=1...¢ga=1...,r;k=1,...,m)hasrank Denote by¢ be the set of allz, u,p, 1) € Z x X xU,
gonU (heredoe = 1, dap = 0 (o # B)). This  suchthaip, u,1) € M(z,u), thatis,
condition is equivalent to the condition that, at each 5 fat) > 0, pa(t)palut)) = 0foralla € R,

pointw in U, the matrix teT.
oo\ . b. j(t) = — £ (F(t)p(t) + Li(&(1)) (t € T).
(g) (6=t k= Lom) C. [i(E0P() = LiED) + ¢ (u(®)(t) for al
teT.
has rankp, whereiy, . .., i, are the indices € RU @ ] . o .
such thatp; (u) = 0 (see [1] for details). The notion of “strong normality,” as defined below,

First order conditions for this problem are well es-S introduced to assure that, (f, 1., Ao) is a triple of
tablished (see, for example, [3, 6, 9]), and one Versioﬁ]ultlpllers corresponding to a strongly normal solu-
can be written as follows. For alt,z,u, p,,\) in  tion to the problem, then, > 0 and, whem\, = 1,

T x R" x R™ x R" x R? x R let the pair(p, n) is unique.
. Definition 2.3 A process(z,u) will be said to be
H(t, z,u,p, 1, A) := (P, f(t, 2, 1)) strongly normaif, givenp € X andyu € U, satisfying

—AL(t, z,u) — (u, p(u)), i pta(t)pa(u(t)) =0 (a € R, t€T);
)

o , ii. p(t) = —f2(@(t))p(t)
and denote by, the space of all piecewise continuous .~ .
functions mapping’” to RY. [ —Ifx (Z(t),p(t), u(t),0)] (t € T);
iii. 0= f3(2())p(t) — ™ (u(t))u(t)
Th.eorem 2.1Suppose (xo, U[)) solves (P) Then there [ — H;(i(t),p(t), M(t)’ O) ] (t e T),
exist \o > 0, p € X, and 1 € U, continuous on each

interval of continuity of ug, not vanishing simultane- thenp = 0. In this event, clearly, alsp = 0.

ously on T', such that Proposition 2.4 If (x,u) solves (P) then M (z,u) #
a pa(t) > 0 (o € R, t € T) with uo(t) = 0 0. If also (x,u) is strongly normal then there exists a
whenever ¢q (up(t)) < 0. unique (p, 1) € X x Uy such that (x,u,p,p) € E.
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Proof: Let (x,u) solve (P). By Theorem 2.1 there ex- Pa(u,w) = pg(u) (B€Q),
ists (p, 1, A\o) € M(x,u). Suppos€x,u) is strongly
normal. Clearly we have,y # 0 and, if (¢, v, \o) €
M(x,u), then

i [ta(t) — va(®)]pa(u(t) =0 (e« € R, t € T);
t

appears in [17] together with an application of the re-
sults obtained in [16].

ii. [p(t) — ¢(H)] = —f2(2(1))[p(t) —q(¥)] (t € T); I1l. N ORMALITY AND REGULARITY
iii. fu(2(t)[p(t) — q(t)] — " (u®))[p(t) —v(t)] =0 L . .
(teT), It is of interest to see if the assumption of strong

. . _ _ normality, which implies uniqueness of the p&ir 1)
implying thatp = ¢ andu = v. The result follows by such thai(xg, ug, p, 1) is an extremal as well as the set

choosingho = 1 since(p/ Ao, /X0, 1) € M(z,u).1 4 200 ond order conditions given in Theorem 2.5, can
For any(z,u,p, ) € Z x X x Uy and(y,v) € Z, pe weakened.

let us consider the following quadratic form: To do so, we shall first compare that notion with a
t different one used in other references (see [9, 10]), and
J((z,u,p, n); (y,v)) := 2Q(t, y(t),v(t))dt characterize those notions in terms of certain convex
to cones.

