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New solutions of the heat equation

Jacob M. Manale

Abstract—Using a Lie symmetry group generator and a genetlearly, this result together with (3), and (4) are obviously in
alised form of Euler's formula for solving second order ordinaryhe family of solutions of the form
differential equations, we determine new symmetries for the heat
equation, leading to new solutions. As an application, we test a u=f(t x)e_fi_t (6)
formula resulting from this approach on thin plate heat conduction. ’ )

Keywords—Heat equation, Partial differential equations, Symmelhe factorexp(—z?/(4t)) guarantees that = 0 whent = 0.
try analysis. Other contributions in the field are by Kallianpur, and
Karandikar [7], Kwok [7], Hui [8], Longstaff [9], Platen [10],
Naicker, Andriopoulos, and Leach [11], Pooe, Mahomed, and

_ _ Soh [12], Sinkala, Leach, and O?Hara [13], Gazizov, and
T HERE is something odd, and rarely commented ”pQBragimov [14].

that is at the core of some, if not all known analytical
solutions of the heat equation

M)

I. INTRODUCTION

In this contribution, we determine new symmetries for (2),
leading to new invariant solutions. This requires introducing

0%u ou a new infinitesimal parameter. Infinitesimal parameters are
922~ Por (1) not new to Symmetry analysis. What we do differently is that
or the parameter is not introduced into the symmetry generator

(2) @s is customary, but outside of it. To realise this, we invoke
Euler’s formulas for solving second order ordinary differential

where(C' is known as the thermal conductivity,the specific equations, discussed in Appendix A.

heat,p the densityu is temperature that depends on position \We show that in addition to the family of solutions espoused

r, and timer, with t = k7, andk = C/(cp), called the in (6), there is a whole new family mapped by a paired couple

thermal diffusivity. The unsettling matter is that the solutiongresented in (126). And also suggest (129) as an alternative

suggest that wheh= 0 we should always have = 0, which to averting the arbitrary zero in whent = 0.

we find impractical. Impractical in that one then cannot have

arbitrary initial conditions likeu(t = 0,z) = uo without

ug = 0. Numerical techniques, on the other hand, do not have

this problem, implying that there is some unknown analytic#it order to generate point symmetries for equation (2), we first

solution waiting to be unearthed. consider a change of variables frame, andw to ¢t*, z*, and
This we address using Lie’s symmetry group theoretical involving an infinitesimal parameter. A Taylor's series

method, a technique he introduced centuries ago through gx@ansion inc neare = 0 yields

now famous paper [1]. It is worth noting that this technique

Uy = Ut,

Il. SOLUTION OF THE DETERMINING EQUATION

has been applied before on this equation, and that two very i* ; ;ieig’i’zg @
distinct solutions have consistently resulted. They are in the w o~ ueCt ’x ’u)
linear combination o
1 .2 x where .
u= %6 a (01 + 02;) ; (©) %% =0 = T(t,z,u)
) . . 856 |6:0 = g(tv x, U) . (8)
and can be found in Bluman’s work, and the work he did with a;: o = Cta,u)

others, including with Kumei [2]. The same results are also _ _ _ _
contained in the work with Cole, communicated by Keller [3]The tangent vector field (8) is associated with an operator

also with Anco [4]. The parameter contained in the result 9 9 9
- X=T— 46— +(— 9
Ibragimov [5] got o 5 +€83: + Cau, 9
U= gme (4)  called a symmetry generator. This in turn leads to the invari-

. , . ance condition
generates a broader perspective to one of Bluman'’s solutions.

