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Generalized Lagrangians for the Lagrange
problem with equality constraints

Javier F. Rosenblueth

Abstract—In this paper we deal with necessarywhere
and sufficient conditions for the Lagrange problem F(z) = f(z) + (\ g(x))
in the calculus of variations involving equality con- h . h
straints. The approach we follow is based on addingenoteS the standargl Lagrangian, and t ey b_ecome
a penalty term to the standard Lagrangian. This typgeces_sary for a solution to the problem if the linear
of augmentability has been successfully applied t§auations ,
constrained minimum problems in finite dimensional Ja(wosh) =0 (a € A)

spaces, particularly in the development of computan , are linearly independent. By strengthening the
tional procedures, and the main purpose of this papgiequality in the second order condition to be strict,
is to generalize this approach by introducing the nogne obtains sufficiency for local minima.

tions of weak and strong augmentability which yield ap entirely different approach, much simpler to ap-

first and second order necessary conditions for Iocﬂy, is that of augmentability, where one deals with an

provide also a simple proof to show that the standard
sufficient conditions for a weak local minimum imply H(z) = f(z) + (\ g(x)) + 0G(x)
weak augmentability.

Keywords—Augmentability, normality, Lagrange where

o . . 1 &
problem, calculus of variations, equality constraints G(z) = 3 Z ga(z)?.
1

The problem is callecaugmentableat a pointxg if
|. INTRODUCTION xo affords an unconstrained minimum # and, as

Dealing with constrained minimum problems in fi-one can easily show, it implies the Lagrange multiplier
nite dimensional spaces, one is usually interested fitiles atzo together with the fact that the point affords
proving the linearly independence of the gradients ot local minimum tof on S. Moreover, the standard
the constraints in order to derive the Lagrange multisufficient conditions imply augmentability.
plier rules as necessary conditions for optimality. To In 1980, Hestenes devoted one of his last papers [10]
be precise, if the problem at hand consists in minimizto call attention to the role of augmentability in op-

ing a given functionf: S — R on the set timization theory. As mentioned above, one type of
augmentability applied to constrained minimum prob-
S={rcR"[ga(r) =0(ac A)} lems in the finite dimensional case yields the derivation

of the Lagrange multiplier rules in a simple way, much
simpler than under the assumption of regularity usually
used.
Fl(z0) =0, F"(z0;h) >0 This concept of augmentability also provides a
method of multipliers for finding numerical solutions
for all h € R™ satisfyingg.,(zo;h) = 0 (o« € A), to constrained minimum problems. A brief explana-
tion can be given as follows. Using the notation

with A =1,...,m, then the Lagrange multiplier rules
state that, for soma € R™,
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select\g ando > 0, hopefully so thatd (z, \p,o)  without constraints in the state functions. This tech-
is convex inx. Choosey,&,... with & > & > 0 nigue produces a honsmooth optimal control problem
and chooser;, \; successively so that, minimizes since the the cost with the penalty term is not differen-

H(z, M \k—1,0 + &x—1). Set tiable.
The approach we shall follow in this paper for the
Me = Ak—1 + Ep—19(xp)- Lagrange problem in the calculus of variations with

equality constraints is entirely different, as it produces
an augmentable integral with a penalty term which is
differentiable and for which first and also second order

Then, as explained in Hestenes [10], usuily } con-
verges to a solution to the problem and\;} con-
verges to the Lagrange multiplier associated wigh -5 ditions are obtainable.

The significance of this theory in the finite dimen- |, [10] one finds a sketch of how this theory can

sional case, as pointed out by Hestenes [9, 1,0] angk applied to infinite dimensional problems such as a
Rupp [20], has been recognized since the 70's pagroplem of Lagrange with differential constraints. Our
ticularly in the development of computational proce4jm in this paper is to develop that theory by explain-
dures (see, for example, [1, 2, 5, 6, 12] and referencgsy clearly the role played by a generalized Lagrangian

therein, where a wide range of applications illustratg, \vhich the notion of augmentability can be based.