Recall that, if A(t) := f.(2(¢t)) and B(t)

where, for all(t, y, v) € T' x R" x R™, fu(Z(t)), (z,u) is strongly normalif, given (p, p) €

L X x U, satisfying
2Qtuyav — y7H:E$ty + 4
( ) i (t)y) i pia(t)pa(u(t)) =0(a e R, t€T);
2(y. Heu(t)0) + (v, Huu(£)0)] i 5(1) = ~A°(1)p(1) (¢ € )
and H (£) denotesH (#(t), p(t), u(t), 1). . BE()p(t) = ¢™ (u(t)u(t) (¢ € T),
For allu € R™ define the set octive indices at,  thenp = 0. o
as This notion can be characterized in terms of a sub-
Lo(u) == {a € R | pal(u) = 0}. space oR™ as follows.

As mentioned in the introduction, a set of weak secDefinition 3.1 For anyu € R™ let
ond order conditions for problem (P) can be found in o )
the literature. In particular, the following result was o(u) = th € R™ [ ¢5(u)h =0 (i € Lo(u) UQ)}-
derived in [4] by reducing the original problem into a

i i ; o A proces will be said to bery-regular if there
problem involving only equality constraints in the con- P S(z, u) 0-reg

is no nonnull solutiorr € X to the system

trol.
Theorem 2.5 Let (x,up) be an admissible process &) = —AT(t)=(1),
for which there exists (p, ,U,> € X X Z/[q such that Z*(t)B(t)h =0forallh ¢ TO(U(t)) (t c T)

(zo,up,p,u) € E. If (xg,ug) is a strongly normal

solution to (P) then Proposition 3.2 For any (z,u) € Z(U) the following

J (0, o, p, ); (y,v)) 2 0 are equivalent:
a. (x,u) is To-regular.
for all (y,v) € Z satisfying b. (z,w) is strongly normal.
Ly(t) = fa(Zo(t))y(t) + fulZo(t))v(t) (t € T'), Proof: (a)= (b): Supposdp, ) € X x U, is such
and y(to) = y(t1) = 0; that i (t)pa(u(t)) =0 (e € R, t € T) and

i. ¢4 (uo(8))o(t) = 0 (i € L(ug(t) UQ, t € T).

o o p(t) = —AT)p(t), BY(6)p(t) = " (u(t))u(t).
The same cone of critical directions or “admissible

variations” defined by (ii) yields second order necesket h € mo(u(t)). Then
sary conditions in other references mentioned in the
introduction. Those conditions are obtained in differ-
ent ways and, in some cases, under different assump-
tions, but they are all expressed in terms of that set of
variations. Let us briefly mention that the same devicend so, by (a)y = 0.
used in [3], which consists in defining the functions  (b) = (a): Letz € X be such that

Ya(u,w) == pa(u) + (w*)? (a € R), At) = —A*()z(1),

q

P (t)B6)h = ui(t)gi(ult))h =0

1=1
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Z*(t)B(t)h =0forall h € mo(u(t)) (t € T).
Foreach € T'letp = (i, ..., v;,) where
I (u(t)) UQ = {i1,... i}
and defingi(t) = (fi, (t), ..., f1;,(t)) by
Alt) = AT (O (u(t) B (t)=(t) (teT)
whereA(t) = ¢'(u(t))@™(u(t)). Note that, since
@' (u(t) @™ (u(t) AT (t) =

ATHE) P (u(t) " (u(t)) = Lpxyp
we haveA=1(t) = A1(t)* (t € T). Letu(t) =
(n1(t), ..., pq(t)) where

n; (1) fa=i.,r=1,...,
fia(t) ::{NT() _ p
0 otherwise.

Clearly pio (t)pa(u(t)) =0 (0 € R, t € T') and
()@ (ult) = p ()¢ (ut)) (teT).
Now, let
G(t) := Lmxm — ¢ (u() A7 ()¢ (u(t))
and note thaty’ (u(t))G(t) = 0 (t € T). If hy(t

)
(k = 1,...,m) denotes the:-th column of G(¢), we
have

@;j(u(t))hk(t) =0 (j=1,....,p, k=1,...,m)
that is,h(t) belongs tory(u(t)) and, therefore,

FOBOMt) =0 (k=1,...,m).

and so, by (b)z = 0.1

Let us now turn to a different notion of normality.
Note that the sign ofi, (¢) is not considered in the def-
inition of strong normality. By adding such condition,

we obtain a weaker notion of normality.