Olsen [6], used a very clever trick to get X (g — ) [unmusy = 0, (10)
.2 . . . .
R (5) where X! is the second prolongation of. It is obtained
2Vt from the formulas:
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where Because the functioft is analytic everywhere, Euler’'s mixed
derivatives theorem holds, meanifig; = T:,. This then
¢V = St ugh + [f - 5] we — Fhua, (12)  educes (20) into e
@ = % tull o+ [f- 8w - Zuw, @) S =0, &)
this then integrates into
2 —
t(t2) 6t2 + uatz + {2_ - aizT} Ut — %ux (14) {=atab, (22)
+[f =28 iy — 28_§ut$’ wherea = a(t), andb = b(t). This expression is similar to
the one appearing with Euler's formulas in the system (131).
2 g 5 92T The discussion there was that the middle expression cannot
ww = g L B i’_ ~ 922" (15) be transformed into the other two, then we had to introduce
Um - “trv (149) to make it possible. That expression becomes handy
and here, because we can now express (22) in the form
t(i) 8t8;c Tu 8t8f;c + [2% - g:g:c} Ut §= a cos(we/i) + bsin(wx/i)’ (23)
{28]”765}%67{‘]?73_1“7%}%% w/i
otdz | T ot Oz | THE where¢ = sin(w/4). It is clear that (22) reduces to (21) when
oT o€
g Utt T i Uza- (16) w — 0. The second defining equatioi; — 2¢, = 0, then
It is to be understood here that the simplificati¢f, =, u) = leads to .
wf(t,x) + g(t,z) is adopted from the calculations that led to o —2a¢sin(wa/i) + 2bcos(wz/i) + Ao (23)
the old symmetries: w ’
v, = 8 where 4y is a constant. Thug' now appears to also depend
Y, = %’ on x, but we know this is subject tw = 0. Substitutingé,
5 9t 4 and T from equations (23), and (24) into the third defining
R equation2f, = n.. — 0, leads to
Vi = atd +t2%+(%+%) ul, (17) .
Ve = 10 _zu 0 2f, = fﬁgcos(wx/i) — bgsm(wx/z)
5 - ox 2 ou’ z 71 )
Y()' - U%v ¢ ’Lb
Yoo = g(t,z) 2. —dzcos(wx/i) - ;sin(wx/i), (25)
These are mentioned here to ease comparison with our o\yiegrating this with respect to gives
which are at the end of this section.
The invariance condition (10) then leads to the equation f = —(a+4d) gsm(wx/i)
6:62 +u 6:62 + |:2 oz gx§:| Uz — gzgut + [f72?)_§] Ut — . -\ 1 . By
28Tuu—%—u%— [f %ﬂut_’_agul_o +(b—b) 5005(0&/2)4—7, (26)

called determining equation, from which follows the monomiyhere B, is a constant. We now substitute this into the fourth
als ) T —0 defining equation to establish the functionsandb. First we
W ro differentiate (26) once with respect to

Ut : T, — 2§J( =0
1;1 ZfIf;fimfjito: ! (18) fo = - (d + a(3)) 1gsm(wx/z)
1 : Gz — Gt = 0 + (b _ b(3)) 5005(&)37/’&'), (27)

called the defining equations. then twice with respect ta:
To begin solving these, we note that the first defining P

equationT, = 0, suggests thal’ should not depend on. f

The implication is that we would end with less number of o .

symmetries if we continue this way. Fortunately, we now have AR ‘

formula (149) to remedy this. + (b B b) 7605(wx/2>' (28)

We use the formula to generate some dependencefon The substitution leads to

T. That is,T depends on both, andx neare = 0, but not at

e = 0. Differentiating this defining equation with respectt{o

gives and
Ty = 0. ﬂ% @ byu—bfwﬂ (30)

When the latter is differentiated with respectipwe get

= —(d+d)§w%hﬂwxﬁ)