in the development of other areas of optimization. Ong,q constraints, we shall also state the main results on

exception is that of convex programming [14] wher&;jrst and second order necessary conditions for uncon-
the original method of multipliers for finding numeri- srained problems which are used in the derivation of
cal solutions has been generalized. the corresponding conditions for the constrained prob-
More recently, this question has been studied in [15tam_ Finally, we shall state a crucial aspect of this the-
19] for certain classes of optimal control problemsyry namely, that the well-known sufficient conditions
involving mixed equality and inequality constraints.¢q, optimality imply augmentability so that this theory
However, possible generalizations to other problems;syides an alternative approach not only to the deriva-
in optimization have not received the attention that thigon of first and second order necessary conditions but
theory may deserve. also for sufficiency results. In particular, for a weak lo-
It is important to mention that the role of penalty c5| solution to the problem, we provide a simple proof

functions in optimal control has been used to find solugf the fact that the standard sufficient conditions imply
tions to the problem and in the derivation of necessary,eak augmentability.

conditions (see [3] for a detailed explanation). To il-
lustrate the technique used in [3], consider an optimathe Problem

control problem where the cost is given by Suppose we are given an inter@l= [to, 1] in R

t1 two pointséy, &1 iIn R™, asetd of T x R” x R, and
L(t,(t), u(t))dt a functionZ mappingl’ x R" x R™ to R.

Let X be the space of all piecewisg! functions
and constraints in the state are given by inequalities shappingZ” to R", set
the type

to

X(A):={z e X |(t,z(t),z(t) € A(teT)},

Xe(A) :=A{z € X(A) | z(to) = o, z(t1) = &1},

Then the constraints are removed by penalizing thgnd consider the functionél X — R given by
cost with the integral

h(t,z(t)) <0 a.e.infto,t1].

y I) = [ Lt a(t), #()dt (x € X)),
/ max{0, A(t, (1)) }dt to
fo The problem we shall deal with, which we label8)(
thus obtaining a sequence of problems where one i§ that of minimizingl over X.(A).

interested in minimizing Elements ofX will be calledtrajectories, and a tra-
jectoryz solvesP(A) if x € X.(A) and
t1 t1
o L(t, x(t),u(t))dt + K " max{(), h(t,a:(t))}dt ](l’) < I(y) for all y € Xe(.A)
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For local minima, a trajectory will be called astrong L(t,z,u) — L(t,x,&) — Li(t,z,&)(u — ).
or aweak minimum dP(A4) if, for somee > 0, x solves
P(Ty(z;€) N.A) or P(Ti (x; €) N A) respectively where
forall z € X ande > 0,

Elements off N C! are usually calleégxtremals, ele-
'’ ments of are said to satisfy theondition of Legen-
dre, and elements 0fV(.A) to satisfy thecondition of
To(z;€) := {(t,y,v) € TxR"xR" : |z(t)—y| < €}, Welerstrass.. _ N
The following theorem gives necessary conditions

Ti(zy€) :={(t,y,v) € To(z;€) : |2(t) — v| < €}. for a solution to P(Jlwhere A is any relatively open
set of ' x R™ x R™. We refer the reader to [8] where
a full explanation of this theory can be found.

It should be noted that, in particular,ifis a weak
minimum of P(4 then x belongs to&, H, £ and
W(Ti(z;¢) N A) for somee > 0. On the other hand,
if x is a strong minimum of P(J&thenx belongs taf,

Let us consider problem PQAvith A a (relatively) 7/ £ andW(A) since, for any > 0,
open set ifl" x R™ x R™. This problem is called the

simple fixed endpoint probleim the calculus of varia- z € W(Ty(z;¢) N A) &z € W(A).
tions.
The notion of “variations” in this context has the fol- 5 1 Theorem: If = solves P(A) then z belongs to &,
lowing meaning. For € X, define thdfirst variation M, £ and W(A).
of I alongx by

For anyz € X we shall use the notatiaf®(t)) to rep-
resent(t, z(t), (t)), and we assume thatc C?(A).

