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Abstract—This work, second of this study, describes four 

numerical tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The Yee, Warming and 

Harten, Yee and Kutler, Yee, Warming and Harten and Yee schemes 

are implemented to accomplish the numerical simulations. The 

Navier-Stokes equations, on a finite volume context and employing 

structured spatial discretization, are applied to solve the supersonic 

flow along a ramp in two-dimensions. Three turbulence models are 

applied to close the system, namely: Cebeci and Smith, Baldwin and 

Lomax and Sparlat and Allmaras. All schemes are TVD (“Total 

Variation Diminishing”) ones, where the Yee, Warming and Harten, 

Yee and Kutler, and Yee, Warming and Harten are derived from a 

first order upwind scheme and the Yee is derived from a first order 

symmetrical scheme. The latter reaches TVD properties by the 

appropriated definition of a limited dissipation function that uses 

non-linear limiters. The convergence process is accelerated to the 

steady state condition through a spatially variable time step 

procedure, which has proved effective gains in terms of 

computational acceleration (see Maciel). The results have shown that 

the Yee and Kutler and Yee schemes yield the best results in terms of 

the prediction of the shock angle at the ramp. Moreover, the wall 

pressure distribution is also better predicted by the Yee algorithm. 

 

Keywords—Laminar and turbulent flows; TVD algorithms, 

Cebeci and Smith turbulence model, Baldwin and Lomax turbulence 

model, Sparlat and Allmaras turbulence model. 

I. INTRODUCTION 

IGH resolution upwind schemes have been developed 

since 1959, aiming to improve the generated solution 

quality, yielding more accurate solutions and more robust 

codes. The high resolution upwind schemes can be of flux 

vector splitting type or flux difference splitting type. In the 

former case, more robust algorithms are yielded, while in the 

latter case, more accuracy is obtained. Several studies were 

reported in the international literature involving high 

resolution algorithms, some of them are compiled below: 

 [1] supposed that initial data could be replaced by a sort of 

piecewise constant states with discontinuities in {xi+1/2}. He 

found the exact solution to this simplified Riemann problem. 

After some time step t, he replaced the exact solution to a 
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new piecewise constant state approximation, while preserving 

integral properties of the u conserved variable. 

 [2] developed a class of new finite difference schemes, 

explicit and with second order of spatial accuracy to 

calculation of weak solutions of the hyperbolic conservation 

laws. These schemes highly non-linear were obtained by the 

application of a first order non-oscillatory scheme to an 

appropriated modified flux function. The so derived second 

order schemes reached high resolution, while preserved the 

robustness property of the original non-oscillatory first order 

scheme. 

 [3] implemented a high resolution second order explicit 

method based on Harten’s ideas. The method had the 

following properties: (a) the scheme was developed in 

conservation form to ensure that the limit was a weak solution; 

(b) the scheme satisfied a proper entropy inequality to ensure 

that the limit solution would have only physically relevant 

discontinuities; and (c) the scheme was designed such that the 

numerical dissipation produced highly accurate weak 

solutions. The method was applied to the solution of a quasi-

one-dimensional nozzle problem and to the two-dimensional 

shock reflection problem, yielding good results. An implicit 

implementation was also investigated to one- and two-

dimensional cases. 

 [4] applied a new implicit unconditionally stable high 

resolution TVD scheme to steady state calculations. It was a 

member of a one-parameter family of explicit and implicit 

second order accurate schemes developed by [2] for the 

computation of weak solutions of one-dimensional hyperbolic 

conservation laws. The scheme was guaranteed not to generate 

spurious oscillations for a nonlinear scalar equation and a 

constant coefficient system. Numerical experiments have 

shown that the scheme not only had a fairly rapid convergence 

rate, but also generated a highly resolved approximation to the 

steady state solution.  A detailed implementation of the 

implicit scheme for the one- and two-dimensional 

compressible inviscid equations of gas dynamics was 

presented. Some numerical experiments of one- and two-

dimensional fluid flows containing shocks demonstrated the 

efficiency and accuracy of the new scheme. 

 [5] presented a work which extended the [2] scheme to a 

generalized coordinate system, in two-dimensions. The method 

called “TVD scheme” by the authors was tested to the physical 

problem of a moving shock impinging a cylinder. The 

numerical results were compared with the [6] scheme, 

presenting good results. 