(a+a)w? =i+ a®, (29)

i+ a®
Tt — 262z = 0. (20) ara Y (31)
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That is, ,
a+d= Coe” . 32
0 (32) X3 = —2¢t sin(wx/i)g
Subsequently, , ot
—|—Z¢ cos(wx /1) 0 (40)
C() 1 w2 o - a0
o= S L4 Oy + Che . (33) w O
Similarly, solving equation (30) yields 9
D 1 Xy = 2t cos(wx/i)g
b = —20 3 ewzt —|— D1 —|— Dget, (34) Z 8
w? w? —1 —|——si1r1(<wz:/i)a—7 (41)
for some constant§y, C;, Cs, Do, D1, and D,. w z
0
_ —t . .
A. Infinitesimals Xs = 2¢e sin(wa/i)
The linearly indepe_ndgnt solutions of the defining equations +@ et cos(we/i)—, (42)
(18) lead to the infinitesimals w Ox
Co AN .
r= o (m ) sin(oz/1) Xo = 2¢ coslwr/i)y
- - —t . . .
2¢ (C’ltD Cae™") sin(wz /i) L sin(wx/z‘)aﬁ, (43)
w €z
+2 <w4(T0—1)eUJ2t> cos(wzx /1) ,
+2 (Dlt + D2€t) cos(wz /1) + Ay, (35) X7 = % (44)
_ 7 Co 1 W2t . 9
- (wz i ) cos(we/i) Xg = - (45)
+@ (01 + 0264) cos(wz /i) The last defining equation leads to an infinite symmetry
“ generator.
+2 &Le“}t sin(wx /1)
w\w?w?-1 P
+£ (D1 + Dget) sin(wx /1) (36) Koo =9(t, Z>% (46)
and I11. CONSTRUCTION OF INVARIANT SOLUTIONS FOR(2)
B o <Z>e“’2t . . The symmetriesX,, Xg, and X, are not different from
fo= —C—; sin(wz /1) Ys,Ys, and Y., obtained by Bluman, and others, as such
et ' Bo unlikely to lead to anything not already known. We limit our
—DOTCOS(WC/Z) + 5 (37)  construction of invariant solutions t&;, and X», as they
appear to be broader and more encompassingXhaX,, Xs,
B. The symmetries and Xs. What is certain is thak;, and X, are automatically
addressed.

According to (9), the infinitesimals: (35), (36), and (37),
lead to the generators
A. Invariant solutions through the symmetky

2ew’t 9] - , :
X = )= .
1 ST cos(wa:/z)at The characteristic equations that arise from the symmgiry
jew’t _ N whw? — 1)e~“"tdt i (w? - De=“"tdy
+w3(w2 1) sm(w:c/z)% 2 cos(wx /1) B sin(wx /1)
ot 9 2e= "ty
; = — 47
- 5 COS(WJC/Z)U%, (38) cos(wz/i)u’ (7)
lead to
Xy, = _Lﬁ Sin(wx/i)g whw? — 1)6_“2tdt w3 (w? — 1)6_w2tdl‘
wh(w? + 1) ot ‘ = . . ; (48)
et 5 cos(wz /1) sin(wx /1)
ige :
+m COS(WZC/Z)% and
2 40,2 —w?t —w?t
oWt 9 wh(w?® —1)e~¥"dt 2e™% *du
B . _— = ) 49
2 sm(wx/z)uau, (39) 2 cos(wx /1) cos(wz/i)u (49)
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Equation (48) becomes

St — 9 (w/i).cos(wa:'/i)dac7 (50)
sin(wx /1)
so that
A = —w?t — 21In|sin(wz/i)|. (51)
Hence,
w2
n=e7z"|sin(wz/i)| (52)
wheren = exp(—\/2).
Equation (49) becomes
whw? —Ddt  du
= o 53
y - (53)
so that the invariant solution has the form
u = el @I (), (54)
This means
40 .2
—1
w = ﬁ&%_lwﬂﬁﬂmm¢
el W Ay, (55)
That is,
v = D ey,
4
UJ2 wh w2 .
+777@( ( 1))t/4¢_ (56)
On the other hand,
Uy = e WImDAG, (57)
so that
4, 2 .
Upw = e(w (w 71))t/4¢ (771)2
+e(w4(w271))t/4q'5 Now (58)
That is,
Upy = e(w4(w2—1))t/4('z;
" (ieszt (—w/i) cos(wx/z )
e @)/,
o . ,
v (erTt (—w/i)? w) , (59)
w
or
Yoy = wze(w(w?q))t/% (ew% 7772)
+w2ne(w4(w2—1))t/4¢. (60)

