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Abstract—In this paper we study a fundamental as-
pect of the theory of second order necessary conditions
for certain classes of optimal control problems involv-
ing equality and/or inequality constraints in the con-
trol. It is well-known that, under certain normality as-
sumptions, a certain quadratic form is nonnegative on a
cone of critical directions (or differentially admissible
variations). The purpose of this paper is to characterize
normality in terms of some regularity assumptions and
to illustrate through several examples the fact that, by
assuming those types of regularity, the result may fail
to hold on the former and larger sets of critical direc-
tions.

Keywords—Optimal control, second order condi-
tions, equality and/or inequality constraints, normality

I. I NTRODUCTION

This paper deals with second order necessary con-
ditions for certain classes of optimal control problems
posed over piecewise continuous controls and involv-
ing equality and/or inequality constraints in the control
functions. The importance of deriving such conditions
from a theoretical point of view as well as due to a
wide range of applications is fully explained in [1, 2,
5, 8–13, 15–21] and references therein.

There is an extensive literature on second order con-
ditions for optimal control problems and how the the-
ory can be applied to practical problems. Different ap-
plications can be found in [11, 12] and, in particular,
two problems posed in [12] can be studied by apply-
ing the theory that follows. One is the classical prob-
lem of a planar Earth-Mars orbit transfer with minimal
transfer time, while the second deals with the Rayleigh
problem with control constraints, that is, the control of
current in a tunnel-diode oscillator. We refer to [12] for
a full discussion of the two applications and how a so-
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lution is derived by solving numerically a Riccati equa-
tion. The question on the nonnegativity of a quadratic
form posed in this paper plays a fundamental role in
testing for possible candidates as optimal controls for
such problems.

Before we state the problem we shall deal with,
and for comparison reasons, let us first give a brief
overview of well-known second order necessary con-
ditions for other optimization problems which also in-
volve equality and/or inequality constraints. We shall
explicitly state, for those problems, two different con-
ditions of second order which can be found in the lit-
erature and for which one implies the other, being the
former in this sense a stronger condition than the latter.

A. The finite dimensional case

The approach we follow for the finite dimensional
case, which yields well-known first and second order
necessary conditions, is based on the notions of regu-
larity and normality. A full account of these ideas can
be found in [7].

Let us begin with a problem involving nonlinear
equality constraints. Suppose we are given functions
f, g1, . . . , gm mappingRn to R (m < n) and we are
interested in minimizingf onS where

S = {x ∈ Rn | gα(x) = 0 (α ∈ A)}

andA = {1, . . . ,m}. It will be assumed that the func-
tionsf, gα (α ∈ A) are of classC2 onS.

For all x0 ∈ S define the set ofcurvilinear tangent
vectors ofS at x0 as

CS(x0) := {h ∈ Rn | there existε > 0 and

x: (−ε, ε) → S such thatx(0) = x0 andẋ(0) = h}
and the set of vectors satisfying thetangential con-
straints ofS at x0 as

RS(x0) := {h ∈ Rn | g′α(x0)h = 0 (α ∈ A)}.

As one readily verifies,CS(x0) ⊂ RS(x0) for all
x0 ∈ S, but the converse may not hold. IfCS(x0) =
RS(x0), x0 ∈ S is said to be aregular point ofS.
This notion yields first and second order conditions
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in terms of the standard Lagrangian defined, for all
((x, λ) ∈ Rn × Rm), by

F (x, λ) := f(x) +
m∑
1

λαgα(x).

Theorem 1.1Suppose x0 affords a local minimum to f
on S. If x0 is a regular point of S then there exists λ ∈
Rm such that Fx(x0, λ) = 0 and 〈h, Fxx(x0, λ)h〉 ≥ 0
for all h ∈ RS(x0).

In general it is difficult to test for regularity and one
criterion, easier to verify, is that of normality. We shall
say thatx0 ∈ S is a normal point ofS if the linear
equations

g′α(x0;h) := g′α(x0)h = 0 (α ∈ A)

in h are linearly independent, that is, if the gradients
g′1(x0), . . . , g′m(x0) are linearly independent, which is
equivalent to the requirement that the matrix(

∂gα(x0)
∂xi

)
(α = 1, . . . ,m; i = 1, . . . , n)

be of rankm. It is well-known that, ifx0 is a normal
point ofS then it is a regular point ofS and, moreover,
the multiplierλ in Theorem 1.1 is unique. This yields
the following result.

Theorem 1.2Suppose x0 affords a local minimum to
f on S. If x0 is a normal point of S then there exists
a unique λ ∈ Rm such that Fx(x0, λ) = 0. Moreover,
〈h, Fxx(x0, λ)h〉 ≥ 0 for all h ∈ RS(x0).

Let us now change the data of the problem and sup-
pose that

S = {x ∈ Rn | gα(x) ≤ 0 (α ∈ A),

gβ(x) = 0 (β ∈ B)}
whereA = {1, . . . , p},B = {p+ 1, . . . ,m}.

We shall first show how the theory of the previous
case can be applied to this problem. For allx0 ∈ S
define the set ofactive indicesatx0 by

I(x0) := {α ∈ A | gα(x0) = 0}

and let

S(x0) := {x ∈ Rn | gα(x) = 0 (α ∈ I(x0)),

gβ(x) = 0 (β ∈ B)}
together with its corresponding set of tangential con-
straints atx0, that is,

RS(x0)(x0) := {h ∈ Rn | g′i(x0;h) = 0

(i ∈ I(x0) ∪B)}.

Supposex0 affords a local minimum tof on S. If
gα(x0) < 0, let εα > 0 be such that|x − x0| < εα ⇒
gα(x) < 0 and let

N(x0) := {x ∈ Rn : |x− x0| < ε}

whereε = min{εα | gα(x0) < 0}. If A = I(x0), set
N(x0) := Rn.

SinceS(x0) ∩ N(x0) ⊂ S, x0 also affords a local
minimum to f on S(x0). By Theorem 1.2, ifx0 is
a normal point ofS(x0) (that is, the linear equations
g′i(x0;h) = 0 (i ∈ I(x0) ∪ B) in h are linearly inde-
pendent), then there exists a uniqueλ ∈ Rq (q denotes
the cardinality ofI(x0) ∪ B) such thatGx(x0, λ) = 0
where, for all((x, λ) ∈ Rn × Rq),

G(x, λ) := f(x) +
∑

i∈I(x0)∪B

λigi(x).

Moreover, for allh ∈ RS(x0)(x0),

〈h,Gxx(x0, λ)h〉 ≥ 0.

It can be shown that, in this event,λα ≥ 0 for all α ∈
I(x0) and so, if we let

P (x0) := {λ ∈ Rm | λα ≥ 0 (α ∈ I(x0)),

λα = 0 (gα(x0) < 0)}

and defineF as before, we obtain the following set of
first and second order necessary conditions.

