
Generalized Lagrangians for the Lagrange
problem with equality constraints

Javier F. Rosenblueth∗

Abstract—In this paper we deal with necessary
and sufficient conditions for the Lagrange problem
in the calculus of variations involving equality con-
straints. The approach we follow is based on adding
a penalty term to the standard Lagrangian. This type
of augmentability has been successfully applied to
constrained minimum problems in finite dimensional
spaces, particularly in the development of computa-
tional procedures, and the main purpose of this paper
is to generalize this approach by introducing the no-
tions of weak and strong augmentability which yield
first and second order necessary conditions for local
minima in the calculus of variations. Moreover, we
provide also a simple proof to show that the standard
sufficient conditions for a weak local minimum imply
weak augmentability.
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I. I NTRODUCTION

Dealing with constrained minimum problems in fi-
nite dimensional spaces, one is usually interested in
proving the linearly independence of the gradients of
the constraints in order to derive the Lagrange multi-
plier rules as necessary conditions for optimality. To
be precise, if the problem at hand consists in minimiz-
ing a given functionf :S → R on the set

S = {x ∈ Rn | gα(x) = 0 (α ∈ A)}

with A = 1, . . . ,m, then the Lagrange multiplier rules
state that, for someλ ∈ Rm,

F ′(x0) = 0, F ′′(x0;h) ≥ 0

for all h ∈ Rn satisfyingg′α(x0;h) = 0 (α ∈ A),
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where
F (x) = f(x) + 〈λ, g(x)〉

denotes the standard Lagrangian, and they become
necessary for a solution to the problem if the linear
equations

g′α(x0;h) = 0 (α ∈ A)

in h are linearly independent. By strengthening the
inequality in the second order condition to be strict,
one obtains sufficiency for local minima.

An entirely different approach, much simpler to ap-
ply, is that of augmentability, where one deals with an
augmented Lagrangian of the type

H(x) = f(x) + 〈λ, g(x)〉+ σG(x)

where

G(x) =
1
2

m∑
1

gα(x)2.

The problem is calledaugmentableat a pointx0 if
x0 affords an unconstrained minimum toH and, as
one can easily show, it implies the Lagrange multiplier
rules atx0 together with the fact that the point affords
a local minimum tof on S. Moreover, the standard
sufficient conditions imply augmentability.

In 1980, Hestenes devoted one of his last papers [10]
to call attention to the role of augmentability in op-
timization theory. As mentioned above, one type of
augmentability applied to constrained minimum prob-
lems in the finite dimensional case yields the derivation
of the Lagrange multiplier rules in a simple way, much
simpler than under the assumption of regularity usually
used.

This concept of augmentability also provides a
method of multipliers for finding numerical solutions
to constrained minimum problems. A brief explana-
tion can be given as follows. Using the notation

H(x, λ, σ) = f(x) + 〈λ, g(x)〉+
σ

2
|g(x)|2
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selectλ0 and σ > 0, hopefully so thatH(x, λ0, σ)
is convex inx. Chooseξ0, ξ1, . . . with ξk ≥ ξ0 > 0
and choosexk, λk successively so thatxk minimizes
H(x, λk−1, σ + ξk−1). Set

λk = λk−1 + ξk−1g(xk).

Then, as explained in Hestenes [10], usually{xk} con-
verges to a solutionx0 to the problem and{λk} con-
verges to the Lagrange multiplier associated withx0.

The significance of this theory in the finite dimen-
sional case, as pointed out by Hestenes [9, 10] and
Rupp [20], has been recognized since the 70’s par-
ticularly in the development of computational proce-
dures (see, for example, [1, 2, 5, 6, 12] and references
therein, where a wide range of applications illustrate
the use of the theory) but it has received little attention
in the development of other areas of optimization. One
exception is that of convex programming [14] where
the original method of multipliers for finding numeri-
cal solutions has been generalized.

More recently, this question has been studied in [15–
19] for certain classes of optimal control problems
involving mixed equality and inequality constraints.
However, possible generalizations to other problems
in optimization have not received the attention that this
theory may deserve.

It is important to mention that the role of penalty
functions in optimal control has been used to find solu-
tions to the problem and in the derivation of necessary
conditions (see [3] for a detailed explanation). To il-
lustrate the technique used in [3], consider an optimal
control problem where the cost is given by∫ t1

t0
L(t, x(t), u(t))dt

and constraints in the state are given by inequalities of
the type

h(t, x(t)) ≤ 0 a.e. in[t0, t1].

Then the constraints are removed by penalizing the
cost with the integral∫ t1

t0
max{0, h(t, x(t))}dt

thus obtaining a sequence of problems where one is
interested in minimizing∫ t1

t0
L(t, x(t), u(t))dt + K

∫ t1

t0
max{0, h(t, x(t))}dt

without constraints in the state functions. This tech-
nique produces a nonsmooth optimal control problem
since the the cost with the penalty term is not differen-
tiable.

The approach we shall follow in this paper for the
Lagrange problem in the calculus of variations with
equality constraints is entirely different, as it produces
an augmentable integral with a penalty term which is
differentiable and for which first and also second order
conditions are obtainable.

In [10] one finds a sketch of how this theory can
be applied to infinite dimensional problems such as a
problem of Lagrange with differential constraints. Our
aim in this paper is to develop that theory by explain-
ing clearly the role played by a generalized Lagrangian
on which the notion of augmentability can be based.