 [7] gives a very extensive survey of the state of the art of 

second order high resolution schemes for the Euler/Navier-
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Stokes equations of gas dynamics in general coordinates for 

both ideal and equilibrium real gases. Also, excellent reviews 

on modern upwind conservative shock capturing schemes and 

upwind shock fitting schemes based on wave propagation 

property have been given by [8-9], respectively. 

 This work, second part of this study, describes four 

numerical tools to perform perfect gas simulations of the 

laminar and turbulent viscous flow in two-dimensions. The [3-

5,10] schemes are implemented to accomplish the numerical 

simulations. The Navier-Stokes equations, on a finite volume 

context and employing structured spatial discretization, are 

applied to solve the supersonic flow along a ramp in two-

dimensions. Three turbulence models are applied to close the 

system, namely: [11], [12] and [13]. All schemes are TVD 

ones, where the [3-5] are derived from a first order upwind 

scheme and the [10] is derived from a first order symmetrical 

scheme. The latter reaches TVD properties by the appropriated 

definition of a limited dissipation function that uses non-linear 

limiters. The convergence process is accelerated to the steady 

state condition through a spatially variable time step 

procedure, which has proved effective gains in terms of 

computational acceleration (see [14-15]). The results have 

shown that the [5,10] schemes yield the best results in terms of 

the prediction of the shock angle at the ramp. Moreover, the 

wall pressure distribution is also better predicted by the [10] 

algorithm. 

 For an introduction about the motivation of this work, 

second part of this study, the reader is encouraged to read the 

first part of this work [16]. 

II. NAVIER-STOKES EQUATIONS 

The flow is modeled by the Navier-Stokes equations, which 

express the conservation of mass and energy as well as the 

momentum variation of a viscous, heat conducting and 

compressible media, in the absence of external forces. These 

equations are described in detail in [16]. The reader is 

encouraged to read this reference aiming better understand of 

the present study. 

III. TVD ALGORITHMS 

The description of the convective algorithms of [3-5,10] is 

presented in [17-26] and the reader is encouraged to read these 

papers to become familiar with all numerical schemes. 

Hereafter, this paper will present the viscous formulation of 

both numerical schemes. 

 The numerical flux vector of the [3] scheme, for instance, 

is defined by, at the (i+1/2,j) interface: 
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where: Ee and Fe are the convective or Euler flux vectors, Ev 

and Fv are the viscous flux vectors, l varies from 1 to 4 (two-

dimensional space), hx and hy are the metric terms, Vi+1/2,j is 

the interface volume, and DYWH is the Yee, Warming and 

Harten’s dissipation function, defined in [17-18]. The Euler 

vectors are defined by the convective contributions of the 

numerical schemes. 

 The viscous vectors are calculated with the gradients of the 

conserved and primitive variables keeping constant in each 

volume and the application of the Green’s theorem to change 

from a volume integral to a surface integral. 

 The time integration is performed by a time splitting 

method, which divides the integration in two parts, each one 

associated with a spatial coordinate direction. 

IV. TURBULENCE MODELS 

A. Turbulence Model of Cebeci and Smith 

The problem of the turbulent simulation is in the calculation of 

the Reynolds stress. Expressions involving velocity 

fluctuations, originating from the average process, represent 

six new unknowns. However, the number of equations keeps 

the same and the system is not closed. The modeling function 

is to develop approximations to these correlations. To the 

calculation of the turbulent viscosity according to the [11] 

model, the boundary layer is divided in internal and external. 

 Initially, the (w) kinematic viscosity at wall and the (xy,w) 

shear stress at wall are calculated. After that, the () boundary 

layer thickness, the (LM) linear momentum thickness and the 

(VtBL) boundary layer tangential velocity are calculated. So, 

the (N) normal distance from the wall to the studied cell is 

calculated. The N+ term is obtained from: 

 

                       www,xy NReN  ,                      (2) 

 

where w is the wall density. The van Driest damping factor is 

calculated by: 

 

                          
)AN( wwe1D

 
 ,                         (3) 

 

with 26A   and w  is the wall molecular viscosity. After 

that, the ( dNdVt ) normal to the wall gradient of the 

tangential velocity is calculated and the internal turbulent 

viscosity is given by: 

 

                         dNdVt)ND(Re 2
Ti  ,                        (4) 

 

where  is the von Kárman constant, which has the value 0.4. 