Il. THE SIMPLE FIXED ENDPOINT PROBLEM

t For sufficiency, let us consider the following sets ob-
I'(z;y) == {Lo(2(t))y(t) + Lz (Z(t))y(t) }dt tained by slightly strengthening those defined for nec-
fo essary conditions:
and thesecond variation of alongx by , "
H ={xe X |I"(z;y) >0forally €Y, y # 0},
t1
I(zy) = | 22(y(0)9(0)dt (y € X) L= {z € X|Ly#t) >0forallt € T},
0
W(A,e) :={zo € X(A) | E(t,x,%,u) >0
forall (t,x,4,u) € T x R®" with
20(t,y,9) == (Y, Laa(2())y) + 2{y, L2a(2(¢))y) (t,z,%) € Ti(xo;€) and(t, z,u) € A}.

where, for all(t,y,y) € T x R™ x R™,

+ (¥, L (Z(1))7)- The following theorem gives sufficient conditions

Now, in order to express the best known first andOr local minima.  Itis worth mentioning that, in [8],
second order necessary conditions for optimality in H"S result 'S_prOVGd dlre_ctly Wlthout_ referr|ng to _|v|ayer
succinct way, let us define the setadfmissible varia- fi€lds, Hamilton-Jacobi theory, Riccati equations or
conjugate points.

tionsby
Y :={y € X |ylto) = y(t1) = 0} 2.2 Theorem: Suppose = € X.(A) N C'. Then:
a.x € ENH' NL = x is a strict weak minimum of
and consider the following sets: P(A).

b.z e ENH NL NW(A;e) for somee >0 = x

- 1) —
E={re X[ (z;y)=0forally e Y}, is a strict strong minimum of P(A).

= " > . . .
Hi={zeX|I'(z;y) = 0forally € Y}, As itis well-known, ifz € X (A), thenx € £ if and

L:={zx € X | L(x(t)) > 0forallt € T}, only if there exists: € R" such that
W(A) ={x e X(A) | E(t,z(t),z(t),u) >0 t
)= 1 1 .( (1), &(1), ) L;(z(t)) = | Li(Z(s))ds+c (teT).
forall (t,u) € T x R™ with (¢,z(t),u) € A} to
whereE: T x R3" — R, the Weierstrass “excess func- This equation is the integral form &uler’s equation
tion,” is given by d
E(t,z,i,u) = 5 Le(@®) = La(z(t))  (teT).
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If © has a discontinuity, the derivativé/dt is to be proof of this result and its corollary can be found in
interpreted as a left- or a right-hand derivative, and if8].
holds even ifr fails to have a second derivative. o '
It is important, in the theory to follow, to bear in The Hamiltonian formulation
mind thatifz € £ thenz satisfies Euler's equation, but - por all (¢, 2, 4, p, 1, ) € TxR"xR"xR" xRY xR
the converse may not hold. This is easily illustrated bygefine theHamiltonianas
for example, setting
H(t,z, &,p,p, A) := (p, &) — AL(t, z, %)
L(t,x, &) = (* — 2?)/2, T = [0, 27], '
- <:uv (p(t, €L, l‘)>
zo(t) :=sintif t € [0, 7], zo(t) := 0if ¢ € [m,27].  and denote by/, the space of piecewise continuous
Thenz, satisfies Euler's equation, but, ¢ £ since functions mapping” to R?.
there is na: € R satisfyingio(t) = [i —xo(s)ds + ¢ _
forall t+ € T. For the converse note that, if sat- 3.1 Theorem: Suppose x solves P(B). Then there ex-

isfies Euler's equation, them € & if the function st o = 0.p € X, and i € Uy continuous on cach
t— Ly(#(t)) (t € T) belongs taX interval of continuity of T, not vanishing simultane-
x .

We shall find convenient to restate this characteriza2usly on T’ such that

tion of £ as follows. For all(t,z,&,p) € T x R a.p(t) = —Hy(t,Ao) and H;(t, o) = O on each

let interval of continuity of .
H(t,2,4,p) = (p, &) — L(t, 7, %) b. H(t, 20(t), u, p(t), u(t), No) < H(t \g) for all
and set (*' denotes transpose) (t,u) €T xR with (t; 20(t), u) € B.
where H (t, \o) denotes H (Zo(t), p(t), u(t), No)-

M(z):={pe X |p(t) = —H;(Z(t),p(t
) =1 |2(8) (&(0).(t)) 3.2 Corollary: Suppose xq solves P(B). Let (p, j, \o)
andH;(z(t),p(t)) =0(teT)} (reX). be as in Theorem 3.1. Then

Then, ifz € X(A), we haver € £ < M(z) # 0. (hy, Hyz(Zo(t), p(t), u(t), Ao)h) <0

for all h € R™ such that ¢;(Zo(t))h = 0.