Since the augmented problem is obtained by remov-
ing constraints, we shall also state the main results on
first and second order necessary conditions for uncon-
strained problems which are used in the derivation of
the corresponding conditions for the constrained prob-
lem. Finally, we shall state a crucial aspect of this the-
ory, namely, that the well-known sufficient conditions
for optimality imply augmentability so that this theory
provides an alternative approach not only to the deriva-
tion of first and second order necessary conditions but
also for sufficiency results. In particular, for a weak lo-
cal solution to the problem, we provide a simple proof
of the fact that the standard sufficient conditions imply
weak augmentability.

The Problem

Suppose we are given an intervalT := [t0, t1] in R,
two pointsξ0, ξ1 in Rn, a setA of T × Rn × Rn, and
a functionL mappingT × Rn × Rn to R.

Let X be the space of all piecewiseC1 functions
mappingT to Rn, set

X(A) := {x ∈ X | (t, x(t), ẋ(t)) ∈ A (t ∈ T )},

Xe(A) := {x ∈ X(A) | x(t0) = ξ0, x(t1) = ξ1},

and consider the functionalI:X → R given by

I(x) :=
∫ t1

t0
L(t, x(t), ẋ(t))dt (x ∈ X).

The problem we shall deal with, which we label P(A),
is that of minimizingI overXe(A).

Elements ofX will be calledtrajectories, and a tra-
jectoryx solvesP(A) if x ∈ Xe(A) and

I(x) ≤ I(y) for all y ∈ Xe(A).
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For local minima, a trajectoryx will be called astrong
or aweak minimum ofP(A) if, for someε > 0, x solves
P(T0(x; ε)∩A) or P(T1(x; ε)∩A) respectively where,
for all x ∈ X andε > 0,

T0(x; ε) := {(t, y, v) ∈ T×Rn×Rn : |x(t)−y| < ε},

T1(x; ε) := {(t, y, v) ∈ T0(x; ε) : |ẋ(t)− v| < ε}.

For anyx ∈ X we shall use the notation(x̃(t)) to rep-
resent(t, x(t), ẋ(t)), and we assume thatL ∈ C2(A).

II. T HE SIMPLE FIXED ENDPOINT PROBLEM

Let us consider problem P(A) with A a (relatively)
open set inT × Rn × Rn. This problem is called the
simple fixed endpoint problemin the calculus of varia-
tions.

The notion of “variations” in this context has the fol-
lowing meaning. Forx ∈ X, define thefirst variation
of I alongx by

I ′(x; y) :=
∫ t1

t0
{Lx(x̃(t))y(t) + Lẋ(x̃(t))ẏ(t)}dt

and thesecond variation ofI alongx by

I ′′(x; y) :=
∫ t1

t0
2Ω(t, y(t), ẏ(t))dt (y ∈ X)

where, for all(t, y, ẏ) ∈ T × Rn × Rn,

2Ω(t, y, ẏ) := 〈y, Lxx(x̃(t))y〉+ 2〈y, Lxẋ(x̃(t))ẏ〉

+ 〈ẏ, Lẋẋ(x̃(t))ẏ〉.

Now, in order to express the best known first and
second order necessary conditions for optimality in a
succinct way, let us define the set ofadmissible varia-
tionsby

Y := {y ∈ X | y(t0) = y(t1) = 0}

and consider the following sets:

E := {x ∈ X | I ′(x; y) = 0 for all y ∈ Y },

H := {x ∈ X | I ′′(x; y) ≥ 0 for all y ∈ Y },

L := {x ∈ X | Lẋẋ(x̃(t)) ≥ 0 for all t ∈ T},

W(A) := {x ∈ X(A) | E(t, x(t), ẋ(t), u) ≥ 0

for all (t, u) ∈ T × Rn with (t, x(t), u) ∈ A}

whereE:T ×R3n → R, the Weierstrass “excess func-
tion,” is given by

E(t, x, ẋ, u) :=

L(t, x, u)− L(t, x, ẋ)− Lẋ(t, x, ẋ)(u− ẋ).

Elements ofE ∩ C1 are usually calledextremals, ele-
ments ofL are said to satisfy thecondition of Legen-
dre, and elements ofW(A) to satisfy thecondition of
Weierstrass.

The following theorem gives necessary conditions
for a solution to P(A) whereA is any relatively open
set ofT × Rn × Rn. We refer the reader to [8] where
a full explanation of this theory can be found.

It should be noted that, in particular, ifx is a weak
minimum of P(A) then x belongs toE , H, L and
W(T1(x; ε) ∩ A) for someε > 0. On the other hand,
if x is a strong minimum of P(A) thenx belongs toE ,
H, L andW(A) since, for anyε > 0,

x ∈ W(T0(x; ε) ∩ A) ⇔ x ∈ W(A).

2.1 Theorem: If x solves P(A) then x belongs to E ,
H, L and W(A).

For sufficiency, let us consider the following sets ob-
tained by slightly strengthening those defined for nec-
essary conditions:

H′ := {x ∈ X | I ′′(x; y) > 0 for all y ∈ Y, y 6= 0},

L′ := {x ∈ X | Lẋẋ(x̃(t)) > 0 for all t ∈ T},

W(A, ε) := {x0 ∈ X(A) | E(t, x, ẋ, u) ≥ 0

for all (t, x, ẋ, u) ∈ T × R3n with

(t, x, ẋ) ∈ T1(x0; ε) and(t, x, u) ∈ A}.