Theorem 1.3Suppose x0 affords a local minimum to f
on S. If x0 is a normal point of S(x0) then there exists
a unique λ ∈ P (x0) such that Fx(x0, λ) = 0. More-
over, 〈h, Fxx(x0, λ)h〉 ≥ 0 for all h ∈ RS(x0)(x0).

This result does provide second order necessary con-
ditions but, as we shall see next, they can be improved
considerably. To do so, let us consider not curvilin-
ear tangent vectors but thetangent cone ofS at x0,
denoted byTS(x0), which is the (closed) cone deter-
mined by the unit vectorsh for which there exists a
sequence{xm} in S converging tox0 in the direction
h in the sense thatxm 6= x0, and

lim
m→∞

|xm − x0| = 0, lim
m→∞

xm − x0

|xm − x0|
= h.

Define the set of vectors satisfying thetangential con-
straints ofS at x0 by

RS(x0) := {h ∈ Rn | g′α(x0;h) ≤ 0 (α ∈ I(x0)),

g′β(x0;h) = 0 (β ∈ B)}.
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As before we haveTS(x0) ⊂ RS(x0) for all x0 ∈ S,
but the converse may not hold. IfTS(x0) = RS(x0),
we say thatx0 ∈ S is aregular point ofS. Let

E := {x0 ∈ S | there existsλ ∈ P (x0) such that

Fx(x0, λ) = 0}.

It is well-known thatx0 ∈ E if and only if

f ′(x0;h) ≥ 0 for all h ∈ RS(x0)

and, ifx0 is a regular point ofS which affords a local
minimum tof onS, thenx0 ∈ E .

Now, supposex0 ∈ E andλ ∈ P (x0) is such that
Fx(x0, λ) = 0. Let Γ := {α ∈ A | λα > 0} and
define the set̃Sλ of modified constraintsas

S̃λ := {x ∈ Rn | gα(x) ≤ 0 (α ∈ A, λα = 0),

gβ(x) = 0 (β ∈ Γ ∪B)}

which satisfies

S̃λ = {x ∈ S | gα(x) = 0 (α ∈ Γ)}
= {x ∈ S | F (x, λ) = f(x)}.

Define a set ofmodified tangential constraintsas

R̃S(x0;λ) := {h ∈ Rn | g′α(x0;h) ≤ 0

(α ∈ I(x0), λα = 0), g′β(x0;h) = 0 (β ∈ Γ ∪B)}

which satisfies

R̃S(x0;λ) = {h ∈ RS(x0) | g′α(x0;h) = 0 (α ∈ Γ)}

= {h ∈ RS(x0) | f ′(x0;h) = 0}.

The improved second order conditions correspond to
the following result.

Theorem 1.4Suppose x0 affords a local minimum to
f on S and x0 ∈ E . Let λ ∈ P (x0) be such that
Fx(x0, λ) = 0. If x0 is a regular point of S̃λ then
〈h, Fxx(x0, λ)h〉 ≥ 0 for all h ∈ R̃S(x0;λ).

Let us briefly mention some simple criteria for regu-
larity. Givenx0 in S, the following are equivalent:

a. {g′β(x0) | β ∈ B} is linearly independent and, if
p > 0, there existsh ∈ Rn such that

g′α(x0;h) < 0 (α ∈ I(x0)), g′β(x0;h) = 0 (β ∈ B).

b. The relations
∑m

1 λig
′
i(x0) = 0 andλ ∈ P (x0)

imply thatλ = 0.

These conditions imply thatx0 is a regular point of
S, andx0 is said to benormal if it satisfies (a) or (b).

Note that, for anyλ ∈ P (x0), RS(x0)(x0) is a sub-

set ofR̃S(x0;λ), and usually the contention is proper.
In fact, one can easily find examples for which a
point x0 belongs toE so that, for someλ ∈ P (x0),
Fx(x0, λ) = 0 and, moreover,〈h, Fxx(x0, λ)h〉 ≥ 0
for all h ∈ RS(x0)(x0), but x0 is a regular pointS̃λ

and〈h, Fxx(x0, λ)h〉 < 0 for someh ∈ R̃S(x0;λ). In
this event, Theorem 1.3 gives no information, but one
concludes from Theorem 1.4 that the pointx0 does not
afford a local minimum tof onS. For this reason, we
shall call the second order conditions given in Theo-
rems 1.3 and 1.4weakandstrongconditions respec-
tively.

B. Isoperimetric control problem of Lagrange

Let us consider now the following optimal control
problem involving isoperimetric constraints (see [6]
for details), and briefly explain how a situation simi-
lar to that of the finite dimensional case occurs.

Suppose we are interested in minimizing

I(x, u) =
∫ t1

t0
L(t, x(t), u(t))dt

subject to
x:T → Rn piecewiseC1; u:T → Rm piecewise

continuous;
ẋ(t) = f(t, x(t), u(t)) (t ∈ T ), andx(t0) = ξ0,

x(t1) = ξ1;
Iα(x, u) ≤ 0 (α ∈ R), Iβ(x, u) = 0 (β ∈ Q),

whereR andQ are two disjoint index sets,T = [t0, t1],
and

Iγ(x, u) := αγ +
∫ t1

t0
Lγ(t, x(t), u(t))dt.

Assuming thatf, L, Lγ areC2, the strong second or-
der conditions established in [6] state that, if(x0, u0)
is an “extremal” which solves the problem (with, for
simplicity, all indices active) then, under certain “nor-
mality” assumptions, a quadratic form is nonnegative
on the set of all(y, v) satisfying

i. ẏ(t) = A(t)y(t)+B(t)v(t) (t ∈ T ), andy(t0) =
y(t1) = 0;

ii. I ′α((x0, u0); (y, v)) ≤ 0 (α ∈ R with µα = 0);
iii. I ′β((x0, u0); (y, v)) = 0 (β ∈ R with µβ > 0, or

β ∈ Q)
whereA andB are given byA(t) = fx(t, x0(t), u0(t))
andB(t) = fu(t, x0(t), u0(t)).

The weak version of this result states that the above
relation holds for all(y, v) satisfying (i) and

I ′γ((x0, u0); (y, v)) = 0 (γ ∈ R ∪Q)

(instead of (ii) and (iii)).
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C. Mayer problem with endpoint constraints

A similar situation occurs with the optimal control
problem considered in [5] where one is interested in
minimizing a functionalφ0(x(t0), x(t1)) subject to
ẋ(t) = f(t, x(t), u(t)) a.e. inT and constraints of the
form

φα(x(t0), x(t1)) ≤ 0 (α ∈ R),

φβ(x(t0), x(t1)) = 0 (β ∈ Q).