Substituting the expression fa; from equation (56), and

the one foru,, from equation (60) into (2), give
B (¢ )

_ M¢ i

In the limit w approaching zero, this equatlon reduces to

an%$+g¢:& (62)

ISSN: 2074-1278 18
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That is,
P
el (63)
o 2n°-—1
so that
2 dq 1
1n¢) dn = —/ (64)
Alm7 2
The integral on the left evaluates easily. Hence,
mé— i+t [ =g 65
n¢ = Fop+ 5/7]1 o1 uB (65)

whereFj, is a constant. The other requires lettipg= 7, and
12 = n + w then invoking L'hopital’s principle. That is,

(66)

Evaluatingdn/dw:

hléfl):ﬁ'oJr
w

¥ (%tl sin(wz/i)| £ (/i) cos(wa:/i))

w2 . d /7]+w 77] ~
3 dn.
Xe dn g 772 1 Ui

(67)

The fundamental theorem of calculus ensures that the deriva-

tive removes the integral, simplifying the equation to

hléfl) =Fp+
W (W, . . .
5 (e 7' |sin(wa/i)| £ (x/z)cos(wx/z))
w? n
xe's tm. (68)
A further simplification on the right gives
hl(/}) = FQ +
% (U—Jt| sin(wz/1)| £ (z/1) cos(wa:/i))
224 |sin(wa/i)
X (69)
e~ St _ o= %t
That is,
111@5 =Fy+
w?orw , . .
> (§t| sin(wz /)| £ (z/1) cos(wa:/z))
€ (:I:acz/z)cos(wza:/z), (70)
ne= 5t — e~ %t
so that
Ing = Fo +
<= (Y] sin(wa/i)| £ (x/i) cos(wa /1))
|sin(wa/1)|? eSSt
xest (£ /1) cos(wz/1). (71)
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........

Fig. 1. Fig. 2. Plot of the solution obtained by Fassari, and Rinalf]] ftr equation

(2), similar to the one in Fig. 1.

Plot of the solution in (78) for equation (2).

That is,
Ing = Fp+
o (gﬂsm(m/m * (/D)o (wx/i )

w _w2y
tpeTt—e %

(— cos(wz/i))?

(£ /7) cos(wx/i).

et (72)

The trigonometric, and hyperbolic identities ensure that there
are further simplifications in the denominator. Hence, Fig. 3. Plot of the solution in (82) for equation (2).

hléf.) = F() +
< (9t|sinwa/i)| + (/i) cos(wa /i)
(— cos(uwa/i))” %" + 2isin(§71)

This then invokes L’hopital’s principle in the limit going to
zero withn; = n, andne = n+ w. That is,

d ntw —z?
xe Tt (£x/i) cos(wz/i). (73) " — 1 dw dn 0 fn e7ar di (80)
Evaluating the limits: (w? = 1)t 2w
L g2 That is,
né = Fy+——. (74) .
4t ntw =z .
. 1 [T e dn
That is, u= (81)
. 22 (w2 —1)t 2w
= Fpear 75
5 ¢ = Foe™s, (75) Hence,
with Fy = exp(Fp). Hence, B
72 22 —6 4t . (82)
b= FO/ e di. (76) "ovi
m This solution is sketched in Fig. 3. A similar result by

The solutions for (2) follows from (54). The above expressioRichards, and Abrahamsen [16] is in Fig. 4.
then leads to

4, 2 2
u = W W =1)t/4 [Fo/ 64_td7~’:| . (77)
m
1) The first solution throughy; : "
When Fy = —iA/w, andw = 0 inside the integral in (77), g 9
we get )
u= Ae@ @ -D)t/4 /m2 el—gf dzx. (78)
1