The following theorem gives sufficient conditions
for local minima. It is worth mentioning that, in [8],
this result is proved directly without referring to Mayer
fields, Hamilton-Jacobi theory, Riccati equations or
conjugate points.

2.2 Theorem:Suppose x ∈ Xe(A) ∩ C1. Then:
a. x ∈ E ∩H′ ∩L′⇒ x is a strict weak minimum of

P(A).
b. x ∈ E ∩ H′ ∩ L′ ∩W(A; ε) for some ε > 0 ⇒ x

is a strict strong minimum of P(A).

As it is well-known, ifx ∈ X(A), thenx ∈ E if and
only if there existsc ∈ Rn such that

Lẋ(x̃(t)) =
∫ t

t0
Lx(x̃(s))ds + c (t ∈ T ).

This equation is the integral form ofEuler’s equation

d

dt
Lẋ(x̃(t)) = Lx(x̃(t)) (t ∈ T ).
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If ẋ has a discontinuity, the derivatived/dt is to be
interpreted as a left- or a right-hand derivative, and it
holds even ifx fails to have a second derivative.

It is important, in the theory to follow, to bear in
mind that ifx ∈ E thenx satisfies Euler’s equation, but
the converse may not hold. This is easily illustrated by,
for example, setting

L(t, x, ẋ) = (ẋ2 − x2)/2, T = [0, 2π],

x0(t) := sin t if t ∈ [0, π], x0(t) := 0 if t ∈ [π, 2π].

Thenx0 satisfies Euler’s equation, butx0 6∈ E since
there is noc ∈ R satisfyingẋ0(t) =

∫ t
0 −x0(s)ds + c

for all t ∈ T . For the converse note that, ifx sat-
isfies Euler’s equation, thenx ∈ E if the function
t 7→ Lẋ(x̃(t)) (t ∈ T ) belongs toX.

We shall find convenient to restate this characteriza-
tion of E as follows. For all(t, x, ẋ, p) ∈ T × R3n

let
H(t, x, ẋ, p) := 〈p, ẋ〉 − L(t, x, ẋ)

and set (‘∗’ denotes transpose)

M(x) := {p ∈ X | ṗ(t) = −H∗
x(x̃(t), p(t))

andHẋ(x̃(t), p(t)) = 0 (t ∈ T )} (x ∈ X).

Then, ifx ∈ X(A), we havex ∈ E ⇔M(x) 6= ∅.

III. T HE NORMALITY APPROACH

Suppose the data are as before but we are also given
a functionϕ mappingT × Rn × Rn to Rq. Let

B := {(t, x, ẋ) ∈ A | ϕ(t, x, ẋ) = 0}

and consider problem P(B), the problem of Lagrange
with equality constraints.

The problem is thus that of minimizing

I(x) =
∫ t1

t0
L(t, x(t), ẋ(t))dt

subject to

a. x:T → Rn is piecewiseC1;
b. x(t0) = ξ0, x(t1) = ξ1;
c. (t, x(t), ẋ(t)) ∈ A (t ∈ T );
d. ϕ(t, x(t), ẋ(t)) = 0 (t ∈ T ).

We assume thatϕ ∈ C2(A) and theq × n-matrix
ϕẋ(t, x, ẋ) has rankq onB.

Let us begin by stating first order necessary condi-
tions for P(B) in the form of a maximum principle. A

proof of this result and its corollary can be found in
[8].

The Hamiltonian formulation

For all(t, x, ẋ, p, µ, λ) ∈ T×Rn×Rn×Rn×Rq×R
define theHamiltonianas

H(t, x, ẋ, p, µ, λ) := 〈p, ẋ〉 − λL(t, x, ẋ)

− 〈µ, ϕ(t, x, ẋ)〉

and denote byUq the space of piecewise continuous
functions mappingT to Rq.

3.1 Theorem:Suppose x0 solves P(B). Then there ex-
ist λ0 ≥ 0, p ∈ X , and µ ∈ Uq continuous on each
interval of continuity of ẋ0, not vanishing simultane-
ously on T , such that

a. ṗ(t) = −H∗
x(t, λ0) and Hẋ(t, λ0) = 0 on each

interval of continuity of ẋ0.
b. H(t, x0(t), u, p(t), µ(t), λ0) ≤ H(t, λ0) for all

(t, u) ∈ T × Rn with (t, x0(t), u) ∈ B.
where H(t, λ0) denotes H(x̃0(t), p(t), µ(t), λ0).

3.2 Corollary: Suppose x0 solves P(B). Let (p, µ, λ0)
be as in Theorem 3.1. Then

〈h, Hẋẋ(x̃0(t), p(t), µ(t), λ0)h〉 ≤ 0

for all h ∈ Rn such that ϕẋ(x̃0(t))h = 0.

In general we are interested in deriving those neces-
sary conditions in such a way that the cost multiplier
will not vanish. The notion of “normality” is intro-
duced for that purpose.