[1l. THE NORMALITY APPROACH ) _ .
In general we are interested in deriving those neces-

Suppose the data are as before but we are also givegry conditions in such a way that the cost multiplier
a functionp mapping?’ x R™ x R™ toRY. Let will not vanish. The notion of “normality” is intro-
duced for that purpose.
B:={(t,x,z) € A| p(t,z,z) =0}
3.3 Definition: A trajectoryz € X (B) will be said to

and consider problem P}Bthe problem of Lagrange benormalto P(B) if, given (p, 1) € X x U, such that,

with equality constraints.

. L forallt €T,
The problem is thus that of minimizing
" p(t) = o (@(t)u(t) [= —H(2(t), p(t), u(t),0)]
flw)= j, Lhald), @) 0= p(t) — GEEDAE) [= HEE),p(0), (1), 0)]

subject to thenp = 0. In this event, clearly, alsp = 0, since

a.z: T — R"is piecewiseC!; p(t) = p* ()5 (2(t)D(t)

b. z(to) = &o, z(t1) = &1 ~ [ -1 i

c. (t,x(t), (1)) € A (t € T); where D(t) = [g%(@(t))%(x(t))} . ThUSx is nor-

d. o(t, 2(t),#(t)) = 0 (t € T). mal to P(4 if there is no nonnull solution to

We assume thap € C2(A) and theq x n-matrix PE(t) = p* ()i (2(1))D(t) L (Z(1)).

vz (t, x, ) has rankg on B.
Let us begin by stating first order necessary condi- Note that, ifz( is a normal solution to P(&hen, in
tions for P(3 in the form of a maximum principle. A Theorem 3.1¢ > 0. In this event, the multipliers
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Ao, P, 0 can be chosen so that = 1 and, when so  c.z(tg) = &o, z(t1) = &1;

chosen, they are unique. d. (t,z(t),u(t)) e A(t€T),
Let us turn now to second order necessary conditionghereT = ¢y, t1],

for problem P( under normality assumptions. We

refer to [8] for a proof of the conditions stated below. A = {(t,z,u) € T x R" x R™ | p(t, z,u) = 0}

andp: T x R" x R™ — RYis a given function. Under
mild assumptions on the data of the problem, an im-
. mediate consequence of the results obtained in [4] is
! 20(t, y(t), §(1))dt  (y € X) precisely Theorem_3.6. _
to Now, these conditions are expressed in terms of the
Hamiltonian and a maximum principle but, in order to
express them as in Theorem 2.1, that is, in terms of
20(t,y, ) == —[(y, Hya(t, 1)y) + 2(y, Hys(t, 1)y) e classical conditions in the calculus of variations, let
us now introduce the Lagrangian and derive the corre-
sponding conditions from the previous results.

3.4 Definition: Given(z,p, 1) € X x X x U,, define
the second variatior{with respect taH (¢, 1)) by

K(z,p,1;y) =

where, for all(t,y,y) € T x R® x R™,

+ (9, Hia(t, 1)9)]

andH (t, 1) denotesH (Z(t), p(t), pu(t), 1).

3.5 Definition: For allz € X define the seY (B, x) of
B-admissible variations along as the set of aly € X
satisfyingy(tp) = y(t1) = 0 and

P2 (Z(8))y(t) + @a(2(1)y(t) =0 (L€ T).
3.6 Theorem: Suppose zy solves P(B) and is normal
to P(B). Then there exist a unique pair (p, 1) € X xU,
continuous on each interval of continuity of zo such
that, if H(t, 1) denotes H (Z¢(t), p(t), u(t), 1), then

a.p(t) = —Hj(t,1) and H;(t,1) = 0 on each in-
terval of continuity of Tg;

b. H(t,xo(t),z,p(t), u(t),1) < H(t,1) for all
(t,2) € T x R™ with (t,zo(t), z) € B;

C. (h,H;;(t,1)h) < O for all h € R™ such that
@i (To(t))h = 0;

d. K(zo,p,pu;y) >0 forally € Y (B, x).