. — - .. . Fig. 4. Plot of the solution obtained by Richards, and Ab 46] f
The plot of this result is given in Fig. 1. What is in Fig. 2eaguati0n (20) Zimilirsfoutﬁ%noze%niig_é ‘chards, and Abralenis6)] for

is the same solution obtained through other means by Fassari,

and Rinaldi [15]. 3) The third solution throughX;: Bluman’s result. :

'?')h The secgndlsqlutic;ns tgrofuﬁﬁl: Oflsen’s re?ulr:.: 4. Another solution is possible out of (81), and is made
e second solution for (2) follows from a slight modifi; possible by The factoe“ *t/2 jn n with g = w?t/2. It takes

cation of invarianty’s coefficiente®" (@’ =1)/4 in (76). It is

e form
replaced by the expression developed in Appendix B, givent|rr]1 ,
x -z
(166). Hence, u=F, 2t3/26 Erall (83)
" 1 oy 7 - di (79) This result is the same as the second component in Bluman’s

(w2 — 1)t w? solution with C5

ISSN: 2074-1278 19
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B. Invariant solutions through the symmetkis

Determining solutions througlX, is very much the same as
through X, because the two symmetries are very much alike.

The invariants have similar forms. That is,

n= ewTZt | cos(wz /1)| (84)
and
u= @ Y, (85)
This means
v = wh(w? + 1)e(w4(w2+1))t/4¢
@ @ r/Ag, (86)
That is,
w = wh(w? + 1)e(w4(w2+1))t/4¢
4
+;ne(w4(w +H/A g, (87)
On the other hand,
uy = @ WG, (88)
so that
U = SEIDNIG
el WGy, (89)
That is,
Uy = @D/
" (—e 22y (—w/i) sm(wx/z )2
—eWH WP/
x <e”—§t (—w/i)? 7“’5(‘;”‘"/ Z‘>) , (90)
or
Upw = wle@@H/AG (ew?t _ 772)
Fw2nel@! @ /4G (91)

Substituting the expression far; from equation (87) and

the one foru,, from equation (91) into (2), give
w2 (efw t 772) +w277<2-5
w +1 w?
IS P

In the limit w approaching zero, this equat|on reduces to

(1—n2)¢§+g¢3:0.

(92)

(93)
That is,
- (94)

so that
ISSN: 2074-1278 20
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[ 5 (wé)an=Fo+ 5 (95)
whereFy is a constant.

The Gaussian function solution follows from reversing the
integral on the right side of equation (95). This requires the
use of L'hopital's principle. We induce this by introducing
w to the denominator, and another one in the numerator for

balance:
d (. 3 7dn
/d_n (1n¢)) dn—wT. (96)
Next, we use the result
[ T (97)
lim / — dﬁ] =0, 97
w=0 |/, 72 —1

in conjunction with L'hopital’s principle on (96), to yield

1.d
d (N, zde) e
/% (1n¢) dn = MT, (98)
so that
d . wdn d n
— (1 dn=——— dn. 99
/dn(n¢) " 2 dw dn 772—177 (99)
Now introducing the value for to the coefficient:
d .
/ ir (1n ¢) dn
= % (w] cos(wa/1)| — (£x/i) sin(wz /7))
d n
e 4 . 1
xe el 1d77 (100)

The fundamental theorem of calculus ensures that the deriva-
tive removes the integral, simplifying the equation to

/d% (m 43) dn

= % (w| cos(wz/i)| — (£ /1) sin(wz /1))

et (101)

A further simplification on the right gives

/% (ln (;5) dn
- % (wt| cos(wa/i)| — (/) sin(waz /7))

| cos(wx /1)

. (102)
UQe—%t et

Sincew is small, we get

/% (ln (;5) dn
- % (wt| cos(wa /i)| — (/) sin(wz /7))

| cos(wx /1)
2 2
t_ gt

(103)

@

n’e” =
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Fig. 5. Plot of the solution in (112) for equation (2).

so that
d .
/ i (m (;5) dn
_ ¢ (wt| cos(wx/i)| — (£x/i) sin(wx/i))
(cos(wz/i))? A
x| cos(wz/7)|.
That is,

/% (m qB) dn

¢ (wt| cos(wx/i)| — (£x/i) sin(wx/i))

(— sin(wz/i))? eSt et — e F

x| cos(wz/7)].