3.3 Definition: A trajectoryx ∈ X(B) will be said to
benormalto P(B) if, given (p, µ) ∈ X ×Uq such that,
for all t ∈ T ,

ṗ(t) = ϕ∗x(x̃(t))µ(t) [= −H∗
x(x̃(t), p(t), µ(t), 0)]

0 = p(t)− ϕ∗ẋ(x̃(t))µ(t) [= H∗
ẋ(x̃(t), p(t), µ(t), 0)]

thenp ≡ 0. In this event, clearly, alsoµ ≡ 0, since

µ∗(t) = p∗(t)ϕ∗ẋ(x̃(t))D(t)

whereD(t) = [ϕẋ(x̃(t))ϕ∗ẋ(x̃(t))]−1. Thusx is nor-
mal to P(B) if there is no nonnull solution to

ṗ∗(t) = p∗(t)ϕ∗ẋ(x̃(t))D(t)ϕx(x̃(t)).

Note that, ifx0 is a normal solution to P(B) then, in
Theorem 3.1,λ0 > 0. In this event, the multipliers
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λ0, p, µ can be chosen so thatλ0 = 1 and, when so
chosen, they are unique.

Let us turn now to second order necessary conditions
for problem P(B) under normality assumptions. We
refer to [8] for a proof of the conditions stated below.

3.4 Definition: Given(x, p, µ) ∈ X ×X ×Uq, define
thesecond variation(with respect toH(t, 1)) by

K(x, p, µ; y) =
∫ t1

t0
2Ω̃(t, y(t), ẏ(t))dt (y ∈ X)

where, for all(t, y, ẏ) ∈ T × Rn × Rn,

2Ω̃(t, y, ẏ) := −[〈y, Hxx(t, 1)y〉+ 2〈y, Hxẋ(t, 1)ẏ〉

+ 〈ẏ, Hẋẋ(t, 1)ẏ〉]

andH(t, 1) denotesH(x̃(t), p(t), µ(t), 1).

3.5 Definition: For allx ∈ X define the setY (B, x) of
B-admissible variations alongx as the set of ally ∈ X
satisfyingy(t0) = y(t1) = 0 and

ϕx(x̃(t))y(t) + ϕẋ(x̃(t))ẏ(t) = 0 (t ∈ T ).

3.6 Theorem: Suppose x0 solves P(B) and is normal
to P(B). Then there exist a unique pair (p, µ) ∈ X×Uq

continuous on each interval of continuity of ẋ0 such
that, if H(t, 1) denotes H(x̃0(t), p(t), µ(t), 1), then

a. ṗ(t) = −H∗
x(t, 1) and Hẋ(t, 1) = 0 on each in-

terval of continuity of ẋ0;
b. H(t, x0(t), ẋ, p(t), µ(t), 1) ≤ H(t, 1) for all

(t, ẋ) ∈ T × Rn with (t, x0(t), ẋ) ∈ B;
c. 〈h, Hẋẋ(t, 1)h〉 ≤ 0 for all h ∈ Rn such that

ϕẋ(x̃0(t))h = 0;
d. K(x0, p, µ; y) ≥ 0 for all y ∈ Y (B, x0).

This result gives us first and second order conditions
for a normal solution to the problem of Lagrange with
equality constraints. A proof different from the one
given in [8], using a reduction approach based on the
implicit function theorem, can be found in [4] where
the optimal control problem studied is that of minimiz-
ing the functional

I(x, u) =
∫ t1

t0
L(t, x(t), u(t))dt

subject to

a. x:T → Rn piecewiseC1; u: T → Rm piecewise
continuous;

b. ẋ(t) = f(t, x(t), u(t)) (t ∈ T );

c. x(t0) = ξ0, x(t1) = ξ1;
d. (t, x(t), u(t)) ∈ A (t ∈ T ),

whereT = [t0, t1],

A = {(t, x, u) ∈ T × Rn × Rm | ϕ(t, x, u) = 0}

andϕ: T ×Rn×Rm → Rq is a given function. Under
mild assumptions on the data of the problem, an im-
mediate consequence of the results obtained in [4] is
precisely Theorem 3.6.

Now, these conditions are expressed in terms of the
Hamiltonian and a maximum principle but, in order to
express them as in Theorem 2.1, that is, in terms of
the classical conditions in the calculus of variations, let
us now introduce the Lagrangian and derive the corre-
sponding conditions from the previous results.

The Lagrangian formulation

For all (t, x, ẋ, µ, λ) ∈ T × Rn × Rn × Rq × R let

F (t, x, ẋ, µ, λ) := λL(t, x, ẋ) + 〈µ, ϕ(t, x, ẋ)〉

so that

H(t, x, ẋ, p, µ, λ) = 〈p, ẋ〉 − F (t, x, ẋ, µ, λ).

Note that, ifx0 solves P(B) andλ0, p, µ are as in The-
orem 3.1, then

0 = H∗
ẋ(x̃0(t), p(t), µ(t), λ0)

= p(t)− F ∗
ẋ (x̃0(t), µ(t), λ0)

and therefore the functiont 7→ F ∗
ẋ (x̃0(t), µ(t), λ0)

(t ∈ T ) belongs toX. SinceHx = −Fx, we obtain

d

dt
Fẋ(x̃0(t), µ(t), λ0) = Fx(x̃0(t), µ(t), λ0).

Observe also that ifEF is the WeierstrassE-function

EF (t, x, ẋ, u, µ, λ) := F (t, x, u, µ, λ)

− F (t, x, ẋ, µ, λ)− Fẋ(t, x, ẋ, µ, λ)(u− ẋ)

then we have

EF (x̃0(t), u, µ(t), λ) = H(x̃0(t), p(t), µ(t), λ)

− H(t, x0(t), u, p(t), µ(t), λ).

These remarks imply, by Theorem 3.1, the following
result.