First and second order conditions are derived, without
normality assumptions, from results obtained for an
abstract optimization problem. When certain normal-
ity assumptions are imposed, however, second order
conditions are expressed in terms of solutions(η, ω) to
the linear systeṁη(t) = f̄x(t)η(t) + f̄u(t)ω(t) satis-
fying strong conditions, as in the previous two cases,
given by

φ̄ixη(t0) + φ̄iyη(t1) ≤ 0 (i ∈ IA, λi = 0),

φ̄ixη(t0) + φ̄iyη(t1) = 0 (i ∈ IA, λi > 0, or i ∈ Q),

where IA denotes the set of active inequality con-
straints. Again, the weak version would produce so-
lutions to the linear system satisfying

φ̄ixη(t0) + φ̄iyη(t1) = 0 (i ∈ IA ∪Q).

D. Lagrange problem with control constraints

In this paper we shall be concerned with a Lagrange
control problem posed over piecewise continuous con-
trols and such that the control functionu is restricted
to satisfy

ϕα(u(t)) ≤ 0 (α ∈ R), ϕβ(u(t)) = 0 (β ∈ Q).

The techniques used in [6] for the isoperimetric prob-
lem of Lagrange, or in [5] for the Mayer problem with
endpoint constraints, do not apply to this problem since
they are essentially pointwise in nature, while the prob-
lem we shall deal with involves constraints which af-
fect the whole underlying time interval.

In the literature, one can find different derivations of
second order conditions for such a problem (see, for
example, [4, 8, 13, 15–17]) and the conditions one en-
counters in those references are of the weak type. Let
us point out that, in [8, 15], the main results on second
order conditions are not proved and, quoting [8], “the
derivation of the conditions is very special and diffi-
cult.”

An exception is to be found in [9, 10] where a set
of “modified admissible variations” for the problem in
hand was proposed, thus yielding strong second order
conditions. However, the technique used in [9, 10] re-
quires certain crucial assumptions on the data of the

problem such as convexity of the control set and, even
in that case, the conditions are shown to hold only for
particular problems.

Let us finally mention that an entirely different ap-
proach for optimal control problems involving equal-
ity constraints can be found, for example, in [20],
where results from abstract optimization theory on Ba-
nach spaces are applied to the optimal control problem
posed overL∞-controls, a technique which does not
work in our setting. In more recent works (see [1, 2])
a special emphasis has been laid on conditions with-
out a priori normality assumptions, and powerful new
techniques such as that of using the normal cone intro-
duced by Mordukhovich [14] have produced important
contributions to the subject, but no strong conditions of
the type we refer to are present.

In Section 2 we state the optimal control problem
we shall be concerned with as well as first and sec-
ond order conditions and the notions of “extremal” and
“strong normality.” In Section 3 we introduce a weak
notion of normality together with three different no-
tions of regularity in terms of certain convex cones,
and show the relation between normality and regular-
ity. Section 4 includes four examples for which the
corresponding quadratic form may be negative on dif-
ferent cones of critical directions.

II. STATEMENT OF THE PROBLEM

In this section we shall pose the problem we shall
be dealing with together with some results on first
and second order necessary conditions which form the
frame of the questions related to the sign of a quadratic
form.

Suppose we are given an intervalT := [t0, t1] in
R, two pointsξ0, ξ1 in Rn, and functionsL and f
mappingT × Rn × Rm to R andRn respectively, and
ϕ = (ϕ1, . . . , ϕq) mappingRm to Rq (q ≤ m). Let

U := {u ∈ Rm | ϕα(u) ≤ 0 (α ∈ R),

ϕβ(u) = 0 (β ∈ Q)}
whereR = {1, . . . , r},Q = {r+1, . . . , q}. Denote by
X the space of piecewiseC1 functions mappingT to
Rn, by U the space of piecewise continuous functions
mappingT to Rm, setZ := X × U ,

D := {(x, u) ∈ Z | ẋ(t) = f(t, x(t), u(t)) (t ∈ T )},

Ze(U) := {(x, u) ∈ D | u(t) ∈ U (t ∈ T ),

x(t0) = ξ0, x(t1) = ξ1},
and consider the functionalI:Z → R given by

I(x, u) :=
∫ t1

t0
L(t, x(t), u(t))dt ((x, u) ∈ Z).
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The problem we shall deal with, which we label (P), is
that of minimizingI overZe(U).

A common and concise way of formulating this
problem is as follows:

Minimize I(x, u) =
∫ t1
t0
L(t, x(t), u(t))dt subject to

x:T → Rn piecewiseC1; u:T → Rm piecewise
continuous;
ẋ(t) = f(t, x(t), u(t)) (t ∈ T ), andx(t0) = ξ0,

x(t1) = ξ1;
ϕα(u(t)) ≤ 0 andϕβ(u(t)) = 0 (α ∈ R, β ∈

Q, t ∈ T ).
We have chosen this fixed-endpoint control problem

of Lagrange for simplicity of exposition, and to keep
notational complexity to a minimum, but no difficul-
ties arise in extending the theory to follow to Bolza
problems with possible variable endpoints.

Elements ofZ will be called processes, ofZe(U)
admissible processes, and a process(x, u) solves(P)
if (x, u) is admissible andI(x, u) ≤ I(y, v) for all
admissible process(y, v). For any(x, u) ∈ Z we use
the notation(x̃(t)) to represent(t, x(t), u(t)), and ‘∗’
denotes transpose. We assume thatL, f andϕ areC2

and theq × (m+ r)-dimensional matrix(
∂ϕi

∂uk
δiαϕα

)
(i = 1, . . . , q; α = 1, . . . , r; k = 1, . . . ,m) has rank
q on U (hereδαα = 1, δαβ = 0 (α 6= β)). This
condition is equivalent to the condition that, at each
pointu in U , the matrix(

∂ϕi

∂uk

)
(i = i1, . . . , ip; k = 1, . . . ,m)

has rankp, wherei1, . . . , ip are the indicesi ∈ R ∪Q
such thatϕi(u) = 0 (see [1] for details).

First order conditions for this problem are well es-
tablished (see, for example, [3, 6, 9]), and one version
can be written as follows. For all(t, x, u, p, µ, λ) in
T × Rn × Rm × Rn × Rq × R let

H(t, x, u, p, µ, λ) := 〈p, f(t, x, u)〉

−λL(t, x, u)− 〈µ, ϕ(u)〉,

and denote byUq the space of all piecewise continuous
functions mappingT to Rq.

Theorem 2.1Suppose (x0, u0) solves (P). Then there
exist λ0 ≥ 0, p ∈ X , and µ ∈ Uq continuous on each
interval of continuity of u0, not vanishing simultane-
ously on T , such that

a. µα(t) ≥ 0 (α ∈ R, t ∈ T ) with µα(t) = 0
whenever ϕα(u0(t)) < 0.

b. On every interval of continuity of u0,

ṗ(t) = −H∗
x(x̃0(t), p(t), µ(t), λ0),

Hu(x̃0(t), p(t), µ(t), λ0) = 0.

c. For all (t, u) ∈ T × U ,

H(t, x0(t), u, p(t), 0, λ0) ≤ H(x̃0(t), p(t), 0, λ0).