The intermittent function of Klebanoff is calculated to the 

external viscosity by: 

 

                            16
Kleb N5.51)N(g


 .                       (5) 

 

With it, the external turbulent viscosity is calculated by: 

 

                      KlebLMBLTe gVt)0168.0Re(  .                 (6) 

 

Finally, the turbulent viscosity is chosen from the internal and 

the external viscosities: ),(MIN TeTiT  . 
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B. Turbulence model of Baldwin and Lomax 

To the calculation of the turbulent viscosity according to the 

[12] model, the boundary layer is again divided in internal and 

external. In the internal layer, 

 

            2
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In the external layer, 
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with: 
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Hence, maxN  is the value of N where mixl  reached its 

maximum value and lmix is the Prandtl mixture length. The 

constant values are: 4.0 , 0168.0 , 26A0 
, 

6.1Ccp  , 3.0CKleb   and 1C wk  . KlebF  is the intermittent 

function of Klebanoff given by: 
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  is the magnitude of the vortex vector and difU  is the 

maximum velocity value in the boundary layer case. To free 

shear layers, 

 

              
maxNN

222

max

222
dif wvuwvuU









 






  .   (11) 

C. Turbulence model of Sparlat and Allmaras 

The purpose of the [13] one-equation model was overcome the 

algebraic model limitations and, at the same time, to avoid the 

difficulties in the implementation of the two-equation models 

or the Reynolds stress equations. This model employs a 

transport turbulent viscosity to solve the turbulence scaling. 

Such model takes naturally into account the turbulence and 

diffusion histories, which improves its accuracy. 

 The transport equation to the work turbulent kinematic 

viscosity is described by: 
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In this equation, the first term of the right-hand-side is the 

production contribution to the work kinematic viscosity; the 

second term is the viscosity diffusion; and the last term is the 

destruction of the work kinematic viscosity. The turbulent 

viscosity is defined by: 

 

                                        1vT f~ .                                 (13) 

With the purpose of assuring that ~  becomes equal to 

ww,xyNK   in the logarithmic layer and in the 

viscous sub-layer, the 1vf damping function is defined by: 
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as function of the  ~ variable. The S
~

 function, 

representing the deformation work of the mean flow, is 

determined as follows: 
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in which 2vf  has the following expression: 
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 The destruction term should disappear at the external 

region of the boundary layer. [13] purpose the following 

function to reproduce such behavior: 
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with the r argument and the wf function reaching the value 1.0 

at the logarithmic layer and decreasing at the external region. 

The g function is merely a limiter to prevent wf  high values. 

The [13] model constants are: 

 

1,7c,3,0c,622,0c,1355,0c 1v2w2b1b  ; 

                
 
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2
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1w3w

c1c
c,0,2c,32 .        (18) 

 

The [7] model is marched in time using a LU-SGS (“Lower-

Upper Factorization – Symmetrical Gauss-Seidel”) implicit 

method. Details of the implicit implementation in two-

dimensions are found in [13]. The extension to three-

dimensions is straightforward. 

 In this work, the term referent to the diffusion of the work 

kinematic viscosity was not implemented. The studied model 

considers only the production and dissipation terms of the 

work kinematic viscosity. 

V. SPATIALLY VARIABLE TIME STEP 
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The basic idea of the spatially variable time step procedure 

consists in keeping constant the CFL number in all calculation 

domain, allowing, hence, the use of appropriated time steps to 

each specific mesh region during the convergence process. In 

this work, a convective + diffusive option of spatially variable 

time step calculated at each iteration was studied. Details of 

the present implementation, see [16]. 

VI. INITIAL AND BOUNDARY CONDITIONS 

A. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [27]. 

B. Boundary Conditions 

The boundary conditions are basically of three types: solid 

wall, entrance, and exit. These conditions are implemented in 

ghost cells. Details of the present implementation, see [16]. 

VII. RESULTS 

One problem was studied in this work, namely: the viscous 

supersonic flow along a ramp geometry. The ramp 

configuration is detailed as also the type of boundary contours. 

These configuration characteristics are described in Figs. 1 and 

2. Numerical experiments were run on a Notebook computer 

with Intel Core i7 processor of 2.3GHz of clock and 8.0 

GBytes of RAM. The criterion adopted to reach the steady 

state was to consider a reduction of three (3) orders of 

magnitude in the value of the maximum residual in the 

calculation domain, a typical CFD community criterion. The 

maximum residual is defined as the maximum value obtained 

from the discretized equations in the overall domain, 

considering all conservation equations. The initial conditions 

to the ramp problem are described in Tab. 1. The number of 

cells and nodes for the ramp problem are presented in Tab. 2. 

A mesh of 61x60 nodes, in a finite difference context, is 

employed. 

 

 
Figure 1. Ramp Configuration. 