3.7 Theorem: If x0 solves P(B) then there exist λ0 ≥
0 and µ ∈ Uq continuous on each interval of continuity
of ẋ0, not vanishing simultaneously on T , such that
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a. There exists c ∈ Rn such that, for all t ∈ T ,

Fẋ(x̃0(t), µ(t), λ0) =
∫ t

t0
Fx(x̃0(s), µ(s), λ0)ds + c;

b. EF (x̃0(t), u, µ(t), λ0) ≥ 0 for all (t, u) ∈ T×Rn

with (t, x0(t), u) ∈ B.

From the definition we clearly have that

Hxx = −Fxx, Hxẋ = −Fxẋ, Hẋẋ = −Fẋẋ.

By Corollary 3.2, ifx0 solves P(B) and(µ, λ0) is as in
Theorem 3.7, then

〈h, Fẋẋ(x̃0(t), µ(t), λ0)h〉 ≥ 0

for all h ∈ Rn such thatϕẋ(x̃0(t))h = 0 (t ∈ T ).
Moreover, K(x, p, µ; y) coincides withJ ′′(x, µ; y),
the second variation of the functional

J(x, µ) :=
∫ t1

t0
F (t, x(t), ẋ(t), µ(t), 1)dt

given by

J ′′(x, µ; y) =
∫ t1

t0
2Ωµ(t, y(t), ẏ(t))dt

where

2Ωµ(t, y, ẏ) := 〈y, Fxx(x̃(t), µ(t), 1)y〉

+ 2〈y, Fxẋ(x̃(t), µ(t), 1)ẏ〉+ 〈ẏ, Fẋẋ(x̃(t), µ(t), 1)ẏ〉.

To express the corresponding Theorem 3.6 for nor-
mal solutions in a succinct way as in Theorem 2.1 let
us define, for allµ ∈ Uq,

E(µ) := {x ∈ X | there existsc ∈ Rn such that

Fẋ(x̃(t), µ(t), 1) =
∫ t

t0
Fx(x̃(s), µ(s), 1)ds + c

(t ∈ T )},

H(µ) := {x ∈ X | J ′′(x, µ; y) ≥ 0

for all y ∈ Y (B, x)},

L(µ) := {x ∈ X | 〈h, Fẋẋ(x̃(t), µ(t), 1)h〉 ≥ 0

for all h ∈ Rn such thatϕẋ(x̃(t))h = 0 (t ∈ T )},

W(B, µ) := {x ∈ X(B) | EF (x̃(t), u, µ(t), 1) ≥ 0

for all (t, u) ∈ T × Rn with (t, x(t), u) ∈ B}.

3.8 Theorem: If x0 is a normal solution to P(B) then
there exists a unique µ ∈ Uq such that x0 belongs to
E(µ), H(µ), L(µ) and W(B, µ).

As pointed out in [10], “usually these conditions are
derived under normality (controllability) assumptions
by means of a very complicated argument.” On the
other hand, as we shall show next, the augmentabil-
ity approach yields these standard necessary conditions
for a minimum for the problem of Lagrange in a much
simpler way.

IV. T HE AUGMENTABILITY APPROACH

For a given functionσ:T × Rn × Rn → R and for
all (t, x, ẋ, µ) ∈ T × Rn × Rn × Rq, define

F̃ (t, x, ẋ, µ) := L(t, x, ẋ) + 〈µ, ϕ(t, x, ẋ)〉

+ σ(t, x, ẋ)G(t, x, ẋ)

where

G(t, x, ẋ) :=
1
2

q∑
1

ϕα(t, x, ẋ)2.

Note that

F̃ (t, x, ẋ, µ) = F (t, x, ẋ, µ, 1)

+
σ(t, x, ẋ)

2
|ϕ(t, x, ẋ)|2.

Associated with the integralI, consider the augmented
integral, for all((x, µ) ∈ X × Uq,

J̃(x, µ) :=
∫ t1

t0
F̃ (t, x(t), ẋ(t), µ(t))dt

and denote by Q(A, µ, σ) the unconstrained problem
of minimizing J̃(·, µ) overXe(A).

4.1 Definition: For anyx0 ∈ Xe(B) we shall say that
P(B) is augmentable atx0 if there existσ andµ such
thatx0 solves Q(A, µ, σ). Note that, in this event,x0

solves P(B) since, for anyx ∈ Xe(B), we have

I(x0) = J̃(x0, µ) ≤ J̃(x, µ) = I(x).

Let us now prove that an augmentability assumption
allows us to derive the necessary conditions for a min-
imum given in Theorem 3.8.

4.2 Theorem: Let x0 ∈ Xe(B) and suppose P(B) is
augmentable at x0. Then there exists µ ∈ Uq such
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that x0 belongs to E(µ), H(µ), L(µ) and W(B, µ).
Moreover, x0 solves P(B).

Proof: Since P(B) is augmentable atx0, there exist
σ andµ such thatx0 solves Q(A, µ, σ). We apply The-
orem 2.1 which states thatx0 belongs toE , H, L and
W(A) with respect to the integral̃J(·, µ), that is,x0

belongs to the sets

Ẽ(µ, σ) := {x ∈ X | there existsc ∈ Rn such that

F̃ẋ(x̃(t), µ(t)) =
∫ t

t0
F̃x(x̃(s), µ(s))ds + c

(t ∈ T )},

H̃(µ, σ) := {x ∈ X | J̃ ′′(x, µ; y) ≥ 0 for all y ∈ Y },

L̃(µ, σ) := {x ∈ X | F̃ẋẋ(x̃(t), µ(t)) ≥ 0 (t ∈ T )},

W̃(A, µ, σ) := {x ∈ X(A) |

EF̃ (t, x(t), ẋ(t), u, µ(t)) ≥ 0

for all (t, u) ∈ T × Rn with (t, x(t), u) ∈ A}.