Definition 3.3 We shall say thatz,u) € Z is weakly
normalif, given (p, u) € X x U, satisfying
i pia(t) >0, pa(t)pa(u(t)) =0(a e R, t €T);
i. p(t) = —A*(t)p(t) (t € T);
iii. B*(t)p(t) = ¢ (u(t))u(t) (t € T),
thenp = 0.

Observe that in Proposition 2.4, if we replace the as-
sumption of strong with that of weak normality, the re-
sult remains valid except for the uniqguenes$ofu).

For all © € R? define the following subsets of in-
dices ofR:

Lo(p) :={a € R| pa =0},
Ip(p) :={a € R| pa > 0},
and let us consider the following convex coned&Réf.

Definition 3.4 For anyu € R™ andu € R? let
71 ) o= {h s Qi(w)h < 0 (i € Lo(u) N To(w)),

@i(w)h =0(j € Tp(p) UQ)}
m(u) == {h: @;(u)h <0 (i € I,(u)),
@;(u)h =0(j € Q)}.

Definition 3.5 Let (z,u) € Z(U) andp € U, with
tao(t) > 0anduq (t)pa(u(t)) =0 (a € R, t € T).

a. We say(z, u, p) is 71-regular if there is no non-
null solutionz € X to the system

5(t) = —A"(D)=(0),

Z($)B(t)h < 0forall h € 7 (u(t), u(t)) (t € T).

b. We say(z, u) is mo-regular if there is no nonnull
solutionz € X to the system

(t) = —A™(1)=(1),

Z()B(t)h < 0forall h € m(u(t)) (t € T).

Now, as one readily verifiesy-regularity implies
T1-regularity which in turn implies»-regularity. Let
us give a formal proof of this fact.

Proposition 3.6 Let (z,u) € Z and pn € U, with
pa(t) = 0 and pa(t)a(u(t)) = 0 (a € R, t € T),
and consider the following statements:

a. (z,u) is To-regular.

b. (x,u, p) is 71 -regular.

C.(x,u) is To-regular.
Then (a) = (b) = (c).
Proof: (a) = (b): Letz € X be such that

) = —A*()z(1),

Z*()B(t)h < 0forall h € 7y (u(t), u(t)) (t € T).

7!
Leth € mo(u(t)). If i € Iy(u(t)) N To(u(t)) then
we havey(u(t))h = 0 and, ifj € T'y(u(t)) U Q then
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@ (u(t))h = 0sincel',(u(t)) C Ia(u(t)). This shows
thath € 71 (u(t), pu(t)) and so

To(u(t)) C ma(u(t), p(t)).

By assumption,z*(¢t)B(t)h < 0. However, since
70(u(t)) is a subspace, we hawé(t)B(t)h = 0. By
(a) this implies that = 0 and this proves (b).
(b) = (c): Letz € X be such that
(t) = —A™(1)=(b),
(t)h <Oforall h € m(u(t)) (t €T).
w(t)). If i € Iy(u(t)) then
) =

gi(u(t))h < 0if (¢

@i (u(t))h = 0if ps(t) > 0.
Also ¢ (u(t))h = 01if j € Q. Thereforeh € m(u(t))

and sory (u(t), u(t)) C m(u(t)). By (b),z = 0 and
(c) follows.1

Z()B
Leth € 7y (u(t),

Let us now prove that, just ag-regularity is equiv-

The result will follow by (b) if ua(t) > 0 (o € R,
t € T). To prove that this is indeed the case (€t) be
thep x m matrix C(t) := A=1(¢)$'(u(t)) and observe
that

C(OP" (ult)) = Ipxp = &' (u(t))C" (1).

Therefore, ifc;(t) denotes thg-th column of C*(t)
and{e;} the canonical base R” (j = 1,...,p) then,
forj=1,...,p,

(7, (u(®))er(t), - .-
Thus, ifj € {1,...

0l (u(®))ep(t) = €j.
,p}is such that; € I,(u(t)), then

-1
0

if k=i
if k£ i

implying that—c;(t) € m(u(t)). Therefore

Alu(t)(—i(0) = {

Z*(t)B(t)ci(t) >0 (teT).
But i*(t) = 2*(t)B(t)C*(t) and soi,(t) > 0 for all

a € I,(u(t)).l

alent to strong normality, the same occurs with respect

to »-regularity and weak normality.