 

 
Figure 2. Ramp Computational Domain. 

 

Table 1. Initial Conditions to the Studied Problem. 

 

 

Table 2. Cells and Nodes of the Mesh. 

 

Problem: Number of 

rectangular cells: 

Number of 

nodes: 

Ramp 3,540 3,660 

 

 Figure 3 exhibits the mesh employed in the calculation of 

the viscous flow to the ramp problem. An exponential 

stretching of 10.0% was applied close to the wall, in the  

direction, to capture the viscous phenomena. 

 The Reynolds number is equal to 1.613x10
5
, a turbulent 

flow. Three turbulence models will be studied, namely: [11-

13]. Two algebraic and an one-equation models are 

implemented. 

 
Figure 3. Ramp viscous mesh. 

 

 

Problem: Property: Value: 

 Freestream Mach, M∞ 2.0 

Ramp Attack angle,  0.0 

 Ratio of specific heats,  1.4 
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A. Laminar Viscous Results 

The second order laminar viscous results are presented here 

to serve as a benchmark to compare the second order turbulent 

results, aiming to distinguish the main characteristics of each 

turbulent model, as referenced by the CFD literature, and 

verify their potentialities. 

 

TVD High Resolution Results. A minmod like non-linear 

limiter was employed in the [10] scheme. Figures 4 to 7 

exhibit the pressure contours obtained by the [3-5,10] 

schemes. All solutions present a weak shock ahead of the ramp 

corner. 

 
Figure 4. Pressure contours (YWH82). 

 
Figure 5. Pressure contours (YWH85). 

 

This shock wave is formed far ahead the ramp corner. The 

pressure field is also more severe in the solution obtained by 

the [10] scheme, indicating this one as more conservative. 

 Figures 8 to 11 show the Mach number contours obtained 

by the [3-5,10] algorithms. All solutions present a significant 

region of the detached boundary layer. The most intense Mach 

number field is obtained by the [4] scheme. In qualitative 

terms there are meaningful differences. The [4] solution 

presents the biggest circulation bubble. 

 

 
Figure 6. Pressure contours (YK). 

 
Figure 7. Pressure contours (Yee). 

 
Figure 8. Mach number contours (YWH82). 

 

 Figure 12 shows the wall pressure distributions generated 

by the [3-5,10] schemes. All solutions capture the circulation 

bubble formation, resulting from the boundary layer 

detachment. The [10] solution presents a pressure distribution 

closer to the pressure plateau and the [4] solution presents a 

more extent separation region. 
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Figure 9. Mach number contours (YWH85). 

 
Figure 10. Mach number contours (YK). 

 
Figure 11. Mach number contours (Yee). 

 

 Figures 13 to 16 presents the formation of circulation 

bubble closes to the ramp corner obtained by [3-5,10] 

schemes. All schemes present circulation bubbles with the 

same extension. 

 
Figure 12. Wall pressure distributions. 

 
Figure 13. Circulation bubble (YWH82). 

 
Figure 14. Circulation bubble (YWH85). 

 

 As a resume of the present simulations, the [10] scheme 

was more conservative and more correct in physical terms, 

representing accurately the flow physics. 
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Figure 15. Circulation bubble (YK). 

 
Figure 16. Circulation bubble (Yee). 

B. Turbulent Viscous Results 

Cebeci and Smith Results. Figures 17 to 20 show the pressure 

contours obtained by the [3-5,10] schemes, respectively, as 

using the [11] turbulence model.  

 
Figure 17. Pressure contours (YWH82-CS). 

 
Figure 18. Pressure contours (YWH85-CS). 

 
Figure 19. Pressure contours (YK-CS). 

 
Figure 20. Pressure contours (Yee-CS). 

 
With the exception of the [4] solution, all other solutions 

practically ignore the existence of the weak shock ahead of the 

ramp corner. It indicates that the boundary layer detachment is 

negligible in these solutions and that the circulation bubble is 
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reduced in size. The pressure field generated by the [3,5] 

schemes are more severe than the other solutions. 

 
Figure 21. Mach number contours (YWH82-CS). 

 
Figure 22. Mach number contours (YWH85-CS). 

 
Figure 23. Mach number contours (YK-CS). 

 
Figure 24. Mach number contours (Yee-CS). 

 
Figure 25. Wall pressure distributions. 

 
Figure 26. Circulation bubble (YWH82-CS). 

 

 Figure 25 exhibits the wall pressure distributions obtained 

by the [3-5,10] algorithms, as using the [11] turbulence model. 