The Lagrangian formulation
Forall(¢t,z,%,u,A) € T x R" x R" x R? x R let
F(t,x,z,pu,\) := AL(t,z, %) + (i, p(t, z, 7))
so that
H(t,z,&,p,u, ) = (p,&) — F(t,x, &, u, A).

Note that, ifxy solves P(Band )y, p, 1 are as in The-
orem 3.1, then
0 = Hi(Zo(t),p(t), u(t), Xo)
= p(t) - F;(jO(t)v M(ﬂ? )\0)

and therefore the function — F}(Zo(t), u(t), Xo)
(t € T) belongs taX. SinceH, = —F,, we obtain

d
dt
Observe also that i/ is the Weierstras&'-function

F:ic(i‘()(t)v H(t)a >‘0) = Fm(jO(t)a M(t)7 )‘0)

This result gives us first and second order conditions

for a normal solution to the problem of Lagrange with
equality constraints. A proof different from the one

EF(t,fL’,i’,U, Ky )‘) = F<t7x7u7,u7)\)

— F(t,z, 2,4, \) — Fi(t,z, 2, p, \)(u — &)

given in [8], using a reduction approach based on the
implicit function theorem, can be found in [4] wherethen we have

the optimal control problem studied is that of minimiz-

ing the functional

subject to

a.z:T — R" piecewiseC'; u: T — R™ piecewise
continuous;

b. i(t) = f(t.x(t), u(t)) (t € T);
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Ep(i’o(t), u, M(t)7 )‘) = H(j()(t)ap(t)a M(t)7 )‘)

- H(t, :Eo(t), u,p(t), M(t)7 )‘)

These remarks imply, by Theorem 3.1, the following
result.

3.7 Theorem: If xg solves P(B) then there exist Ao >
0 and p € Uy continuous on each interval of continuity
of ¢, not vanishing simultaneously on T', such that
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a. There exists ¢ € R" such that, for allt € T,

Eu(@u(t),n(0),20) = [ Fa(o(s),nls), Mo)ds +

b. Erp(Zo(t),u, u(t), \o) > 0 forall (t,u) € T x R"
with (t, zo(t),u) € B.

From the definition we clearly have that

Hacz = _sza H:vx = _dem H:E:v = _F:E:v
By Corollary 3.2, ifzy solves P(Zand(u, Ao) is as in

Theorem 3.7, then

for all h € R™ such thaty;(Zo(t))h = 0 (t € T).
Moreover, K (x,p, u;y) coincides with J”(z, u; y),
the second variation of the functional

t1

J(z, p) == t F(t,z(t), 2(t), p(t), 1)dt
0
given by
T (o) = [ 2000000, G0
where

20, (t,y,9) = (Y, Foa (Z(t), pu(t), 1)y)

+ 2y, Fua (2(t), p(t), 1)9) + (9, Fii (2(2), p(t), 1)9)-

To express the corresponding Theorem 3.6 for nor-
mal solutions in a succinct way as in Theorem 2.1 let

us define, for ali, € U,,,

E(pn) := {x € X | there existg € R" such that

Fa(t), u(t), 1) = ;Fx@(s),u(s),ndwc

(teT)},
H(p) ={z € X | J"(2,;9) > 0
forally € Y(B,z)},

L(n) = {w € X | (h, Fs (2(t), u(t), 1)h) > 0
forall h € R" such thatp; (Z(t))h =0 (t € T)},
W(B, p) :={z € X(B) | Er((t), u, u(t),1) = 0

forall (t,u) € T x R™ with (¢,z(t),u) € B}.
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3.8 Theorem: If = is a normal solution to P(B) then
there exists a unique y € U, such that xo belongs to
E(w), H(p), L(p) and W(B, ).

As pointed out in [10], “usually these conditions are
derived under normality (controllability) assumptions
by means of a very complicated argument.” On the
other hand, as we shall show next, the augmentabil-
ity approach yields these standard necessary conditions
for a minimum for the problem of Lagrange in a much
simpler way.

IV. THE AUGMENTABILITY APPROACH

For a given functionr: T x R™ x R” — R and for
all (t,x,2,u) € T x R" x R™ x R?, define

B(t,x,&,p) = L(t, 2, &) + (1, p(t, v, 7))
+o(t,z,2)G(t,z, &)

where

q

1 :
5 nga(t,x,m)2.