Note that (a) and (c) are equivalent, respectively, to
the following conditions:

a. µα(t) ≥ 0 andµα(t)ϕα(u0(t)) = 0 (α ∈ R, t ∈
T );

c. H(t, x0(t), u, p(t), µ(t), λ0) + 〈µ(t), ϕ(u)〉 ≤
H(x̃0(t), p(t), µ(t), λ0) for all (t, u) ∈ T × U .

Based on this theorem, let us introduce a setM(x, u)
of multipliers together with a setE whose elements,
which will be called “extremals,” have associated a
nonzero cost multiplier normalized to one.

Definition 2.2 For all (x, u) ∈ Z let M(x, u) be the
set of all(p, µ, λ0) ∈ X × Uq × R with λ0 + |p| 6= 0
satisfying

a. µα(t) ≥ 0, µα(t)ϕα(u(t)) = 0 for all α ∈ R,
t ∈ T .

b. ṗ(t) = −H∗
x(x̃(t), p(t), µ(t), λ0) (t ∈ T ).

c.Hu(x̃(t), p(t), µ(t), λ0) = 0 (t ∈ T ).

Denote byE be the set of all(x, u, p, µ) ∈ Z×X×Uq

such that(p, µ, 1) ∈M(x, u), that is,

a. µα(t) ≥ 0, µα(t)ϕα(u(t)) = 0 for all α ∈ R,
t ∈ T .

b. ṗ(t) = −f∗x(x̃(t))p(t) + L∗x(x̃(t)) (t ∈ T ).
c. f∗u(x̃(t))p(t) = L∗u(x̃(t)) + ϕ′∗(u(t))µ(t) for all

t ∈ T .

The notion of “strong normality,” as defined below,
is introduced to assure that, if(p, µ, λ0) is a triple of
multipliers corresponding to a strongly normal solu-
tion to the problem, thenλ0 > 0 and, whenλ0 = 1,
the pair(p, µ) is unique.

Definition 2.3 A process(x, u) will be said to be
strongly normalif, given p ∈ X andµ ∈ Uq satisfying

i. µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T );
ii. ṗ(t) = −f∗x(x̃(t))p(t)

[ = −H∗
x(x̃(t), p(t), µ(t), 0) ] (t ∈ T );

iii. 0 = f∗u(x̃(t))p(t)− ϕ′∗(u(t))µ(t)
[ = H∗

u(x̃(t), p(t), µ(t), 0) ] (t ∈ T ),
thenp ≡ 0. In this event, clearly, alsoµ ≡ 0.

Proposition 2.4 If (x, u) solves (P) then M(x, u) 6=
∅. If also (x, u) is strongly normal then there exists a
unique (p, µ) ∈ X × Uq such that (x, u, p, µ) ∈ E .
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Proof: Let (x, u) solve (P). By Theorem 2.1 there ex-
ists (p, µ, λ0) ∈ M(x, u). Suppose(x, u) is strongly
normal. Clearly we haveλ0 6= 0 and, if (q, ν, λ0) ∈
M(x, u), then

i. [µα(t)− να(t)]ϕα(u(t)) = 0 (α ∈ R, t ∈ T );
ii. [ṗ(t)− q̇(t)] = −f∗x(x̃(t))[p(t)− q(t)] (t ∈ T );
iii. f∗u(x̃(t))[p(t)− q(t)]−ϕ′∗(u(t))[µ(t)− ν(t)] = 0
(t ∈ T ),
implying thatp ≡ q andµ ≡ ν. The result follows by
choosingλ0 = 1 since(p/λ0, µ/λ0, 1) ∈M(x, u).

For any(x, u, p, µ) ∈ Z ×X × Uq and(y, v) ∈ Z,
let us consider the following quadratic form:

J((x, u, p, µ); (y, v)) :=
∫ t1

t0
2Ω(t, y(t), v(t))dt

where, for all(t, y, v) ∈ T × Rn × Rm,

2Ω(t, y, v) := −[〈y,Hxx(t)y〉 +

2〈y,Hxu(t)v〉+ 〈v,Huu(t)v〉]

andH(t) denotesH(x̃(t), p(t), µ(t), 1).
For all u ∈ Rm define the set ofactive indices atu

as
Ia(u) := {α ∈ R | ϕα(u) = 0}.

As mentioned in the introduction, a set of weak sec-
ond order conditions for problem (P) can be found in
the literature. In particular, the following result was
derived in [4] by reducing the original problem into a
problem involving only equality constraints in the con-
trol.

Theorem 2.5 Let (x0, u0) be an admissible process
for which there exists (p, µ) ∈ X × Uq such that
(x0, u0, p, µ) ∈ E . If (x0, u0) is a strongly normal
solution to (P) then

J((x0, u0, p, µ); (y, v)) ≥ 0

for all (y, v) ∈ Z satisfying
i. ẏ(t) = fx(x̃0(t))y(t) + fu(x̃0(t))v(t) (t ∈ T ),

and y(t0) = y(t1) = 0;
ii. ϕ′i(u0(t))v(t) = 0 (i ∈ Ia(u0(t)) ∪Q, t ∈ T ).

The same cone of critical directions or “admissible
variations” defined by (ii) yields second order neces-
sary conditions in other references mentioned in the
introduction. Those conditions are obtained in differ-
ent ways and, in some cases, under different assump-
tions, but they are all expressed in terms of that set of
variations. Let us briefly mention that the same device
used in [3], which consists in defining the functions

ψα(u,w) := ϕα(u) + (wα)2 (α ∈ R),

ψβ(u,w) = ϕβ(u) (β ∈ Q),

appears in [17] together with an application of the re-
sults obtained in [16].

III. N ORMALITY AND REGULARITY

It is of interest to see if the assumption of strong
normality, which implies uniqueness of the pair(p, µ)
such that(x0, u0, p, µ) is an extremal as well as the set
of second order conditions given in Theorem 2.5, can
be weakened.

To do so, we shall first compare that notion with a
different one used in other references (see [9, 10]), and
characterize those notions in terms of certain convex
cones.

Recall that, ifA(t) := fx(x̃(t)) and B(t) :=
fu(x̃(t)), (x, u) is strongly normalif, given (p, µ) ∈
X × Uq satisfying

i. µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T );
ii. ṗ(t) = −A∗(t)p(t) (t ∈ T );
iii. B∗(t)p(t) = ϕ′∗(u(t))µ(t) (t ∈ T ),

thenp ≡ 0.
This notion can be characterized in terms of a sub-

space ofRm as follows.

Definition 3.1 For anyu ∈ Rm let

τ0(u) := {h ∈ Rm | ϕ′i(u)h = 0 (i ∈ Ia(u) ∪Q)}.

A process(x, u) will be said to beτ0-regular if there
is no nonnull solutionz ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h = 0 for all h ∈ τ0(u(t)) (t ∈ T ).

Proposition 3.2For any (x, u) ∈ Z(U) the following
are equivalent:

a. (x, u) is τ0-regular.
b. (x, u) is strongly normal.