As can be observed, the [3,5] solutions are very similar and 

agree better with the theoretical solution than in the laminar 
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case. The expansion fan pressure is better predicted by the [3] 

algorithm. 

 
Figure 27. Circulation bubble (YWH85-CS). 

 
Figure 28. Circulation bubble (YK-CS). 

 
Figure 29. Circulation bubble (Yee-CS). 

 

 Figures 26 to 29 show the circulation bubble formation 

close to the ramp corner. The [4,10] solutions predicted a 

small circulation bubble, whereas the [3,5] schemes predicted 

no flow separation. 

 In resume, as can be observed the [11] turbulence model 

predicts a more energized boundary layer. With it, the weak 

shock wave ahead of the ramp corner is negligible and the 

circulation bubble presents a discrete formation, when 

occurring. 

 

Baldwin and Lomax Results. Figures 30 to 33 exhibit the 

pressure contours obtained by the [3-5,10] schemes, 

respectively, as using the [12] turbulence model. A weak 

shock wave is formed ahead of the ramp corner in all 

solutions. It is important to remember that such weak shock 

wave is due to the boundary layer detachment which induces a 

false thick geometry at the ramp and the flow only see this 

thick geometry, originating the oblique shock wave. 

 
Figure 30. Pressure contours (YWH82-BL). 

 
Figure 31. Pressure contours (YWH85-BL). 

 

So, it is possible to verify that the effect of increasing 

boundary layer thickness is significant in both solutions. In 

terms of the pressure field, the [10] scheme again presents the 

most severe pressure field, characterizing this algorithm as the 

most conservative. 
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Figure 32. Pressure contours (YK-BL). 

 
Figure 33. Pressure contours (Yee-BL). 

 
Figure 34. Mach number contours (YWH82-BL). 

 

 Figures 34 to 37 show the Mach number contours obtained 

by the [3-5,10] numerical algorithms, respectively, as using the 

[12] turbulence model. It is possible to observe that the 

boundary layer detachment is bigger in the [4] solution, with 

the consequent formation of a bigger circulation bubble than 

the other solutions. The Mach number field of the [4] solution 

is also more severe than the respective of the other solutions.  

 
Figure 35. Mach number contours (YWH85-BL). 

 
Figure 36. Mach number contours (YK-BL). 

 
Figure 37. Mach number contours (Yee-BL). 

 

 Figure 38 presents the wall pressure distributions generated 

by all algorithms. As noted, all solutions capture the 

circulation bubble formation closes to the ramp corner, but all 
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solutions differs from the theoretical solution (both under-

predict the shock plateau). 

 
Figure 38. Wall pressure distributions. 

 
Figure 39. Circulation bubble (YWH82-BL). 

 
Figure 40. Circulation bubble (YWH85-BL). 

 

 Figures 39 to 42 exhibit the circulation bubble formed 

close to the ramp corner generated by the [3-5,10] algorithms. 

All schemes present the same circulation bubble extent and 

size. 

 In resume, the [12] turbulence model predicts a great 

extent region of boundary layer detachment and, consequently, 

bigger bubble size. The [12] model predicts bigger separation 

than the [11] model. 

 
Figure 41. Circulation bubble (YK-BL). 

 
Figure 42. Circulation bubble (Yee-BL). 

 

Sparlat and Allmaras Results. Figures 43 to 46 present the 

pressure contours obtained by the [3-5,10] schemes, 

respectively, as using the [13] turbulence model. The [3] 

solution captures a small boundary layer detachment, which 

results in a less intense weak shock wave. The [4] solution 

captures a bigger boundary layer detachment, which results in 

a more intense weak shock wave. The pressure field generated 

by the [3-5] schemes is more severe than that generated by the 

[4,10] schemes. 

 Figures 47 to 50 show the Mach number contours obtained 

by the [3-5,10] numerical schemes, respectively. The [4] 

solution again captures a bigger circulation bubble than the 

other solutions. In quantitative terms the solution generated by 

the [4,10] schemes is more intense than that generated by 
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the [3,5] schemes. Moreover, in qualitative terms the 

difference also exists. 

 

Figure 43. Pressure contours (YWH82-SA). 

 

Figure 44. Pressure contours (YWH85-SA). 

 

Figure 45. Pressure contours (YK-SA). 

 

Figure 46. Pressure contours (Yee-SA). 

 

Figure 47. Mach number contours (YWH82-SA). 

 

Figure 48. Mach number contours (YWH85-SA). 
 

