
 

 

  
Abstract—In this article we will study the elliptic curve over the 

ring  where d is a positive integer and  More 
precisely we will establish a group homomorphism between the 
abulia group  and  and we have given an 
example for coding elements over this ring.  
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I. INTRODUCTION 
ET d be an integer, we consider the quotient ring

 , where  is the finite field of order . Then the 

ring  is identified to the ring with  ie: 
. We consider the elliptic curve over 

the ring  which is given by equation 
 where  are in  and  is invertible in  

see [1] and [2].  
 

II. NOTAIONS  

Let such that  is invertible in    We denote 
the elliptic curve over  by  and we write: 

. If  and  we also 
write:  

. 

III. CLASSIFICATION OF ELEMENTS OF   

Let [X : Y : Z]  , where X, Y and Z are in A . 
We  have  two cases for Z. 

• Z  invertible: Then  [X : Y : Z] = [X  : Y : 1]; hence 
we take  just  [X:Y:1].  

• Z non invertible: So  Z = ; see [3] in this cases we have 
two cases for Y. 
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        -     Y invertible: Then  [X : Y : Z] = [X  : 1 : Z  ]; 
so we just take [X : 1 : ] ; then is verified the equation of 

  
So we can write: 

  
  

 
  

We have: 
 

 
 
Which implies that 

 
Then 

 
Since  is a basis of the vector space A over then 

 so X =  and  hence 
 : 1 :0]. 

- Y non invertible: Then we have   
 is invertible so we take 

 thus   
which is absurd. 
Proposition 1:  Every element of  , is of the form 

  or  ; where   and  we write 
 [X : Y : 1]   |

}  

IV. THE  HOMOMORPHISM 
We consider the canonical projection  defined by  

 
 

 
Lemma 1:   is a morphism of rings. 
Proof. Let  and  then : 

 
 
 
 

So :  
 

Therefore  is a morphism of rings. 
Lemma 2:  Let   [X : Y : Z] where  
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Then    if and only if 

 
 

. 
Proof. Since  is a basis of the vector space  over   
and   , then  

,  so  after  the compute,  we find the result. 

* Let  the mapping defined by: 
 

 
 
We proof that the mapping is a surjective homomorphism 
of groups. 
 
Theorem 1: Let  and  two 
points in  and  

• If then : 
 

 
 

. 
 

 
 

 
 

 
 

 

. 

• If then : 
 

. 
 

 
 

 
. 

 
 

 
 
Proof. Using the explicit formulas in W. Bosma and H. 
Lenstras article see [4] we prove the theorem. 
Lemma 3. The mapping is a surjective homomorphism of 
groups. 
Proof. The formula of  lemma (2)  means  that 

 and  so  is 
well defined. 

 is surjective: Let , we will 
show  that  have an antecedent 

. 
• Case 1 :  then  and we just take 

 
• Case 2 :  so  is invertible then 

, so we just take  . So we will 
find an antecedent  of  of the form 

, from the formulas of lemma (2) 
we have :  

 
 

There is three sub-cases : 
• Case 2,1 :  then we just take 

 because  
is invertible so . 
• Case 2,2 :  then we just take 

 
• Case 2,3 :  and  then we have  absurd 
because  is invertible ie,  and  . 

 is an homomorphism : We just use the theorem (1) and 
lemma (1). 
Lemma 4:   
Proof. We have  so by 
applying the formula in theorem (1) we have : 

 and  so 
 

Lemma 5: The mapping  

 
 

Is an injective morphism of groups. 
Proof.   is well defined because  see 
proposition (1) and from the lemma (4) we have: 

 
then  is a morphism. 
•  is injective (evidently). 
Lemma 6:  
Proof.  Evidently we have ,  now  let 

, implies that  
implies that  and from the 
proposition (1), we have    ie 

 hence  . 
From  lemmas (3), (5), and (6) we deduce the following 
corollary : 
Corollary 1: The sequence 

 
Is a short exact sequence which define the group extension 

 of  by  where i is the 
canonical  injection. 

V.  CODING APPLICAION 
Let   an elliptic curve over  and  of 
order  l. We will use the subgroup   of  to 
encrypt messages, and we denote . 

1. Coding of elements of   : 
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We will give a code to each element , where 
  which ; defined as it follows: 

If  , where  for 
 or 1 and   or 1. We set : 

 
 

, where  is primitive root of an irreducible polynomal of 
degree 2 over  and   . Then we code   as it 
follows: 
If   then :  
If   then :  

2. Example: 
Let  and   . So the elliptic curve 

  has 32 elements : 
Let  

 , we have : 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

So,  
 

 
 
. 

 

VI. CONCLUSION 
In this work we have studed the elliptic curve over the ring  

, precisely we have established the short exact 
sequence that defines the group extension  of 

 by , and  we have given an example of 
coding over this ring. 
 
 
 
 
 
 
 
 
 

 
 

REFERENCES   
[1] Abdelhakim chillali, the j-invariant over .Int. j. Open problems 

Compt.Math.Vol.5, No.4, December 2012, ISSN 1998-6262; Copyright 
ICSRS Publication, WWW.i-csrc.org.pp.106-111 (2012).  

[2] Abdelhakim. Chillali, Elliptic curve over ring, International  
Mathematical  Forum,Vol.6,no.31,2011 pp.1501-1505  

[3] Abdelhakim. chillali, Cryptography over elliptic curve of the ring 
 World Academy  of science Engineering and 

Technology,78 (2011),pp.848-850. 
[4] W. Bosma and H. Lenstra, Complete system of two addition  laws for 

elliptic curved, Journal of  Number theory (1995).  
[5] M.H. Hassib and A. Chillali, Example of cryptography over the ring 

, Latest trends in Applied Informatics and Computing, 
p.71-73, ISBN 978-1-61804-130-2, (2012). 

[6] J. Lenstra, H.W, Elliptic curves and number-theoretic algorithms, 
Process- ing of the International Congress of Mathematicians, Berkely, 
California,USA,(1986                            

[7] J.H .SILVERMAN . The Arithmetic of Elliptic curves, second edition, 
Graduate texts in Mathematics 106.DOI 10.1007/978-0-387-09494-6-A 

[8] J.H.SILVERMAN. Advanced Topics in the Arithmetic of Elliptic 
curves,Graduate Texts in Mathematcs. Volume 151, Springer, (1994). 

[9] N.KOBLITZ. Elliptic Curve Cryptosystems,Mathematics of 
Computation. 48, 203, 209,(1987).2,6,21,37 

[10] M. VIRAT. courbe elliptique sur un anneau et applications 
cryptographiques  These Docteur en Sciences, Nice-Sophia Antipolis. 
(2009). 

[11] V.CHANDRASEKARAN, N.NAGARAJAN. Novel  Approach  Design 
of El-liptic curve Cryptography Implementation in VLSI,RECENT 
ADVANCES in NETWORKING, VLSI and SIGNAL PROCESSING. 
www.wseas.us/e- library/ conferences/ 2010/ Cambridge/ .../ICNVS -
17.pdf  

[12] R.LERCIER. Algorithmique de courbes elliptiques dans les corps _ nis, 
PhD  thesis,  Ecole polytechnique. juin (1997). 

 
 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 8, 2014

ISSN: 2074-1278 67

http://www.wseas.us/e-%20library/%20conferences/%202010/%20Cambridge/