Proof: (a)⇒ (b): Suppose(p, µ) ∈ X × Uq is such
thatµα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T ) and

ṗ(t) = −A∗(t)p(t), B∗(t)p(t) = ϕ′∗(u(t))µ(t).

Let h ∈ τ0(u(t)). Then

p∗(t)B(t)h =
q∑

i=1

µi(t)ϕ′i(u(t))h = 0

and so, by (a),p ≡ 0.
(b)⇒ (a): Letz ∈ X be such that

ż(t) = −A∗(t)z(t),
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z∗(t)B(t)h = 0 for all h ∈ τ0(u(t)) (t ∈ T ).

For eacht ∈ T let ϕ̂ = (ϕi1 , . . . , ϕip) where

Ia(u(t)) ∪Q = {i1, . . . , ip}

and definêµ(t) = (µ̂i1(t), . . . , µ̂ip(t)) by

µ̂(t) := Λ−1(t)ϕ̂′(u(t))B∗(t)z(t) (t ∈ T )

whereΛ(t) = ϕ̂′(u(t))ϕ̂′∗(u(t)). Note that, since

ϕ̂′(u(t))ϕ̂′∗(u(t))Λ−1(t) =

Λ−1(t)∗ϕ̂′(u(t))ϕ̂′∗(u(t)) = Ip×p

we haveΛ−1(t) = Λ−1(t)∗ (t ∈ T ). Let µ(t) =
(µ1(t), . . . , µq(t)) where

µα(t) :=
{
µ̂ir(t) if α = ir, r = 1, . . . , p
0 otherwise.

Clearlyµα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T ) and

µ̂∗(t)ϕ̂′(u(t)) = µ∗(t)ϕ′(u(t)) (t ∈ T ).

Now, let

G(t) := Im×m − ϕ̂′∗(u(t))Λ−1(t)ϕ̂′(u(t))

and note that̂ϕ′(u(t))G(t) = 0 (t ∈ T ). If hk(t)
(k = 1, . . . ,m) denotes thek-th column ofG(t), we
have

ϕ′ij (u(t))hk(t) = 0 (j = 1, . . . , p, k = 1, . . . ,m)

that is,hk(t) belongs toτ0(u(t)) and, therefore,

z∗(t)B(t)hk(t) = 0 (k = 1, . . . ,m).

Thus

0 = z∗(t)B(t)G(t) = z∗(t)B(t)− µ∗(t)ϕ′(u(t))

and so, by (b),z ≡ 0.

Let us now turn to a different notion of normality.
Note that the sign ofµα(t) is not considered in the def-
inition of strong normality. By adding such condition,
we obtain a weaker notion of normality.

Definition 3.3 We shall say that(x, u) ∈ Z is weakly
normal if, given (p, µ) ∈ X × Uq satisfying

i. µα(t) ≥ 0, µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T );
ii. ṗ(t) = −A∗(t)p(t) (t ∈ T );
iii. B∗(t)p(t) = ϕ′∗(u(t))µ(t) (t ∈ T ),
thenp ≡ 0.

Observe that in Proposition 2.4, if we replace the as-
sumption of strong with that of weak normality, the re-
sult remains valid except for the uniqueness of(p, µ).

For all µ ∈ Rq define the following subsets of in-
dices ofR:

Γ0(µ) := {α ∈ R | µα = 0},

Γp(µ) := {α ∈ R | µα > 0},

and let us consider the following convex cones ofRm.

Definition 3.4 For anyu ∈ Rm andµ ∈ Rq let

τ1(u, µ) := {h : ϕ′i(u)h ≤ 0 (i ∈ Ia(u) ∩ Γ0(µ)),

ϕ′j(u)h = 0 (j ∈ Γp(µ) ∪Q)}

τ2(u) := {h : ϕ′i(u)h ≤ 0 (i ∈ Ia(u)),

ϕ′j(u)h = 0 (j ∈ Q)}.

Definition 3.5 Let (x, u) ∈ Z(U) andµ ∈ Uq with
µα(t) ≥ 0 andµα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T ).

a. We say(x, u, µ) is τ1-regular if there is no non-
null solutionz ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ1(u(t), µ(t)) (t ∈ T ).

b. We say(x, u) is τ2-regular if there is no nonnull
solutionz ∈ X to the system

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ2(u(t)) (t ∈ T ).

Now, as one readily verifies,τ0-regularity implies
τ1-regularity which in turn impliesτ2-regularity. Let
us give a formal proof of this fact.

Proposition 3.6 Let (x, u) ∈ Z and µ ∈ Uq with
µα(t) ≥ 0 and µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T ),
and consider the following statements:

a. (x, u) is τ0-regular.
b. (x, u, µ) is τ1-regular.
c. (x, u) is τ2-regular.

Then (a)⇒ (b)⇒ (c).

Proof: (a)⇒ (b): Letz ∈ X be such that

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ1(u(t), µ(t)) (t ∈ T ).

Let h ∈ τ0(u(t)). If i ∈ Ia(u(t)) ∩ Γ0(µ(t)) then
we haveϕ′i(u(t))h = 0 and, ifj ∈ Γp(µ(t)) ∪Q then
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ϕ′j(u(t))h = 0 sinceΓp(µ(t)) ⊂ Ia(u(t)). This shows
thath ∈ τ1(u(t), µ(t)) and so

τ0(u(t)) ⊂ τ1(u(t), µ(t)).

By assumption,z∗(t)B(t)h ≤ 0. However, since
τ0(u(t)) is a subspace, we havez∗(t)B(t)h = 0. By
(a) this implies thatz ≡ 0 and this proves (b).

(b)⇒ (c): Letz ∈ X be such that

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ2(u(t)) (t ∈ T ).

Let h ∈ τ1(u(t), µ(t)). If i ∈ Ia(u(t)) then

ϕ′i(u(t))h ≤ 0 if µi(t) = 0,

ϕ′i(u(t))h = 0 if µi(t) > 0.

Also ϕ′j(u(t))h = 0 if j ∈ Q. Thereforeh ∈ τ2(u(t))
and soτ1(u(t), µ(t)) ⊂ τ2(u(t)). By (b), z ≡ 0 and
(c) follows.

Let us now prove that, just asτ0-regularity is equiv-
alent to strong normality, the same occurs with respect
to τ2-regularity and weak normality.

Proposition 3.7For any (x, u) ∈ Z(U) the following
are equivalent:

a. (x, u) is τ2-regular.
b. (x, u) is weakly normal.

Proof: (a)⇒ (b): Suppose(p, µ) ∈ X × Uq is such
thatµα(t) ≥ 0, µα(t)ϕα(u(t)) = 0 (α ∈ R, t ∈ T ),

ṗ(t) = −A∗(t)p(t), B∗(t)p(t) = ϕ′∗(u(t))µ(t).