By the first contention, there existsc ∈ Rn such that

F̃ẋ(x̃0(t), µ(t)) =
∫ t

t0
F̃x(x̃0(s), µ(s))ds + c

and therefore

Fẋ(x̃0(t), µ(t), 1) =
∫ t

t0
Fx(x̃0(s), µ(s), 1)ds + c

showing thatx0 ∈ E(µ).
By the second contention, we have

J̃ ′′(x0, µ; y) ≥ 0

for all y ∈ X such thaty(t0) = y(t1) = 0 where

J̃ ′′(x0, µ; y) =
∫ t1

t0
{〈y(t), F̃xx(t)y(t)〉

+ 2〈y(t), F̃xẋ(t)ẏ(t)〉+ 〈ẏ(t), F̃ẋẋ(t)ẏ(t)〉}dt

andF̃ (t) denotesF̃ (x̃0(t), µ(t)). As one readily veri-
fies,

J̃ ′′(x0, µ; y) = J ′′(x0, µ; y)

+
∫ t1

t0
σ(x̃0(t))|ϕx(x̃0(t)y(t) + ϕẋ(x̃0(t))ẏ(t)|2dt

and thereforeJ ′′(x0, µ; y) ≥ 0 for all y ∈ Y (B, x0),
showing thatx0 ∈ H(µ).

By the third contention, we have

F̃ẋẋ(x̃0(t), µ(t)) ≥ 0 (t ∈ T ).

Observe that

F̃ẋẋ(x̃0(t), µ(t)) = Fẋẋ(x̃0(t), µ(t), 1)

+ σ(x̃0(t))Gẋẋ(x̃0(t)).

Now, for anyx ∈ X,

Gẋ(x̃(t)) =
q∑
1

ϕα(x̃(t))ϕαẋ(x̃(t))

and therefore, for anyh ∈ Rn,

〈h, Gẋẋ(x̃0(t))h〉 =

h∗
( q∑

1

ϕ∗αẋ(x̃0(t))ϕαẋ(x̃0(t))
)

h =

q∑
1

(ϕαẋ(x̃0(t))h)2 = |ϕẋ(x̃0(t))h|2.

Consequently

〈h, Fẋẋ(x̃0(t), µ(t), 1)h〉

+ σ(x̃0(t))|ϕẋ(x̃0(t))h|2 ≥ 0 (h ∈ Rn, t ∈ T )

implying thatx0 ∈ L(µ).
Finally, by the fourth contention, we have

F̃ (t, x0(t), u, µ(t))− F̃ (x̃0(t), µ(t))

− F̃ẋ(x̃0(t)), µ(t))(u− ẋ0(t)) ≥ 0

for all (t, u) ∈ T × Rn with (t, x0(t), u) ∈ A. This
implies that

EF (x̃0(t), u, µ(t), 1)

+
σ(t, x0(t), u)

2
|ϕ(t, x0(t), u)|2 ≥ 0

and thereforex0 belongs toW(B, µ).

V. SUFFICIENCY THROUGH AUGMENTABILITY

For sufficiency, let us enlarge the sets we are deal-
ing with and denote byX ′ the space of all absolutely
continuous functions mappingT to Rn. The notations
X ′(B) and X ′

e(B) have the obvious meanings. The
subclass ofX ′ of all arcs inX ′ having square inte-
grable derivatives onT will be denoted byX ′′.

5.1 Definition: For anyx0 ∈ Xe(B) we shall say that
P(B) is strongly augmentable atx0 if there existε > 0,
σ andµ such thatx0 solves

Q(T0(x0; ε) ∩ A, µ, σ).
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Clearly, in this event,x0 is a strong minimum of P(B).
Similarly, P(B) is weakly augmentable atx0 if there
existε > 0, σ andµ such thatx0 solves

Q(T1(x0; ε) ∩ A, µ, σ),

implying thatx0 is a weak minimum of P(B).

5.2 Definition: For all x ∈ X ′ defineY ′(B, x) as the
set of ally ∈ X ′′ satisfyingy(t0) = y(t1) = 0 and

ϕx(x̃(t))y(t) + ϕẋ(x̃(t))ẏ(t) = 0 (a.e. inT ).

Consider now the following sets (in terms ofF ):

H′(µ) := {x ∈ X ′ | J ′′(x, µ; y) > 0

for all y ∈ Y ′(B, x), y 6= 0},

L′(µ) := {x ∈ X ′ | 〈h, Fẋẋ(x̃(t), µ(t), 1)h〉 > 0 for

all h ∈ Rn, h 6= 0 such thatϕẋ(x̃(t))h = 0 (t ∈ T )},

W(B, µ; ε) := {x0 ∈ X ′(B) |

EF (t, x, ẋ, u, µ(t), 1) ≥ 0

for all (t, x, ẋ, u) ∈ T × R3n with

(t, x, ẋ) ∈ T1(x0; ε) ∩ B and(t, x, u) ∈ B}

together with the respective sets (in terms ofF̃ ):

H̃′(µ, σ) := {x ∈ X ′ | J̃ ′′(x, µ; y) > 0

for all y ∈ X ′′, y 6= 0 with y(t0) = y(t1) = 0},

L̃′(µ, σ) := {x ∈ X ′ | 〈h, F̃ẋẋ(x̃(t), µ(t))h〉 > 0

for all h ∈ Rn, h 6= 0, (t ∈ T )},

W̃(A, µ, σ; ε) := {x0 ∈ X ′(A) |

EF̃ (t, x, ẋ, u, µ(t)) ≥ 0

for all (t, x, ẋ, u) ∈ T × R3n with

(t, x, ẋ) ∈ T1(x0; ε) and(t, x, u) ∈ A}.