  Figure 51 shows the wall pressure distributions 

obtained by the [3-5,10] algorithms. All solutions capture 

the circulation bubble at the ramp corner. Moreover, all 

pressure peaks are close to the theoretical pressure plateau.  
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Figure 49. Mach number contours (YK-SA). 

 

Figure 50. Mach number contours (Yee-SA). 

 
Figure 51. Wall pressure distributions. 

 

It is important to be mentioned here that the best behavior to 

the pressure plateau was obtained by the [11] turbulence 

model in spite of the loss of physical meaning of the flow (loss 

of the circulation bubble formation). 

 

Figure 52. Circulation bubble (YWH82-SA). 

 

Figure 53. Circulation bubble (YWH85-SA). 

 

Figure 54. Circulation bubble (YK-SA). 
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 Figures 52 to 55 exhibit the circulation bubble captured by 

the [3-5,10] schemes, respectively, as using the [13] turbulence 

model. As can be seen, all solutions generate significant 

bubble regions. 

 In resume, the [13] turbulence model predicts a less extent 

region of boundary layer detachment and, consequently, minor 

bubble size. The [13] model, an one-equation model, predicts 

less severe separation than the [12] model. 

 
Figure 55. Circulation bubble (Yee-SA). 

C. Quantitative Analysis 

 One way to quantitatively verify if the solutions generated 

by each scheme are satisfactory consists in determining the 

shock angle of the oblique shock wave, , measured in relation 

to the initial direction of the flow field. [28] (pages 352 and 

353) presents a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is determined as 

function of the freestream Mach number and of the deflection 

angle of the flow after the shock wave, . To  = 20º (ramp 

inclination angle) and to a freestream Mach number equals to 

2.0, it is possible to obtain from this diagram a value to  

equals to 53.0º. Using a transfer in Figures 4 to 7 (laminar), 

Figs. 17 to 20 (CS), Figs. 30 to 33 (BL), Figs. 43 to 46 (SA), it 

is possible to obtain the values of  to each scheme and to 

each studied case, as well the respective errors, shown in Tab. 

3. 

  

Table 3. Values of the oblique shock wave angle. 

 

Case Lam., 

2nd 

CS, 

TVD 

BL, 

TVD 

SA, 

TVD 

YWH82 50.5 51.5 52.0 51.5 

Error 4.72 2.83 1.89 2.83 

YWH85 50.0 52.0 51.6 53.5 

Error 5.66 1.89 2.64 0.94 

YK 50.3 53.0 51.0 51.0 

Error 5.09 0.00 3.77 3.77 

Yee 47.0 52.0 50.4 53.0 

Error 11.32 1.89 4.91 0.00 

 

It is possible to distinguish that the [5,10] schemes using the 

[11,13] turbulence models yield the best results with a zero 

value to the error. Hence, in terms of accuracy the [5,10] 

schemes are better than the other schemes. 

 Table 4 presents the computational data of the simulations. 

All schemes converged in three (3) orders. All TVD solutions 

of the [3,5] schemes converged with a CFL Number of 0.7, 

whereas all TVD solutions of the [4,10] scheme converged 

with CFL numbers of 0.5, 0.4 and 0.3. It is important to 

highlight the excellent convergence of the [3,5] schemes, 

converging in all cases in less than 5,500 iterations. 

 

Table 4. Computational data. 

 

Case Lam., 

2nd 

CS, 

TVD 

BL, 

TVD 

SA, 

TVD 

YWH82 0.7 0.7 0.7 0.7 

 5,455 1,418 5,455 3,848 

YWH85 0.4 0.3 0.3 0.3 

 12,175 12,000 16,167 16,968 

YK 0.7 0.7 0.7 0.7 

 5,455 1,418 5,455 3,848 

Yee 0.5 0.5 0.5 0.5 

 8,417 4,257 8,417 7,378 

VIII. CONCLUSIONS 

This work, second part of this study, describes four numerical 

tools to perform perfect gas simulations of the laminar and 

turbulent viscous flow in two-dimensions. The [3-5,10] 

schemes are implemented to accomplish the numerical 

simulations. The Navier-Stokes equations, on a finite volume 

context and employing structured spatial discretization, are 

applied to solve the supersonic flow along a ramp in two-

dimensions. Three turbulence models are applied to close the 

system, namely: [11], [12] and [13]. All schemes are TVD 

ones, where the [3-5] are derived from a first order upwind 

scheme and the [10] scheme is derived from a first order 

symmetrical scheme. The latter reaches TVD properties by the 

appropriated definition of a limited dissipation function that 

uses non-linear limiters. The convergence process is 

accelerated to the steady state condition through a spatially 

variable time step procedure, which has proved effective gains 

in terms of computational acceleration (see [14-15]). The 

results have shown that the [5,10] schemes yield the best 

results in terms of the prediction of the shock angle at the 

ramp. Moreover, the wall pressure distribution is also better 

predicted by the [10] algorithm. 