1

G(t,xz,z) =

Note that

F(t7x>jjmu) = F(ta:ai'nual)

o(t,z,x .
+ T2 o )P

Associated with the integrdl consider the augmented
integral, for all((z, 1) € X x U,

t1

J(z,p) =

B(t,x(t), (t), p(t))dt
to
and denote by Q(A4, o) the unconstrained problem
of minimizing J (-, u) over X.(.A).

4.1 Definition: For anyzo € X.(B) we shall say that
P(B) is augmentable at if there existc and . such
thatzy solves Q(A, i1, g. Note that, in this eventy
solves P(B since, for anyr € X.(B), we have

I(wo) = J(wo, ) < T, 1) = I(2).

Let us now prove that an augmentability assumption
allows us to derive the necessary conditions for a min-
imum given in Theorem 3.8.

4.2 Theorem: Let zp € X (B) and suppose P(B) is
augmentable at xo. Then there exists yu € U, such



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 8, 2014

that zo belongs to E(u), H(p), L(p) and W(B, p).

Moreover, xg solves P(B).

Proof: Since P(5 is augmentable at, there exist
o andp such thateg solves Q(Apu, o). We apply The-

orem 2.1 which states that, belongs tag, H, £ and
W(A) with respect to the integral (-, ), that is,z

belongs to the sets

E(u,0) :={x € X | there existg € R" such that

Fi(

S

to

(. u(t) = [ Fuli(s), uls))ds +

(teT)},

H(p,0) :={z e X | J"(x,p;y) > 0forally € Y},
L(p,0) = {x € X | Fya(&(t), u(t)) > 0 (t € T)},

W(A, i, 0) :={z € X(A) |

Ep(t,x(t), #(t),u, u(t)) = 0

forall (t,u) € T'x R™ with (¢, z(t),u) € A}.

By the first contention, there existsc R™ such that

to

and therefore

showing thatey € E(u).
By the second contention, we

Ex@o(t),n(t) = [ Fulio(s),u(s))ds + ¢

have

j”(x()v 22 y) >0

forall y € X such thaty(tg) = y(t1) = 0 where
~ t1 -
J" (w0, piy) = (), Faa(t)y (1))

+2(y(t), Faa(D)5(1)) + (3(t), Faa(t)y(1)) yt

and F(t) denotesF(i(t), u(t)). As one readily veri-

fies, 3
J" (w0, psy) = J" (20
t1

+ [ o(@o(t)|ps(@o()y(t) + pa(o(t))y(t)|*dt

to

and thereforeJ” (xo, p;y) > 0 forall y € Y(B,xo),

showing thatcy € H(pu).

13 Y)

By the third contention, we have

Fii(Zo(t), u(t)) > 0
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Observe that

Fii(Zo(t), n(t)) = Fia(To(t), p(t), 1)

+ 0(Z0(t))Gza(To(t)).
Now, for anyz € X,

q

Gi(Z(t) = D ¢al@(t))pas(Z(1))

1

and therefore, for ang € R™,

(h, Giz(To(t))h) =

. (Z he o0 s Gol0) ) =

q

> (@ai(@o(t))h)* = lipa(@o ().

1
Consequently

(hy i (To(t), u(t), 1)h)

+ o(Zo(t)|es(Zo(t)R* >0 (heR™ teT)

implying thatzy € L(u).
Finally, by the fourth contention, we have

Bt 2o(t), u, p(t)) — F(@o(t), p(t))

— Fy(Zo(t)), p(t)) (u — o (t)) =2 0
forall (t,u) € T x R™ with (¢t,z¢(t),u) € A. This
implies that
EF(jO(t)v u, ,u(t)a 1)
L oltao(t).v)
2
and therefore:y belongs toV (B, ). 1

lp(t, zo(t), u)]* > 0

V. SUFFICIENCY THROUGH AUGMENTABILITY

For sufficiency, let us enlarge the sets we are deal-
ing with and denote by’ the space of all absolutely
continuous functions mappirig to R™. The notations
X'(B) and X.(B) have the obvious meanings. The
subclass ofX’ of all arcs in X’ having square inte-
grable derivatives off” will be denoted byX".