Let us now state an auxiliary result which will be
used to prove that the standard sufficient conditions
for a weak minimum imply weak augmentability. The
first statement of this result has been established by
Reid [13] and the second follows from the fact that,
under the assumptions of the lemma, the function
J̃ ′′(x0, µ; ·) is lower semicontinuous (see [11]).

5.3 Lemma: If x0 ∈ L′(µ), there exists θ > 0 such
that, if σ(t, x, ẋ) ≥ θ, then

a. x0 ∈ L̃′(µ, σ).

b. If {yq} ⊂ X ′′ converges uniformly on T to y0

then

lim inf
q→∞

J̃ ′′(x0, µ; yq) ≥ J̃ ′′(x0, µ; y0).

The next auxiliary result shows that the strengthened
condition of Legendre together with the positivity of
the second variation with respect toF imply the ex-
istence of a functionσ for which the second variation
with respect toF̃ is also positive. Some of the ideas of
the proof are based on the theory developed in [7].

5.4 Lemma: If x0 ∈ L′(µ)∩H′(µ), there exists θ0 > 0
such that, if σ(t, x, ẋ) ≥ θ0, then x0 ∈ H̃′(µ, σ).

Proof: Define

Φ(t, y, ẏ) := ϕx(x̃0(t))y + ϕẋ(x̃0(t))ẏ

P (y) := J ′′(x0, µ; y),

Q(y) :=
∫ t1

t0
|Φ(t, y(t), ẏ(t))|2dt.

Sincex0 ∈ H′(µ) we have

P (y) > 0 for all y ∈ X ′′, y 6= 0,

satisfyingΦ(t, y(t), ẏ(t)) = 0 a.e. inT andy(t0) =
y(t1) = 0. As seen before,

J̃ ′′(x0, µ; y) =

P (y) +
∫ t1

t0
σ(x̃0(t))|Φ(t, y(t), ẏ(t))|2dt

and so

J̃ ′′(x0, µ; y) ≥ P (y) + θ0Q(y) if σ(x̃0(t)) ≥ θ0

the equality holding whenσ(x̃0(t)) = θ0.
Let us suppose the conclusion of the theorem is false.

Then, for allq ∈ N, if σ(t, x, ẋ) ≥ q we havex0 6∈
H̃′(µ, σ). That is, for allq ∈ N there existsyq ∈ X ′′

nonnull withyq(t0) = yq(t1) = 0 such that

P (yq) + qQ(yq) ≤ J̃ ′′(x0, µ; yq) ≤ 0 (1)

if σ(t, x, ẋ) ≥ q.
Since the functions at hand are homogeneous iny

we can suppose thatyq has been chosen so that∫ t1

t0
{|yq(t)|2 + |ẏq(t)|2}dt = 1. (2)

Therefore we can replace the sequence{yq} by a sub-
sequence (we do not relabel) which converges to a vari-
ationy0 in the sense that

lim
q→∞

yq(t) = y0(t) uniformly onT. (3)
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Obviouslyy0(t0) = y0(t1) = 0. By Lemma 5.3 there
existsθ > 0 such that

lim inf
q→∞

{P (yq) + θQ(yq)} ≥ P (y0) + θQ(y0). (4)

This inequality, together with (1) andQ(y) ≥ 0, im-
plies that

lim inf
q→∞

Q(yq) ≤ 0.

But since the Legendre condition holds forQ(y) we
have that

lim inf
q→∞

Q(yq) ≥ Q(y0) ≥ 0.

ConsequentlyQ(y0) = 0. Clearly this can be the case
only if Φ(t, y0(t), ẏ0(t)) = 0 a.e. inT . Suppose that
y0 6≡ 0. Then P (y0) > 0. However, by (4) with
Q(y0) = 0 one has, for large values ofq that

P (yq) + θQ(yq) > 0

contradicting the inequality in (1). Hencey0 ≡ 0.
Let us complete the proof by showing thaty0 can-

not be the null variation. Suppose that this is the case.
Takeσ = θ as described in Lemma 5.3. Then, by (4),
we have

lim inf
q→∞

J̃ ′′(x0, µ; yq) =

lim inf
q→∞

{P (yq) + θQ(yq)} ≥ 0

sinceP (y0) = Q(y0) = 0. Using (1), we see that
the equality must hold. Consequently, by (3) and the
assumptiony0 ≡ 0, we have

0 = lim inf
q→∞

J̃ ′′(x0, µ; yq) =

lim inf
q→∞

∫ t1

t0
〈ẏq(t), F̃ẋẋ(x̃0(t), µ(t))ẏq(t)〉dt. (5)

Since, by Lemma 5.3, the last integrand is a positive
definite form, there is a constantc > 0 such that

〈h, F̃ẋẋ(x̃0(t), µ(t))h〉 ≥ 〈h, ch〉 ≥ c|h|2.