 

REFERENCES   

[1] S. K. Godunov, A Finite Difference Method for the   Numerical 

Computation of Discontinuous Solutions of the Equations of Fluid 

Dynamics, Math. Sb., Vol. 47, 1959, p. 271. 

[2] A. Harten, High Resolution Schemes for Hyperbolic Conservation 

Laws, Journal of Computational Physics, Vol. 49, 1983, pp. 357-393. 

[3] H. C. Yee, R. F. Warming, and A. Harten, A  High-Resolution   

Numerical   Technique   for Inviscid Gas-Dynamic Problems with 

Weak Solutions, Proceedings of the 8th  International Conference on 

Numerical Methods in Fluid Dynamics, E. Krause, Editor, Lecture 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 8, 2014

ISSN: 2074-1278 115



 

 

Notes  in Physics, Springer-Verlag, Berlim, Germany, Vol. 170, 1982, 

pp. 546-552. 

[4] H. C. Yee, R. F. Warming, and A. Harten, Implicit Total Variation 

Diminishing (TVD) Schemes for Steady-State Calculations, Journal of 

Computational Physics, Vol. 57, No. 3, 1985, pp. 327-360. 

[5] H. C. Yee, and P. Kutler, Application of Second-Order-Accurate Total 

Variation Diminishing (TVD) Schemes to the Euler Equations in 

General Geometries, NASA-TM-85845, 1985. 

[6] R. W. MacCormack, The Effect  of  Viscosity  in Hypervelocity Impact 

Cratering, AIAA Paper 69-354. 

[7] H. C. Yee, A Class of High Resolution Explicit and Implicit Shock-

Capturing Methods, NASA TM-101088, 1989. 

[8] Roe, P. L., Characteristic-based Schemes for the Euler Equations, 

Annual Review of Fluid Mechanics, Vol. 18, 1986, pp. 337-365. 

[9] G. Moretti, 1987, Computation of Flows with Shocks, Annual Review 

of Fluid Mechanics, Vol. 19, 1987, pp. 313-337. 

[10] H. C. Yee, Construction of Explicit and Implicit Symmetric TVD 

Schemes and Their Applications, Journal of Computational Physics, 

Vol. 68, 1987, pp. 151-179. 

[11] T. Cebeci, and A. M. O. Smith, A  Finite-Difference  Method  for  

Calculating  Compressible  Laminar  and Turbulent Boundary Layers, 

Journal of Basic Engineering, Trans. ASME, Series B, Vol. 92, No. 3, 

1970, pp. 523-535. 

[12] B. D. Baldwin, and H. Lomax, Thin  Layer  Approximation  and  

Algebraic  Model  for  Separated  Turbulent Flows, AIAA Paper 78-

257, 1978. 

[13] P. R. Sparlat, and S. R. Allmaras, A One-Equation Turbulence Model 

for Aerodynamic Flows, AIAA  Paper 92-0439, 1992. 

[14] E. S. G. Maciel, Analysis of Convergence Acceleration Techniques 

Used in Unstructured  Algorithms in the Solution of Aeronautical 

Problems – Part I, Proceedings of the XVIII  International Congress of 

Mechanical Engineering (XVIII COBEM), Ouro Preto, MG, Brazil, 

2005. [available in CD-ROM] 

[15] E. S. G. Maciel, Analysis of Convergence Acceleration  Techniques  

Used  in  Unstructured  Algorithms  in  the Solution of Aerospace 

Problems – Part II”, Proceedings of the XII Brazilian Congress of 

Thermal  Engineering  and Sciences (XII ENCIT), Belo Horizonte, 

MG, Brazil, 2008. [available in CD-ROM] 

[16] E. S. G. Maciel, Laminar and Turbulent Simulations of Several TVD 

Schemes in Two-Dimensions – Part I, Submitted to WSEAS 

Transactions on Computers (under review). 