5.1 Definition: For anyzy € X.(B) we shall say that
P(B) is strongly augmentable af, if there existe > 0,
o andy such thatzy solves

Q(TO(:EO; 6) N Av My 0)'
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Clearly, in this eventy is a strong minimum of P(3
Similarly, P(B is weakly augmentable at, if there
existe > 0, o andyu such thaty solves

Q(Tl (‘TO; 6) N “47 My U))

implying thatz is a weak minimum of P(B

5.2 Definition: For allz € X’ defineY’(B, z) as the

set of ally € X" satisfyingy(to) = y(¢1) = 0 and

P2 (2(1))y(t) + @2 (2(1)y(t) =0 (a.e.inT).

Consider now the following sets (in terms Bj:
H () == {x e X" | J (x,159) >0
forally € Y/(B,x), y # 0},
L(p) = {z € X" | (b, Fag(2(t), (1),
all h € R", h # 0 such thatp; (Z(t))h
W(B, p;€) = {zo € X'(B) |
1)>0

1)h) > 0 for
0(teT)},

EF(tv x, i;a u, :U’(t>v
forall (¢, z,4,u) € T x R with
(t,x,z) € Ti(zo;€) N Band(t, z,u) € B}

together with the respective sets (in termg)f

H(p,0) = {ze X" | J"(x,umy) >0

y)
forally € X", y # 0 with y(to) = y(t1) = 0},
L'(p,0) = {x € X" | (h, Fs:(Z(t), p(t))h) >0
forallh e R", h#0, (te€T)},
W(A, 1,05 €) = {z0 € X'(A) |
Ex(t,z,&,u, p(t)) >0
forall (t,z,4,u) € T x R with

(t,x,2) € Ti(zo;€) and(t, z,u) € A}.
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b. If {y,} C X" converges uniformly on T to yo
then

lim inf .J" (20, 13 yg) > J" (0, 1 y0).

The next auxiliary result shows that the strengthened
condition of Legendre together with the positivity of
the second variation with respect o imply the ex-
istence of a functiow for which the second variation
with respect taF' is also positive. Some of the ideas of
the proof are based on the theory developed in [7].

5.4Lemma:Ifxg € L'(u)H' (1), there exists g > 0
such that, if o(t, z, %) > 6, then zg € H'(u, o).
Proof: Define
(t,y,9) == ¢a(To(t))y + @i (Zo(1))y
P(y) = J" (20, 1 y),

Q)= [ 18(t,(0) 50) P

to
Sincexy € H'(1) we have

P(y) >0 forallye X", y+#0,
satisfying® (¢, y(t),y(t)) = 0 a.e.inT andy(ty) =

y(t1) = 0. As seen before,

J" (w0, 5 y) =

P+ [ oot/ u(e) 5(0) P

to
and so

J" (0, 1159) > P(y) + 00Q(y)

the equality holding when(zy(t)) = 6o.

Let us suppose the conclusion of the theorem is false.
Then, for allg € N, if o(t,z,2) > q we havery ¢
H'(u1,0). Thatis, for ally € N there existgy, € X"
nonnull withy, (o) = y4(¢1) = 0 such that

P(yq) +aQ(yq) < J" (o, 11599) <0 (1)

if o (Z0(t)) > 0o

Let us now state an auxiliary result which will beif o(t,z,%) > q.
used to prove that the standard sufficient conditions Since the functions at hand are homogeneoug in
for a weak minimum imply weak augmentability. Thewe can suppose thgt has been chosen so that

first statement of this result has been established by
Reid [13] and the second follows from the fact that,
under the assumptions of the lemma, the function

J"(x0, u; -) is lower semicontinuous (see [11]).
5.3 Lemma: If zg € L'(u), there exists § > 0 such

that, ifa(t,ﬂ;, &) > 0, then
a.xg € L (u,0).