Consequently equation (5) implies that

lim inf
q→∞

∫ t1

t0
|ẏq(t)|2dt = 0.

Using (2) and (3) we see that

lim
q→∞

∫ t1

t0
|ẏq(t)|2dt = 1.

This contradiction completes the proof.

5.5 Theorem:Suppose x0 ∈ X ′
e(B)∩C1 and µ:T →

Rq is absolutely continuous. If x0 belongs to

E(µ) ∩H′(µ) ∩ L′(µ)

then P(B) is weakly augmentable at x0.
Proof: By Theorem 2.2, the conclusion that P(B) is

weakly augmentable atx0 will follow if we show that,
for some functionσ(t, x, ẋ), x0 belongs to

Ẽ(µ, σ) ∩ H̃′(µ, σ) ∩ L̃′(µ, σ).

Let us begin by showing that, for anyσ, x0 ∈
Ẽ(µ, σ). Indeed, sincex0 ∈ E(µ), there existsc ∈ Rn

such that, for allt ∈ T ,

Fẋ(x̃0(t), µ(t), 1) =
∫ t

t0
Fx(x̃0(s), µ(s), 1)ds + c

and therefore, for allt ∈ T ,

F̃ẋ(x̃0(t), µ(t)) =
∫ t

t0
F̃x(x̃0(s), µ(s))ds + c

showing thatx0 belongs toẼ(µ, σ) for anyσ.
As a second step, let us show that there existsc > 0

such thatσ(x̃0(t)) > c (t ∈ T ) ⇒ x0 ∈ L̃′(µ, σ). For
all t ∈ T andh ∈ Rn, define

P (t, h) := 〈h, Fẋẋ(x̃0(t), µ(t), 1)h〉,

Q(t, h) := |ϕẋ(x̃0(t))h|2.

Sincex0 ∈ L′(µ), we have

P (t, h) > 0 for all t ∈ T andh 6= 0

with Q(t, h) = 0. We claim that, for some constant
c > 0,

P (t, h) + cQ(t, h) > 0 for all t ∈ T andh 6= 0.

Suppose the contrary. Then, for allq ∈ N, there exist
(tq, hq) ∈ T × Rn with hq 6= 0 such that

P (tq, hq) + qQ(tq, hq) ≤ 0.

Let kq := hq/|hq| so thatP (tq, kq) + qQ(tq, kq) ≤ 0
and |kq| = 1. Thus there exist a subsequence (we do
not relabel),t0 ∈ T and a unit vectork0 such that
(tq, kq) → (t0, k0). ThereforeP (t0, k0) ≤ 0 and
Q(t0, k0) = 0, contrary to the assumptionx0 ∈ L′(µ).
Now, letσ(t, x, ẋ) be such thatσ(x̃0(t)) > c (t ∈ T ).
Hence

〈h, F̃ẋẋ(x̃0(t), µ(t))h〉 =
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P (t, h) + σ(x̃0(t))Q(t, h) > 0

for all h ∈ Rn, h 6= 0, andt ∈ T , showing thatx0 ∈
L̃′(µ, σ).

Finally the statement that there existsθ0 > 0 such
thatσ(x̃0(t)) ≥ θ0 (t ∈ T ) ⇒ x0 ∈ H̃′(µ, σ) follows
by Lemma 5.4.

We end by stating the corresponding result for strong
minima related to strong augmentability. It can be
shown that the notion of strong augmentability, like
that of weak augmentability, is implied by the stan-
dard sufficient conditions for a strong minimum and,
therefore, in both cases, the notion of augmentability
can also be seen as an alternative approach to establish
sufficiency results.

5.6 Theorem:Suppose x0 ∈ X ′
e(B)∩C1 and µ:T →

Rq is absolutely continuous. If, for some ε > 0, x0

belongs to

E(µ) ∩H′(µ) ∩ L′(µ) ∩W(B, µ; ε),

then P(B) is strongly augmentable at x0.

VI. CONCLUSIONS

In this paper we introduce the notion ofgeneralized
Lagrangians, based on the concept of augmentability,
applicable to a Lagrange problem in the calculus of
variations involving equality constraints.

Though it is well-known that, by adding penalty
functions to constrained minimum problems in fi-
nite dimensional spaces, one deals with unconstrained
problems for which the derivation of necessary and
sufficient optimality conditions can be easily obtained
and methods of multipliers for finding numerical so-
lutions can be derived, this concept of augmentability
has received little attention to other problems that lie
beyond the finite dimensional case.

For the infinite dimensional problem studied in this
paper, we show that the concept of augmentability can
be successfully generalized. We introduce the notions
of weak and strong augmentability for the Lagrange
problem and, without the usual assumption of normal-
ity, we derive first and second order necessary condi-
tions for local optimality. Moreover, we provide a sim-
ple proof of the fact that the standard sufficient con-
ditions for a weak local minimum imply weak aug-
mentability of the problem at the corresponding ex-
tremal. We also state the fact that the standard suf-
ficiency conditions for a strong local minimum imply
strong augmentability.

It is of interest to see if the main ideas of this pa-
per can be generalized to optimal control problems, not
only for the derivation of necessary and sufficient con-
ditions, but also to obtain a method of multipliers for
finding numerical solutions of such problems.
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