Let h ∈ τ2(u(t)). Using the fact thatµα(t) ≥ 0 (α ∈
R) andµα(t) = 0 wheneverϕα(u(t)) < 0, we have

p∗(t)B(t)h =
q∑

i=1

µi(t)ϕ′i(u(t))h ≤ 0

implying, by (a), thatp ≡ 0.
(b)⇒ (a): Letz ∈ X be such that

ż(t) = −A∗(t)z(t),

z∗(t)B(t)h ≤ 0 for all h ∈ τ2(u(t)) (t ∈ T ).

Proceed as in the proof of (b)⇒ (a) of Proposition
3.2 showing thathk(t), as defined in that proof, be-
longs toτ0(u(t)). Now, sinceτ0(u(t)) ⊂ τ2(u(t)),
our assumptions onz imply that z∗(t)B(t)hk(t) ≤ 0
(k = 1, . . . ,m). However, also−hk(t) ∈ τ0(u(t))
and soz∗(t)B(t)hk(t) = 0 (k = 1, . . . ,m). Thus

0 = z∗(t)B(t)G(t) = z∗(t)B(t)− µ∗(t)ϕ′(u(t)).

The result will follow by (b) if µα(t) ≥ 0 (α ∈ R,
t ∈ T ). To prove that this is indeed the case, letC(t) be
thep×mmatrixC(t) := Λ−1(t)ϕ̂′(u(t)) and observe
that

C(t)ϕ̂′∗(u(t)) = Ip×p = ϕ̂′(u(t))C∗(t).

Therefore, ifcj(t) denotes thej-th column ofC∗(t)
and{ej} the canonical base inRp (j = 1, . . . , p) then,
for j = 1, . . . , p,

(ϕ′ij (u(t))c1(t), . . . , ϕ
′
ij (u(t))cp(t)) = e∗j .

Thus, ifj ∈ {1, . . . , p} is such thatij ∈ Ia(u(t)), then

ϕ′k(u(t))(−cj(t)) =
{−1 if k = ij

0 if k 6= ij

implying that−cj(t) ∈ τ2(u(t)). Therefore

z∗(t)B(t)cj(t) ≥ 0 (t ∈ T ).

But µ̂∗(t) = z∗(t)B(t)C∗(t) and soµ̂∗α(t) ≥ 0 for all
α ∈ Ia(u(t)).

IV. EXAMPLES

Theorem 2.5 can be stated in terms ofτ0(u0(t)).
Explicitly, if (x0, u0) is a strongly normal solution
to (P) and(p, µ) ∈ X × Uq is the unique pair such
that (x0, u0, p, µ) ∈ E then Theorem 2.5 states that
J((x0, u0, p, µ); (y, v)) ≥ 0 for all (y, v) ∈ Z satisfy-
ing

i. ẏ(t) = fx(x̃0(t))y(t) + fu(x̃0(t))v(t) (t ∈ T ),
andy(t0) = y(t1) = 0;

ii. v(t) ∈ τ0(u0(t)) (t ∈ T ).
We begin this section by providing a weakly nor-

mal solution(x0, u0) to (P) with(p, µ) a pair such that
(x0, u0, p, µ) ∈ E , butJ((x0, u0, p, µ); (y, v)) < 0 for
some(y, v) ∈ Z satisfying (i) andv(t) ∈ τ2(u0(t))
(t ∈ T ).

Example 4.1Consider the problem (P) of minimizing

I(x, u) =
∫ 1

0
u1(t)dt

subject to
ẋ(t) = u2

1(t) + u2(t),

u1(t) ≥ 0, u1(t) ≥ u2(t) (t ∈ [0, 1])

andx(0) = x(1) = 0.
In this case we haveT = [0, 1], n = 1, m = r =

q = 2, ξ0 = ξ1 = 0 and, for anyt ∈ T , x ∈ R, and
u ∈ R2 with u = (u1, u2),

L(t, x, u) = u1, f(t, x, u) = u2
1 + u2,
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ϕ1(u) = −u1, ϕ2(u) = u2 − u1.

Observe first that

H(t, x, u, p, µ, 1) =

p(u2
1 + u2)− u1 + (µ1 + µ2)u1 − µ2u2

so that

Hu(t, x, u, p, µ, 1) = (2pu1 − 1 + µ1 + µ2, p− µ2),

Huu(t, x, u, p, µ, 1) =
(

2p 0
0 0

)
.

Therefore, for any(x, u, p, µ) ∈ Z × X × U2 and
(y, v) ∈ Z,

J((x, u, p, µ); (y, v)) = −
∫ 1

0
2p(t)v2

1(t)dt.

Clearly (x0, u0) ≡ (0, 0) solves the problem. Since
ϕ′1(u0(t)) = (−1, 0) andϕ′2(u0(t)) = (−1, 1), we
have

τ0(u0(t)) = {h ∈ R2 | −h1 = 0, −h1 + h2 = 0}

τ1(u0(t), µ(t)) = {h ∈ R2 | −h1 ≤ 0 if µ1(t) = 0,

−h1 = 0 if µ1(t) > 0,

−h1 + h2 ≤ 0 if µ2(t) = 0,

−h1 + h2 = 0 if µ2(t) > 0},

τ2(u0(t)) = {h ∈ R2 | −h1 ≤ 0, −h1 + h2 ≤ 0}.

To test for regularity note that, sincefx(x̃0(t)) = 0
andfu(x̃0(t)) = (0, 1), the system

ż(t) = −A∗(t)z(t) = 0,

z∗(t)B(t)h = z(t)h2 = 0

for all (h1, h2) ∈ τ0(u0(t)) (t ∈ T ) has nonnull so-
lutions and therefore(x0, u0) is notτ0-regular. On the
other hand,z ≡ 0 is the only solution to the system

ż(t) = 0, z(t)h2 ≤ 0

for all (h1, h2) ∈ τ2(u0(t)) (t ∈ T ) since both(0,−1)
and(1, 1) belong toτ2(u0(t)) implying that−z(t) ≤ 0
andz(t) ≤ 0 (t ∈ T ), and so(x0, u0) is τ2-regular. Let
µ = (µ1, µ2) ≡ (0, 1) andp ≡ 1 so that

i. µα(t) ≥ 0 andµα(t)ϕα(u0(t)) = 0 (α = 1, 2, t ∈
T ),
ii. ṗ(t) = 0 = −Hx(x̃0(t), p(t), µ(t), 1) (t ∈ T ),
iii. Hu(x̃0(t), p(t), µ(t), 1) =

(µ1(t) + µ2(t)− 1, p(t)− µ2(t)) = (0, 0) (t ∈ T )

and so(x0, u0, p, µ) ∈ E with (x0, u0) a weakly nor-
mal solution to the problem. Note also that

τ1(u0(t), µ(t)) =

{(h1, h2) ∈ R2 | −h1 ≤ 0, h1 = h2}

and therefore the system

ż(t) = 0,

z(t)h2 ≤ 0 for all (h1, h2) ∈ τ1(u0(t), µ(t)) (t ∈ T )

has nonnull solutions implying that(x0, u0, µ) is not
τ1-regular.