Proposition 3.7 For any (x,u) € Z(U) the following
are equivalent:

a. (x,u) is To-regular.

b. (x,u) is weakly normal.

Proof: (a) = (b): Suppos€p, 1) € X x U, is such
that o (f) > 0, ta(t)pa(u(t)) =0 (a € R, t € T),

p(t) = —A"(t)p(t), B*(t)p(t) = " (u(t))u(t)-

Leth € mo(u(t)). Using the fact that,(t) > 0 (« €
R) andu,(t) = 0 wheneverp, (u(t)) < 0, we have

)h <0

t)h = Zm i (u

implying, by (a), thap = 0.
(b) = (a): Letz € X be such that

2(t) = —A*(t)z(1),
2 () B(t)h < 0forall h € m(u(t)) (¢ € T).

Proceed as in the proof of (b} (a) of Proposition
3.2 showing thati;(t), as defined in that proof, be-
longs torp(u(t)). Now, sincery(u(t)) C mo(u (t)),
our assumptions on imply that z*(¢) B(t)h(t) < 0
(k = 1,...,m). However, also—hx(t) € 7o(u ())
and soz*(t)B(t)hi(t) =0 (k=1,...,m). Thus

2 (t)B(t) — " ()¢ (u(t)).

0=z (t)B)G(?)

IV. EXAMPLES

Theorem 2.5 can be stated in termsmfu(t)).
Explicitly, if (xo,uo) is a strongly normal solution
to (P) and(p, 1) € X x U, is the unique pair such
that (zg, ug, p, u) € & then Theorem 2.5 states that
J((an ug, p, :u)a (ya U)) >0 for all (yv U) €Z SatiSfy_
ing

§(t) = fol@o(0)y(t) + ful@o(D)v(t) (t € T),
andy(to) = y(t1) = 0;

ii. v(t) € To(up(t)) (t€T).

We begin this section by providing a weakly nor-
mal solution(xg, ug) to (P) with (p, 1) a pair such that
(o, w0, p, ) € E, butJ((zo, uo, p, p); (y,v)) < 0 for
some(y,v) € Z satisfying (i) andv(t) € m2(uo(t))
(tel).

Example 4.1Consider the problem (P) of minimizing

I(x,u) = /01 wn()dt

subject to

ul(t) =
andz(0) = z(1) = 0.
In this case we havé = [0,1],n =1,m =r =
g=2,& =& =0and, foranyt € T, 2 € R, and
u € RZwith u = (uy, uz),

L(t,z,u) =u1, f(t,x,u)= u% + us,
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e1(u) = —u1, @2(u) =uz —uy.

Observe first that
H(t,z,u,p,p,1) =

p(uf 4+ ug) — ug + (1 + po)ur — pous
so that

Hu(tvxau7pnu'a 1) = (qul -1+ 1+ 2, P — /J'2)7

2p 0
Huu(t,xauapaﬂ> 1) = ( S) O> .

Therefore, for any(z,u,p,pu) € Z x X x Us and
(y,v) € Z,

1
J((au,p ) (9,0) = — /0 ap(t)2(t)dt.

Clearly (xzg,uo) = (0,0) solves the problem. Since
o1(uo(t)) = (=1,0) and gy(ue(t)) = (-1,1), we
have

To(U()(t)) = {h c R2 | —h1 = 0, —h1 4+ ho = 0}

71 (uo(t), u(t)) = {h € R | —hy < 0if (1) = 0,
—h1 =0if /1,1(75) > 0,
—hi1+he <OIf /Lg(t) =0,
—h1+hy=0if ,ug(t) > 0},
TQ(Uo(t)) = {h € R? ’ —h1 <0, —=hy1+ he < 0}.
To test for regularity note that, singg(zo(t)) = 0
and f,(zo(t)) = (0,1), the system
2(t) = —A"(t)z(t) =0,
2" (t)B(t)h = z(t)ha = 0

for all (hy,h2) € 70(up(t)) (t € T) has nonnull so-
lutions and thereforéz, ug) is notry-regular. On the
other handz = 0 is the only solution to the system