[17] E. S. G. Maciel, Comparison Between the Yee, Warming and Harten 

and the Hughson and Beran High Resolution Algorithms in the 

Solution of the Euler Equations in Two-Dimensions – Theory, 

Proceedings of the XXVII Iberian Latin American Congress on 

Computational Methods in Engineering (XXVII CILAMCE), Belém, 

Pará, Brazil, 2006. [available in CD-ROM] 

[18] E. S. G. Maciel, Comparison Between the Yee, Warming and Harten 

and the Hughson and Beran High Resolution Algorithms in the 

Solution of the Euler Equations in Two-Dimensions – Results, 

Proceedings of the XXVII Iberian Latin American Congress on 

Computational Methods in Engineering (XXVII CILAMCE), Belém, 

Pará, Brazil, 2006. [available in CD-ROM] 

[19] E. S. G. Maciel, and E. M. Ferreira, TVD and ENO Applications to 

Supersonic Flows in 2D – Part I, Submitted to WSEAS Transactions on 

Mathematics (under revision). 

[20] E. S. G. Maciel, Solutions of the Euler and the Laminar and Turbulent 

Navier-Stokes Equations in Two-Dimensions Using TVD and ENO 

Algorithms, WSEAS Transactions on Mathematics, Vol. 11, Issue 6, 

2012, pp. 478-500. 

[21] E. S. G. Maciel, Explicit and Implicit TVD High Resolution Schemes 

in 2D, WSEAS Transactions on Applied and Theoretical Mechanics, 

Vol. 7, Issue 3, 2012, pp. 182-109. 

[22] E. S. G. Maciel, Explicit and Implicit TVD High Resolution Schemes 

in 2D – Theory, Proceedings of the X Symposium of Computational 

Mechanics (X SIMMEC), Belo Horizonte, MG, Brazil, 2012. [available 

in CD-ROM] 

[23] E. S. G. Maciel, Explicit and Implicit TVD High Resolution Schemes 

in 2D – Results, Proceedings of the X Symposium of Computational 

Mechanics (X SIMMEC), Belo Horizonte, MG, Brazil, 2012. [available 

in CD-ROM] 

[24] E. S. G. Maciel, Explicit and Implicit TVD and ENO High Resolution 

Algorithms Applied to the Euler and Navier-Stokes Equations in 

Three-Dimensions – Theory, Proceedings of the XX International 

Congress of Mechanical Engineering (XX COBEM), Gramado, RS, 

Brazil, 2009. [available in CD-ROM] 

[25] E. S. G. Maciel, Explicit and Implicit TVD and ENO High Resolution 

Algorithms Applied to the Euler and Navier-Stokes Equations in 

Three-Dimensions – Results, Proceedings of the XX International 

Congress of Mechanical Engineering (XX COBEM), Gramado, RS, 

Brazil, 2009. [available in CD-ROM] 

 

 

Edisson S. G. Maciel (F’14), born in 1969, february, 25, in Recife, 

Pernambuco. He is a Mechanical Engineering undergraduated by UFPE in 

1992, in Recife, PE, Brazil; Mester degree in Thermal Engineering by UFPE 

in 1995, in Recife, PE, Brazil; Doctor degree in Aeronautical Engineering by 

ITA in 2002, in São José dos Campos, SP, Brazil; and Post-Doctor degree in 

Aeronautical Engineering by ITA in 2009, in São José dos Campos, SP, 

Brazil. 

 Actually, he is doing a new post-doctorate curse in Aerospace 

Engineering at ITA. The last researches are based on thermochemical non-

equilibrium reentry simulations in Earth and thermochemical non-equilibrium 

entry simulations in Mars. They are: Maciel, E. S. G., and Pimenta, A. P., 

“Thermochemical Non-Equilibrium Reentry Flows in Two-Dimensions – Part 

I’, WSEAS Transactions on Mathematics, Vol. 11, Issue 6, June, pp. 520-545, 

2012; Maciel, E. S. G., and Pimenta, A. P., “Thermochemical Non-

Equilibrium Entry Flows in Mars in Two-Dimensions – Part I’, WSEAS 

Transactions on Applied and Theoretical Mechanics, Vol. 8, Issue 1, January, 

pp. 26-54, 2013; and he has three published books, the first one being: 

Maciel, E. S. G., “Aplicações de Algoritmos Preditor-Corretor e TVD na 

Solução das Equações de Euler e de Navier-Stokes em Duas Dimensões”, 

Recife, PE, Editor UFPE, 2013. He is interested in the Magnetogasdynamic 

field with applications to fluid dynamics and in the use of ENO algorithms. 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 8, 2014

ISSN: 2074-1278 116