Now, if we setv = (v1, v2) ≡ (1, 0) andy ≡ 0, then
v(t) ∈ τ2(u0(t)), (y, v) solvesẏ(t) = v2(t) (t ∈ T )
together withy(0) = y(1) = 0, and so it satisfies (i).
However,

J((x0, u0, p, µ); (y, v)) = −2 < 0.

Our next example yields a stronger conclusion than
the previous one. We shall exhibit a weakly nor-
mal solution(x0, u0) to (P) with (p, µ) a pair such
that (x0, u0, p, µ) ∈ E , butJ((x0, u0, p, µ); (y, v)) <
0 for some (y, v) ∈ Z satisfying (i) andv(t) ∈
τ1(u0(t), µ(t)) (t ∈ T ).

Example 4.2Consider the problem (P) of minimizing

I(x, u) =
∫ 1

0
{u2(t) + u3(t)}dt

subject to

ẋ(t) = u2
1(t) + u2(t)− u3(t) (t ∈ [0, 1]),

u1(t) ≥ 0, u2(t) ≥ 0, u3(t) ≥ 0 (t ∈ [0, 1])

andx(0) = x(1) = 0.

In this case we haveT = [0, 1], n = 1, m = r =
q = 3, ξ0 = ξ1 = 0 and, for anyt ∈ T , x ∈ R, and
u ∈ R3 with u = (u1, u2, u3),

L(t, x, u) = u2 + u3, f(t, x, u) = u2
1 + u2 − u3,

ϕ1(u) = −u1, ϕ2(u) = −u2, ϕ3(u) = −u3.

Observe first that

H(t, x, u, p, µ, 1) =

p(u2
1 + u2 − u3)− u2 − u3 + µ1u1 + µ2u2 + µ3u3

so that
Hu(t, x, u, p, µ, 1) =

(2pu1 + µ1, p− 1 + µ2,−p− 1 + µ3),
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Huu(t, x, u, p, µ, 1) =

 2p 0 0
0 0 0
0 0 0

 .

Therefore, for any(x, u, p, µ) ∈ Z × X × U3 and
(y, v) ∈ Z,

J((x, u, p, µ); (y, v)) = −
∫ 1

0
2p(t)v2

1(t)dt.

Note that

fx(t, x, u) = 0, fu(t, x, u) = (2u1, 1,−1),

and we haveϕ′1(u) = (−1, 0, 0), ϕ′2(u) = (0,−1, 0),
ϕ′3(u) = (0, 0,−1).

Clearly(x0, u0) ≡ (0, 0) solves the problem and we
haveIa(u0(t)) = {1, 2, 3}. Thus

τ0(u0(t)) =

{h ∈ R3 | −h1 = 0, −h2 = 0, −h3 = 0},

τ2(u0(t)) =

{h ∈ R3 | −h1 ≤ 0, −h2 ≤ 0, −h3 ≤ 0}.

Sincefx(x̃0(t)) = 0 andfu(x̃0(t)) = (0, 1,−1), the
system

ż(t) = −A∗(t)z(t) = 0,

z∗(t)B(t)h = z(t)(h2 − h3) = 0

for all (h1, h2, h3) ∈ τ0(u0(t)) (t ∈ T ) has nonnull
solutions and therefore(x0, u0) is notτ0-regular. Note
thatz ≡ 0 is the only solution to the system

ż(t) = 0, z(t)(h2 − h3) ≤ 0

for all (h1, h2, h3) ∈ τ2(u0(t)) (t ∈ T ) since both
(0, 1, 0) and(0, 0, 1) belong toτ2(u0(t)) implying that
z(t) ≤ 0 and−z(t) ≤ 0 (t ∈ T ), and so(x0, u0) is
τ2-regular. Now, letµ = (µ1, µ2, µ3) ≡ (0, 0, 2) and
p ≡ 1. Then

τ1(u0(t), µ(t)) =

{h ∈ R3 | −h1 ≤ 0, −h2 ≤ 0, −h3 = 0}

and therefore the system

ż(t) = 0, z(t)(h2 − h3) ≤ 0

for all (h1, h2, h3) ∈ τ1(u0(t), µ(t)) (t ∈ T ) has
nonnull solutions implying that(x0, u0, µ) is not τ1-
regular. Now, we have

i. µα(t) ≥ 0 andµα(t)ϕα(u0(t)) = 0 (α = 1, 2, t ∈
T );
ii. ṗ(t) = 0 = −Hx(x̃0(t), p(t), µ(t), 1) (t ∈ T );

iii. Hu(x̃0(t), p(t), µ(t), 1) = (0, 0, 0) (t ∈ T ),

so that(x0, u0, p, µ) ∈ E with (x0, u0) a weakly nor-
mal solution to the problem.

Let v = (v1, v2, v3) ≡ (1, 0, 0) andy ≡ 0. Then
(y, v) solvesẏ(t) = v2(t) − v3(t) (t ∈ T ) together
with y(0) = y(1) = 0, v(t) ∈ τ1(u0(t), µ(t)), and

J((x0, u0, p, µ); (y, v)) = −2 < 0.

The following example yields a conclusion even
stronger than those of the previous two examples. We
shall exhibit a weakly normal solution(x0, u0) to (P)
with (p, µ) a pair such that(x0, u0, p, µ) ∈ E , but
J((x0, u0, p, µ); (y, v)) < 0 for some(y, v) ∈ Z sat-
isfying (i) and v(t) ∈ τ0(u0(t)) (t ∈ T ). In other
words, the conclusion of Theorem 2.5 may not hold if
we assume that the solution to the problem is weakly
normal.

Example 4.3Consider the problem of minimizing

I(x, u) =
∫ 1

0
u2(t)dt

subject to

ẋ(t) = u2
1(t) + u2(t)− u3(t) (t ∈ [0, 1]),

u2(t) ≥ 0, u3(t) ≥ 0 (t ∈ [0, 1]),

andx(0) = x(1) = 0.

In this caseT = [0, 1], n = 1, m = 3, r = q = 2,
ξ0 = ξ1 = 0 and, for all t ∈ T , x ∈ R, andu =
(u1, u2, u3),

L(t, x, u) = u2, f(t, x, u) = u2
1 + u2 − u3,

ϕ1(u) = −u2, ϕ2(u) = −u3.

We have
H(t, x, u, p, µ) =

p(u2
1 + u2 − u3)− u2 + µ1u2 + µ2u3

and so

Hu(t, x, u, p, µ) = (2pu1, p− 1 + µ1,−p+ µ2),

Huu(t, x, u, p, µ) =

 2p 0 0
0 0 0
0 0 0


so that, for all(x, u, p, µ) ∈ Z ×X × U3 and(y, v) ∈
Z,

J((x, u, p, µ); (y, v)) = −
∫ 1

0
2p(t)v2

1(t)dt.