Z(t)hg § 0
forall (hy, ha) € T2(ug(t)) (t € T) since both0, —1)

and(1, 1) belong tor, (ug(t)) implying that—z(¢) < 0
andz(t) <0 (t € T), and sqxo, up) is 2-regular. Let

= (p1, p2) = (0,1) andp = 1 so that

I pa(t) = 0 andpa (t)ea(uo(t)) =0 (a=1,2, t €
T),

i p(t) = 0= —Hy (To(t),

= p(t), u(t), 1) (t€T),
iii. Hy(Zo(t),p(t), pu(t),1) =
(

(1 () + p2(t) = 1,p(t) — pa2(t)) = (0,0) (€ T)

and so(zo, ug, p, ) € € with (xg,up) a weakly nor-
mal solution to the problem. Note also that

T1(uo(t), u(t)) =
{(h1,h2) €R*| —hy <0, hy = ho}

and therefore the system

Z(t)hg <0 for all (hl, hg) € 7‘1(U0(t),,u(t)) (t € T)

has nonnull solutions implying thdtz, uo, ;) is not
T1-regular.

Now, if we setv = (v1,v2) = (1,0) andy = 0, then
v(t) € Ta(uo(t)), (y,v) solvesy(t) = va(t) (t € T)
together withy(0) = y(1) = 0, and so it satisfies (i).
However,

J((z0, w0, p, 1); (y,v)) = =2 < 0.1

Our next example yields a stronger conclusion than
We shall exhibit a weakly nor-

the previous one.
mal solution (zg,up) to (P) with (p, ) a pair such
that(x()au()vpa M) € g' bUtJ((.%'(),uo,p, M)a (y7 U)) <
0 for some (y,v) € Z satisfying (i) andv(t) €
71 (uo(t), u(t)) (t € T).

Example 4.2Consider the problem (P) of minimizing

Iz, u) = /O us(t) + us(t)}at

subject to
(1) = ui(t) +ua(t) —us(t) (t€[0,1]),
ul(t) > 0, UQ(t) > 0, ’u,g(t) >0 (t S [0, 1})

andz(0) = z(1) = 0.

In this case we havé = [0,1],n =1, m =r =
qg=3,é% =& =0and, foranyt € T, z € R, and
u € R® with v = (u1, ug, u3),

L(t,x,u) =uy +us, f(t,x,u)= u% + ug — us,

p1(u) = —u1,  p2(u) = —uz, p3(u) = —us.

Observe first that
H(t,z,u,p,p,1) =

p(U% + ug — Us) — U2 — U3 + U1ul + pou + (3us3

so that
Hu(ta Z,u,p, i, 1) =

(2pur + p1,p — 1+ po, —p — 1 4 pg),
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2p 0 0
Huu(taxauvpvﬂ'a 1) = 0 00 :
0 0 0
Therefore, for any(x,u,p,pu) € Z x X x Us and
(y;v) € Z,
! 2
I po): () = = [ 2p(t)od )
Note that
ffﬂ<t7x7u) :07 fu(t,.’E,U) :(2u1717_1)7
and we haveoll(u) = (_17070)1 QDIQ(U) = (07 _170)1
gog(u) = (Oa 0, _1)'
Clearly (xo,u0) = (0, 0) solves the problem and we
havel,(uo(t)) = {1,2,3}. Thus
7o(uo(t)) =
{heR3| —hy =0, —hy =0, —h3 = 0},
T2(uo(t)) =
{heR3| —hy <0, —hy <0, —h3 <0}.

Sincef,(Zo(t)) = 0 andf,(Zo(t)) =

system

2(t) = —A*(t)z(t) = 0,

() B(t)h =

(0,1,-1), the

z(t)(ha —h3) =0

for all (hi, ha, hg) € 1o(uo(t)) (t € T) has nonnull
solutions and thereforex, ug) is notry-regular. Note
thatz = 0 is the only solution to the system

2(t) =0, z(t)(he —hg) <0

for all (h1,ha,hs) € m(uo(t)) (t € T) since both
(0,1,0) and(0, 0, 1) belong tors (ug(t)) implying that
z(t) < 0and—z(t) < 0 (t € T), and so(zo, up) IS