ISSN: 2074-1278

[ R+ iofya =1 @)

Therefore we can replace the sequefigg by a sub-
sequence (we do not relabel) which converges to a vari-
ationyg in the sense that

qlingo yq(t) = yo(t) uniformly onT". (3)
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Obviouslyy(to) = yo(t1) = 0. By Lemma 5.3 there 5.5 Theorem: Suppose x¢ € X.(B)NC! and u: T —

existsf > 0 such that RY is absolutely continuous. If xo belongs to
lim inf{P(yq) + 0Q(yq)} = P(yo) +0Q(y0)- (4) E(p) NH () 0 L' ()
This inequality, together with (1) an@(y) > 0, im-  then P(B) is weakly augmentable at x.
plies that Proof: By Theorem 2.2, the conclusion that B (8
liminf Q(y,) < 0. weakly augmentable af, will follow if we show that,
q—00

for some functiorv (¢, z, &), xo belongs to
But since the Legendre condition holds Q(y) we

have that E(u, o) NH (p,0) N L (1, 0).

liminf Q(y,) > Q(yo) > 0. Let us begin by showing that, for any, zo <
e (u,0). Indeed, since € £(), there existe: € R™

Consequently)(yo) = 0. Clearly this can be the case such that, for alt € T,

only if ®(¢,yo(t),90(t)) = 0 a.e.inT. Suppose that y

yo # 0. ThenP(yy) > 0. However, by (4) with  Fi(Zo(t),u(t),1) = [ Fu(To(s),u(s),1)ds + ¢

Q(yo) = 0 one has, for large values gfthat to

and therefore, forall € T,
P(yq) +0Q(yq) >0

t
contradicting the inequality in (1). Hengg = 0. Fi(2o(t), u(t)) = ) Fy(Zo(s), p(s))ds + ¢
Let us complete the proof by showing thgtcan- ¢
not be the null variation. Suppose that this is the casghowing that:, belongs to?(y, o) for anyo.
Takeo = ¢ as described in Lemma 5.3. Then, by (4), As a second step, let us show that there exists0

we have i such thaw (Zo(t)) > ¢ (t € T) = xo € L'(,0). For
h(;gigf J" (20, 5 yq) = allt € T andh € R", define
lim inf{P(yq) + 0Q(yq)} 2 0 P(t, h) = (h, Fig(Zo(t), u(t), 1)h),
since P(yp) = Q(yo) = 0. Using (1), we see that Q(t,h) == |wa(Zo(t))h|?.

the equality must hold. Consequently, by (3) and the . ,
assumptionyy = 0, we have Sincexg € L'(u), we have

0— hg(i}gf T (20, 113 yg) = P(t,h) > 0forallt € T andh # 0

" with Q(t,h) = 0. We claim that, for some constant
liminf [ (Go(t), Faa(Fo(t), u(t))gg(0))dt.  (5) ¢>0,

=00 Jto

Since, by Lemma 5.3, the last integrand is a positive (t;h) +cQ(t,h) > 0forallt € T'andh # 0.

definite form, there is a constant> 0 such that :
Suppose the contrary. Then, for ale N, there exist

(h, Fia(Zo(t), u(t)h) > (h, ch) > c|h|*. (tg; hq) € T x R™ with hy 7 0 such that
Consequently equation (5) implies that P(tg, he) +qQ(tg, hg) < 0.

Let k, := hy/|hy| SO thatP(t,, k) + qQ(ty, kq) < 0
and|k,| = 1. Thus there exist a subsequence (we do
not relabel),ty € T and a unit vectork, such that

t1
liminf [ |y,(¢)|?dt = 0.
0

q—0o0  J¢

Using (2) and (3) we see that (tykq) — (to, ko). ThereforeP(tg,ko) < 0 and
t Q(to, ko) = 0, contrary to the assumptiary € £'(u).
R |9g(1)[dt = 1. Now, leto (¢, z, i) be such that (zg(t)) > ¢ (t € T).
0 Hence
This contradiction completes the probf. (h, F3i(Zo(t), u(t))h) =

ISSN: 2074-1278 62
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P(t,h) + o(zo(t))Q(t, h) >0
forall h € R”, h # 0, andt € T, showing thaty €
L', 0).
Finally the statement that there exigis > 0 such
thato (Zo(t)) > 6y (t € T) = xo € H'(u, o) follows
by Lemma 5.41

We end by stating the corresponding result for strong

It is of interest to see if the main ideas of this pa-
per can be generalized to optimal control problems, not
only for the derivation of necessary and sufficient con-
ditions, but also to obtain a method of multipliers for
finding numerical solutions of such problems.
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