The first solution is
d )
/ i (ln (;5) dn

o (t] cos(uw /)| — (da/i) ezl

(— sin(wz/i))? et + 2isin (‘;—jt)

x| cos(wz/7)|,

so that
2

/%7 <1n<i)) dn = —%.

: 2
¢ = Foe™,

That is,

or

a2
¢=F+Fy | e dn,
Ul

whereF is a constant. The expression fothen assumes the

form
u = @@ =1))t/4 [F1 + E)/e%fdﬂ} )

1) The first solution througtX :
Whenw =0, and Fy = —A/w in (110), we get

22
u = [Fl +Fo/e4_txd:r} ,

a2
u = F1 +A€4_t.

so that

This solution is plotted in Fig. 5.
ISSN: 2074-1278
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Fig. 6. Plot of the solution by Gerald Recktenwald, similar e bne in
Fig. 5.

(104) . S o
Fig. 7. Plot of the solution in (113) for equation (2).

2) The second solution througi>: Bluman’s second re-
sult. :
The second solution througX, follows a similar procedure
(105) as was forX}, leading to

= —QT'
2Vt
This result is the same as the first component in Bluman’s
solution with C; = 1/2. It is sketched in Fig. 7. A similar
result by Balluffi, Allen, and Carter [17] is in Fig. 8.
3) The third solution throughX,: Ibragimov’s result. :

(113)

(106) Like the second solution, a third solution takes the form
A -2
u = W@ 4t (114)

(107) Thisresult is the same is a special case of Ibragimov’s solution
with n = 3.
Other solutions through¥, :
More solutions follow from evaluating the limits in (101)
(108) by following a different path, leading to

d .
/ ir (m (;5) dn
S (- (i) w00}
(— sin(wa:/i))2 ez !+ 2isin (‘*é—:t)
x cos(wx /)| cos(wx /)|

(109)

(115)
(110)

(111)

(112)
Fig. 8. Plot of the solution obtained by Balluffi, Allen, and réea [17] for
equation (2), similar to the one in Fig. 7.

21
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so that

2

/% (hl(i)) dn = $2($%

it (116)

Hence,

2 2
4, 2 _x?
uw=F +e¥ (w +1)E)/ ei2(w2*t2>d7~].

m

(117)

4) A first couple of solutions through :
A simple pair of solutions results from (117) whengoes
to zero requires. That is,

n2 m2
w=F + F, / e 2@ dj (118)
m
and
72 22
u=F + Fo/ e2(@2—t2) dﬁ (119)
m

5) A second couple of solutions through :

Settingn, = n, andn: = n 4+ w in (117) and lettingv go
to zero requires that, = —A/w for some constantl. This
invokes L'hopital’s principle, so that

22
u=F, + Ae T3 (120)

and

22
u=F| + Ae2G>=7) (121)
6) A third couple of solutions throughs :
As was the case foX, the limits in Appendix B can t
used to create more solutions. The following pair results

A =2
u=F; + —e 2(x2~t2)

122
i (122
and
A 22
u=F| + —e2=2-1?) 123
1+ 7 (

7) A fourth couple of solutions through :
Continuing with the argument started in the prece
section leads to the fourth couple of solutions:

2

A =2
u=F + —5e 2>t

7 (124,

and

2

-
2_¢2)

u=F + ez

Y (125)
It is apparent from these calculations that thoukih are
largely of the family

u= f(t, m)eim;*f?) . (126)
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IV. APPLICATIONS: Heat conduction in thin plates.