To-regular. Now, lety =

p=1. Then

71 (uo(t), p(t))

(:ula H2, M3) =

(0,0,2) and

{heR3| —h; <0, —hy <0, —h3 =0}
and therefore the system

2(t) =0, z(t)(he —hg) <0

for all (hi,ho, hs) € 7i(uo(t),u(t)) (t € T) has
nonnull solutions implying thatxo, ug, 1) is not ;-
regular. Now, we have

i fo(t) > 0 and g () a(uo(t)) =

T);

i. p(t) = 0 = —H, (7 (1),

ii. Hu(i’O(t)ap(t)v M(t)v 1)

so that(xzg, ug, p, ) € € with (xg,ug) a weakly nor-
mal solution to the problem.

Letv = (v1,v2,v3) = (1,0,0) andy = 0. Then
(y,v) solvesy(t) = vo(t) — v3(t) (t € T) together
with y(0) = y(1) = 0, v(t) € 71 (uo(t), u(t)), and

J((x0, w0, p, 1); (y,v)) = =2 < 0.1

The following example yields a conclusion even
stronger than those of the previous two examples. We
shall exhibit a weakly normal solutiofx, ug) to (P)
with (p, ) a pair such thatzo, ug,p, ) € &, but
J((o, ug. p, ); (y,v)) < 0 for some(y,v) € Z sat-
isfying (i) andv(t) € 7o(uo(t)) (¢t € T). In other
words, the conclusion of Theorem 2.5 may not hold if
we assume that the solution to the problem is weakly
normal.

Example 4.3Consider the problem of minimizing

1
I, u) = / us(t)dt
0
subject to

(1) = ui(t) + ua(t) — us(t) (t € 0, 1)),
’U,g(t) > 0, U3(t) >0 (t S [0, 1]),
andz(0) = z(1) = 0.
In this casel’ = [0,1],n =1, m =3,r =q = 2,

& =& =0and, forallt € T, z € R, andu =
(u1, uz,u3),

L(t,z,u) =uy, f(t,z,u)=u?+uy — us,

p1(u) = —ug, pa(u) = —us.

We have
H(t,z,u,p,p) =

p(u% + ug — uz) — ug + pru + Hous

and so

Hu(tax7u7p7,u> = (2pu17p -1 + M1, —p + /’L2)7

2p 0 O
Hy,(t,z,u,p,u)=10 0 0

0 0 O
so that, for all(z, u,p, u) € Z x X x Us and(y,v) €

Zl
1
_ /0 ()02 (1) dt

0) is a solution to the prob-
= (0,1) andp = 1. Note

J((w,u,p, M) (y U)) -

Clearly (zo,u0) = (0,
lem. Lety = (u1, u2)
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that (zg, uo,p, ) € €. Now, ¢j(u) = (0,—1,0), andz(0)=0,z(1) = —1.
¢y(u) = (0,0, —1). Therefore In this casel’ = [0,1], n = 1, m

=0, = —1 and, for allt € T,
mluo(t) = (he R —hy =0, ~hg =0}, 8

:3,

q:
T € and

71(uo(t), u(t)) = {h € R* | —ha <0, —h3 = 0},
a(uo(t)) = {h € R* | —hy <0, —hz < 0}.

L(t,x,u) = —exp(—us),

ft,z,u) = uz — up + udug + 2,

Since g
fa(t,zo(t), uo(t)) =0, pi(u) = —1+ur —uz +uju,
fult,zo(t), uo(t)) = (0,1, 1), p2(u) =2 +us —ur,  p3(u) = —1 - us.
the system We have
A(t) = —A*(£)2(t) = 0, H(t,x,u,p, 1) = plug — ur + ufuz +2) +
() B(t)h = z(t)(hg — h3) = 0 exp(—ug) — p1(—1 4 u1 — uz + ufug) —
for all (hy, ha, h3) € 10(uo(t)) (t € T) has nontrivial p2(2 4+ ug — ur) — p3(—1 — ug)

solutions and s@o, ug ) is notro-regular. Onthe other anqg sor, (¢, 2, u, p, 1) = 0 and
hand,z = 0 is the only solution to the system

2(t) =0, z(t)(hy — hg) <0 Hy(t,,u,p, i) =

—142 — p1 (1 + 8ufug) + pa,
for all (hl,hg,hg) € TQ(UO(t)) (t c T) since both (p( U1U2) ,ul( U1UQ) o

(0,1,0) and(0, 0, 1) belong tors (ug(¢)) implying that pui — muf, p — exp(—uz) + 1 — p2 + p3).