Clearly (x0, u0) ≡ (0, 0) is a solution to the prob-
lem. Letµ = (µ1, µ2) ≡ (0, 1) and p ≡ 1. Note
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that (x0, u0, p, µ) ∈ E . Now, ϕ′1(u) = (0,−1, 0),
ϕ′2(u) = (0, 0,−1). Therefore

τ0(u0(t)) = {h ∈ R3 | −h2 = 0, −h3 = 0},

τ1(u0(t), µ(t)) = {h ∈ R3 | −h2 ≤ 0, −h3 = 0},
τ2(u0(t)) = {h ∈ R3 | −h2 ≤ 0, −h3 ≤ 0}.

Since
fx(t, x0(t), u0(t)) = 0,

fu(t, x0(t), u0(t)) = (0, 1,−1),

the system

ż(t) = −A∗(t)z(t) = 0,

z∗(t)B(t)h = z(t)(h2 − h3) = 0

for all (h1, h2, h3) ∈ τ0(u0(t)) (t ∈ T ) has nontrivial
solutions and so(x0, u0) is notτ0-regular. On the other
hand,z ≡ 0 is the only solution to the system

ż(t) = 0, z(t)(h2 − h3) ≤ 0

for all (h1, h2, h3) ∈ τ2(u0(t)) (t ∈ T ) since both
(0, 1, 0) and(0, 0, 1) belong toτ2(u0(t)) implying that
z(t) ≤ 0 and−z(t) ≤ 0 (t ∈ T ), so that(x0, u0) is
τ2-regular. Finally, the system

ż(t) = 0, z(t)(h2 − h3) ≤ 0

for all (h1, h2, h3) ∈ τ1(u0(t), µ(t)) (t ∈ T ) has
nontrivial solutions implying that(x0, u0, µ) is notτ1-
regular.

Let v = (v1, v2, v3) ≡ (1, 0, 0) andy ≡ 0. Then
(y, v) solvesẏ(t) = v2(t) − v3(t) (t ∈ T ), y(0) =
y(1) = 0, v(t) ∈ τ0(u0(t)), and

J((x0, u0, p, µ); (y, v)) = −2 < 0.

The three previous examples deal with weakly nor-
mal solutions which yield negative second variations
on τ2(u0(t)), τ1(u0(t), µ(t)) and τ0(u0(t)) respec-
tively. We end with a fourth example showing that a
τ1-regular solution may yield a negative second varia-
tion onτ2(u0(t)).

Example 4.4Consider the problem of minimizing

I(x, u) =
∫ 1

0
{− exp(−u3(t))}dt

subject to

ẋ(t) = u3(t)− u1(t) + u2
1(t)u2(t) + 2 (t ∈ [0, 1]),

u1(t)− u3(t) + u8
1(t)u2(t) ≤ 1,

u3(t)− u1(t) ≤ −2, −u3(t) ≤ 1 (t ∈ [0, 1]),

andx(0) = 0, x(1) = −1.

In this caseT = [0, 1], n = 1, m = q = r = 3,
ξ0 = 0, ξ1 = −1 and, for all t ∈ T , x ∈ R, and
u = (u1, u2, u3),

L(t, x, u) = − exp(−u3),

f(t, x, u) = u3 − u1 + u2
1u2 + 2,

ϕ1(u) = −1 + u1 − u3 + u8
1u2,

ϕ2(u) = 2 + u3 − u1, ϕ3(u) = −1− u3.

We have

H(t, x, u, p, µ) = p(u3 − u1 + u2
1u2 + 2) +

exp(−u3)− µ1(−1 + u1 − u3 + u8
1u2) −

µ2(2 + u3 − u1)− µ3(−1− u3)

and soHx(t, x, u, p, µ) = 0 and

Hu(t, x, u, p, µ) =

(p(−1 + 2u1u2)− µ1(1 + 8u7
1u2) + µ2,

pu2
1 − µ1u

8
1, p− exp(−u3) + µ1 − µ2 + µ3).

Clearly (x0, u0) ≡ (−t, 1,−1,−1) is a solution to
the problem. Letp ≡ 0 and setµ = (µ1, µ2, µ3) ≡
(0, 0, e). Note that(x0, u0, p, µ) ∈ E . Now,

ϕ′1(u) = (1 + 8u7
1u2, u

8
1,−1),

ϕ′2(u) = (−1, 0, 1), ϕ′3(u) = (0, 0,−1).

Therefore

τ0(u0(t)) = {h ∈ R3 | −7h1 + h2 − h3 = 0,

−h1 + h3 = 0, −h3 = 0},
τ1(u0(t), µ(t)) = {h ∈ R3 | −7h1 + h2 − h3 ≤ 0,

−h1 + h3 ≤ 0, −h3 = 0},
τ2(u0(t)) = {h ∈ R3 | −7h1 + h2 − h3 ≤ 0,

−h1 + h3 ≤ 0, −h3 ≤ 0}.
Since

fx(t, x0(t), u0(t)) = 0,

fu(t, x0(t), u0(t)) = (−3, 1, 1),

z solves the system

ż(t) = −A(t)z(t) = 0, z(t)B(t)h ≤ 0

for all h ∈ τ1(u0(t), µ(t)) (t ∈ T ) if and only if

z ≡ c, c(−3h1 + h2 + h3) ≤ 0,

−7h1 + h2 − h3 ≤ 0,
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−h1 + h3 ≤ 0, −h3 = 0 (t ∈ T ).

Thusz ≡ 0 is the only solution to the system given
above and hence(x0, u0, µ) is τ1-regular.

Let v1 = v3 ≡ 1,

v2(t) :=
{ 3 if t ∈ [0, 1/2]

1 if t ∈ (1/2, 1]

y(t) :=
{
t if t ∈ [0, 1/2]
1− t if t ∈ [1/2, 1]

Setv = (v1, v2, v3) and note that(y, v) solves

ẏ(t) = −3v1(t) + v2(t) + v3(t) (t ∈ T ),

y(0) = y(1) = 0 andv(t) ∈ τ2(u0(t)). Moreover,

J((x0, u0, p, µ); (y, v)) =∫ 1

0
−ev2

3(t)dt = −e < 0.

IV. CONCLUSIONS

In this paper we pose certain questions related to the
nonnegativity of a quadratic form which occurs in op-
timal control problems with equality and/or inequal-
ity constraints in the control functions. In particular,
the standard assumption of strong normality and other
weaker assumptions are characterized in terms of cer-
tain convex cones.

These characterizations allow us to provide several
examples of solutions to optimal control problems
which yield negative second variations on some of
those sets which form different critical directions. In
all the examples, the solutions fail to be strongly nor-
mal but satisfy first order conditions with a positive
cost multiplier together with some regularity assump-
tions. It is of interest to see if, in all cases, the strong
normality assumption is fundamental in the derivation
of second order conditions of this kind, and this paper
illustrates the behaviour in some problems of regular
solutions that fail to satisfy that assumption.
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