As mentioned in the Introduction, there are many methods
used in practice to solve (2), an equation that finds applica-
tion in a number of different situations. The backward heat
equation
(127)

Uy = —Ut,

too, does arise in practice. Unfortunately, without analytical
solutions, one could end up applying one of the two equations
to a situation to which it does not apply.

For example, in a study on heat conduction in thin plates,
Hancork [18] deduced solutions for (2) presented in Fig.
9. These we unpack in Fig. 10, 11, and 12 using (120).
Unfortunately, practical results indicate it is (127) which is
applicable to this situation. This we deduce from the fact that
impractical singularities arise whenis plotted against when
(120) is used, but disappear when this expression assumes the
form

2

™

u=F + Ae 262+ (128)

satisfying both (127) and empirical results, plotted in Fig. 13.
These are clearly in the family of the form

22

u= f(t,2)e" T

(129)

t — O

wo —
= 1 = 1

: \‘JI,/ t=tg =~ O
1 1
1 1
: 0

[ S |-t = o == O
—

o % 1 e

Fig. 9. Plot of the solution obtained by Hancork [18] for eqolati2) for
casest =0, t = 0, andt >> 0, all stacked onto the same sketch.

Positior

Fig. 10. Plot of the solution in (120) for equation (2), simita the one in
Fig. 9 fort = t9 >> 0.

APPENDIX A: Generalising Euler’sformulasfor solving
second order ordinary differential equations
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o

‘ Temperatun

........

a
o s o s 0

Fig. 11. Plot of the solution in (120) for equation (2), simitarthe one in .
Fig. 9 fort = t9 = 0.

Fig. 13. The solid curve is from (128) for the backward heat #qng127),
while the other curves are from (120) for the heat equation (2).

Positior
-5 0 5

Fig. 12. Plot of the solution in (120) for equation (2), simitarthe one in
Fig. 9 fort =tg = 0.

It is well-known that Lie’s group theoretical methods seek

to reduce procedures for solving differential equations of amyy. 14. The temperature against time curve obtained by Hanwelid for
challenging form to simple ones that may also have the foriw: 1/7*, comparable to the solution in Fig. 13.

aopyj + boy + coy = 0, (130)

) ) These transform (130) into
for y = y(x), with parametersasy, by, and cy. It is also (130)

that accepted Euler's formulas are suitable for solving suchy, (ﬁz + 283 + 62) + bo (ﬁz + ﬁz':) +cofz = 0. (135)
equations. They are:

\ That is,
—g —o o 2 . . .
¢ T (e + Be), bg i Aaoc, apBi+ (2005 + boﬂ) z+ (aoﬂ +bof + Coﬁ) z = 0. (136)
A+ Bz, bO = 4aypcy, 131
= b, .
Y e*ﬁ“’[Acos(Jm:)] (131) Choosings to satisfy 2a¢8 + by = 0 simplifies equation
. .

+Befﬁz[5in(®x)], b2 < 4apco (136). That is,

—b
ﬁ = C()()GT“%, (137)

égr some constanty,. Equation (136) assumes the form

wherew = 4/ b(2) — 40,()0()/(20,()).

But there is a problem with this system: It does not redu

to y = A + Bx whenby = ¢y = 0. This is because Euler did . a0 + bof + cof8 (138)
not solve the equation to get the formulas. There has never 2= = aof3 -
been a need to do so, primarily because the formulas haﬁ? ;
) 2 . at is,
been very successful in applications, and they still are. ) b2 — dagco
The need for an exact solution here, is driven by the Z = (T) (139)
desire understand solutions for equation (2) through symmetry ) ) 0
methods. It is impossible through Euler's formulas. To get suiit # can be written asdz/dx. Therefore,
exact formula, first let ds b2 —4
Z:d_z - (047;‘000) , (140)
y = Bz, (132) i %
or
i = = 2 - 4
with 3 = B(z), andz = z(z), so that sds — (bo - 2@060) s, (141)
j=paz+ Bz, (133) _ 0
That is, ) ) )
and z . bO —4dapcg \ 2
i = Bz +2B% + B3. (134) 5 = <74a3 > -+ Cor, (142)
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for some constanty;. That is, APPENDIX B: Useful limit results
It is true that