2(t) < 0and—z(t) < 0 (t € T), so that(zo, u0) IS Clearly (x9,up) = (~t,1,—1,—1) is a solution to

To-regular. Finally, the system the problem. Lep = 0 and setu = (i1, o, j13) =
(6) = 0, 2(t)(hy — hy) < 0 (0,0, ¢). Note that(xg, ug, p, 1) € €. Now,

! _ 7 8
for all (hl,hQ,hg) & Tl(u(](t),,u(t)) (t c T) has SOl(“’) - (1 +8U1'LL2,U1, 1)7
Peognljlrg/rlal solutions implying thatzo, ug, 1) is notr; - oh(u) = (=1,0,1), @y(u) = (0,0, —1).

Letv = (v1,v2,v3) = (1,0,0) andy = 0. Then Therefore
(t €

k) ang O S DO = ) = (RO | T+ = s =0,

J((:co,uo,p,,u); (y,'U)) =-2<0.1 _hl * h3 - 0’ _h3 - 0}7

) ] Tl(’LL()(t),,u,(t)) :{hE R3 ‘ —7h1+h2—h3 SO,
The three previous examples deal with weakly nor-
mal solutions which yield negative second variations —hi+hs <0, —hs = 0},
on 1o(ug(t)), T (uo(t),u(t)) and mo(up(t)) respec- mo(ug(t)) = {h € R®| =Thy + ho — h3 <0,
tively. We end with a fourth example showing that a
71-regular solution may yield a negative second varia- —h1+h3 <0, —hs < 0}.
tion on7y(up(t)). Since

fw(t,l'o(t),uO(t)) =0,
fu(t,xo(t),uo(t)) = (_37 L, 1)’

Example 4.4Consider the problem of minimizing

I(z,u) = /0 1 exp(cus (1)) bt - solves the system
subject to 2(t) = —A(t)z(t) =0, =2(t)B(t)h <0
#(t) = uz(t) — ur(t) + u(ua(t) + 2 (t € [0,1]), forall h € 71 (uo(t), u(t)) (¢t € T) if and only if
wr(t) — ug(t) + uS(Hus(t) < 1, z=c¢, c¢(=3hi+hg+h3) <0,
us(t) —ui(t) < =2, —ug(t) <1 (te[0,1)), —Thy + s — hy <0,
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—h1+h3 <0, —h3=0 (tET).

Thusz = 0 is the only solution to the system given

above and hencex, ug, 1) is 71 -regular.
Letvy =v3 =1,

(3 iftelo,1/2]

vy(t) = { 1 ifte(1/2,1]
[t if t €0,1/2]

y(t) '—{1_t if ¢ € [1/2,1]

Setv = (v1, v2, v3) and note thaty, v) solves
y(t) = —3vi(t) + va(t) +vs(t) (t € T),
y(0) = y(1) = 0 andw(t) € m2(up(t)). Moreover,

J((z0, u0, p, p); (y,v)) =

1
/ —ev3(t)dt = —e < 0.1
J0O

IV. CONCLUSIONS

(3]

[4]

(5]

[6]

[7]

(8]

In this paper we pose certain questions related to the

nonnegativity of a quadratic form which occurs in op-
timal control problems with equality and/or inequal-
ity constraints in the control functions. In particular,

9]

the standard assumption of strong normality and other
weaker assumptions are characterized in terms of cer-

tain convex cones.

These characterizations allow us to provide severglO]

examples of solutions to optimal control problems
which yield negative second variations on some of
those sets which form different critical directions. In

all the examples, the solutions fail to be strongly nor-
mal but satisfy first order conditions with a positivers
cost multiplier together with some regularity assump-
tions. It is of interest to see if, in all cases, the strong
normality assumption is fundamental in the derivation
of second order conditions of this kind, and this pape,
illustrates the behaviour in some problems of regul

solutions that fail to satisfy that assumption.
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