) b2 — 4apco \ 22
= e 143 z
i \/( 102 g T Con (143) lim {w} _t (150)
pn—0 I )
or p . . .
Z — d. (144) This can be written in the form
2 —dagc : LT
\/(bo 4‘;30 0)22+20()1 lim {ME} =0, (151)
pn—0 M (3
That is, _ or t
dz ba — 4agc K t t
e = —07200 dz, (145) lim w — - cos (#_) =0. (152)
AR — = 4af p1—0 1 i i
_dane Removing the ‘lim’ for greater clarity:
with A%O = 20()1/ 7% Hence, g g Y
° sin(4) _+
—t 2 =—cos|—|. (153)
— 2Co1 w i i
_ b2—dagco That is,
4a t t t
’ sin (H_) = -ucos (H_) , (154)
b2 —4 v v
X sin ( 20 oy cm) . (146) o
" pt\ _isin(5)
) cos| — | = . (155)
for some constanty,. That is, i t u
bo 2C We then have
y = Cpe™o” — cos ( t) cos (Lt)
_ bf—4aoco =l T (156)
4ag ‘LLq ‘LLq
5 Carrying out the derivative on the right hand side:
X Sin 7m z+ Coa | . (147) ut Bt
103 cos (4) _ p(Dsin () beos(4)
uq o M(I+1 ’
Letting o
Substituting (154):
= _ b5~ davco (148) t 2 (t)2
i3 cos () _ =t () eos (8) eos () e
/’Lq MQ+1 ’
we have . .
Yy = C()()emw 2201 sin ((D T+ C()Q) , That is,
or | » e eos (1 t
y = 00062“0 " 2001 [Sm(w#ﬂ cos (@ x) + cos (Coz) W] ucos( ) = p°t? cos ( : ) —i—cos( ; ) , (159)
A reduction to the trivial casej = 0 requires that , .
SiIl(C()2> Cos sin(@) and cos(Cos) = Cou cos(@). That is, this can be expressed in the form
Cés + CO4 =1 Hence Cos sin(a) 12 cos <N—t> — 113t% cos (u_t) = Lsin (u_t) . (160)
Yy Cooe?*o 7og @ 2Co1 [®TF % cos(wx) + ? ¢ t ¢
Cos COS( ) o) Sincesin (£) = 0 for ;1 small, it follows then that
or simply
2 pt 342 pt
in (& n — | =up’t — . 161
y = CopeT o0 g e Cos sin (wz cos (w x) H COS( ; ) H COS( ; ) (161)
w
—bo, Coy sin (@ x Sincee*t can be expressed in the formms (it /i) +i sin(ut /i),
+Cpoe 20 ™ 2C0; Coasin (© 2) (149)  then
ut
It is very vital to indicate that if the parametets in the prelt = it cos (7) : (162)
denominator andin (w) are absorbed into the coefficiertls,,
and Cp3, then formula (149) would reduce to one of Eulers© that :
formulas. But the consequences would be fatal, as formula \//—wut/4 - [M cos (“t)] NG (163)
(149) would not reduce tg = A + Bx whenby = ¢y = 0, v
that is, wheno = 0. or .
Unfortunately, this result cannot be found in any university T N LAY
textbook. Vhe I Vi, (164)
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Therefore (54), and (54) can then be written in the form

u=— ), (165)
[ cos ()] F Vi
with 1 = w*(w? — 1) in the case of (54) and = w*(w? + 1)
for (85). That is,

U= —=—=—e— () (166)

for (54), and
U= ———==—0(n) (167)
for (85).
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