
  
Abstract—In this paper, we deal with well-known distribution 

problems and discuss their restrictions, extensions and modifications 
including a possible application in agriculture. We show that the 
transportation problem can be transformed to an allocation, location 
and set covering problem using special constraints, but because of 
NP-hardness of the last problem it needs quite different methods of 
its solving. Another modification of the transportation problem, the 
crop problem, has an application in agriculture, but we must deal 
with uncertain data. We propose a genetic algorithm and fuzzy logic 
approach for solving these problems 
 

Keywords—crop problem, set covering problem, transportation, 
fuzzy number.  

I. INTRODUCTION 
HE Hitchcock transportation problem with m sources 
(supply points, factories) and n destinations (demand 

points, clients) can be formulated using linear programming as 
follows [1], [2]: 
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where  
z is the total transportation cost,  
cij is the unit shipping cost from source i to destination j, 
xij is the number of units shipped from source i to 

destination j,  
ai is the supply of the source i,  
bj is the demand of destination j, 

and only a single commodity is transported. 

Since there is only one commodity, a destination can receive 
its demand from more than one source. Therefore, the 
objective is to determine how much should be shipped from 
each source to each destination so as to minimise the total 
transportation cost. 

If total commodity supply equals to total demand, the 
problem is said to be a balanced transportation problem: 
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If (5) is not satisfied, then it becomes an unbalanced 
transportation problem. 
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If total supply exceeds total demand, see (6), we can 
balance the problem by adding a dummy destination to absorb 
the excess supply. Shipments to this destination are assigned a 
cost of zero. 
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If a transportation problem has a total supply that is strictly 
less than total demand, see (7), the problem has no feasible 
solution, because one or more demands cannot be satisfied. In 
such situations a penalty cost is often associated with unmet 
demand and the total penalty cost is desired to be minimal. 

There are several methods for solving the balanced 
transportation problem as follows: 

• The Northwest Corner Method 

• The Least Cost Method 
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• Vogel’s Approximation Method 

We can also solve the transportation problem using specialised 
software tools, e.g. GAMS, LINDO, LINGO, or MS Excel 
Solver.  

If it is possible to both ship into and out of the same point of 
the transport network, then we speak about a transshipment (or 
transhipment) problem. For the transshipment problem, you 
can ship from one supply point to another or from one demand 
point to another. 

The Hitchcock formulation of the transportation problem may 
also be extended considering fixed charges associated with 
supply points (e. g. warehouses), means of transport, their 
capacity, cost of transport by vehicles to 1 km, which enables 
to determine the number of trips due to volume, transport in 
two levels: primary source – warehouses – destinations, 
admitting the possibility of direct transport from the primary 
source to destinations, etc. 

Instead, we turn our attention to problems that seem to have 
nothing with transportation, but their formulation can be 
obtained from the basic model of the transportation problem. 

II. ALLOCATION PROBLEM 
Consider the distribution problem where all supplier 

capacities (resources, warehouse) ai , i = 1,2, … , m are 
sufficient to cover the requirements of all consumers 
(customers) bj , j = 1,2, … , n, but the demands of every 
consumer must be covered by only one supplier. 

If cij, i= 1,2, ..., m, j = 1,2, ..., n is the cost of transportation 
from the i-th supplier to the j-th consumer, 
xij =1 or xij = 0, depending on whether it will be transported 
from the i-th supplier to the j-th consumer or not, the 
mathematical model of this task can be expressed as follows: 

 
Minimise 
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If the capacities of suppliers are limited, then the previous 
model needs to be supplemented by further constraint. This is 
expressed by formula (13) in the following model. 

Minimise 
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III. LOCATION PROBLEM 
Consider m sites, which can be used to operate the stores, 

and they will supply n consumers with demands bj , j = 1,2, … 
, n.  
Let store operation cost in the i-th location costs be fi, i = 1,2, 
… , m for the required period, and cij , i = 1,2, … , m,  j = 1,2, 
… , n  represent the total cost for the assignment of the j-th 
consumer to the i-th location. 

The task is to decide which locations operate a store and 
find the assignment of consumers to operated stores so that the 
value of the total cost of operating the system was minimal. It 
is assumed as in the allocation problem that the requirements 
of each consumer must be covered by only one store. 
 
Note:  

Locational problem is a generalization of the allocation 
problem. Moreover, there are bivalent variable yi, where yi = 1 
indicates that a store in the i-th location will be operated and yi 
= 0, that there will not be operated. 

Bivalent variables xij, where xij =1 or xij = 0, similarly to the 
allocation task indicate that the j-th consumer will or will not 
be assigned to a store in the i-th location. 

Note:  
Decisions that correspond to bivalent variables yi and xij 

have a close relation. 
The set of constraints in the case of a decision not to operate 

a store in a location must ensure that it could not be assigned 
to any consumer, on the other hand, if we assign a consume to 
a location, there must be a store operated in it. 

These conditions can be formulated as follows: 
 

Minimise 
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From (18) we get   
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and hence we get that formula (18) may be alternatively 
expressed by (18’)  
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If the capacities of suppliers ai , i = 1,2, … , m are limited, then 
the previous model must be modified as follows:  

Minimise 
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IV. DMAX SET COVERING PROBLEM 
Assume that the transport network contains m vertices, that 

can be used as operating service centers, and n vertices to be 
served, and for each pair of vertices vi (considered as service 
centers) and vj  (serviced vertex) their distance dij is given and 
Dmax is the maximum distance which will be accept for 
operation between the service centers and serviced vertices.  

The aim is to determine which vertices must be used as 
service centers so that each vertex was covered by at least one 
of the centers and the total number of operating centers was 
minimal. 
Note: 

1. A necessary condition for solvability of the task is 
that all of the serviced vertices were reachable from at 
least one place where an operating service center is 
considered. 

2. Serviced vertex vj is reachable from vertex vi, which 
is considered as an operating service center if dij ≤ 
Dmax. If this inequality is not satisfied, vertex vj is 
unreachable from vi. 

If variables aij, where aij=1 or aij=0, express whether 
operated vertex vj is reachable from vertex vi, which is 
considered as operating service center, respectively. is not 
reachable, then the set covering problem can be described by 
the following mathematical model: 
Minimise 
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The objective function represents the number of operating 
centers, constraint (26) means that each serviced vertex is 
assigned at least one operating service center. 

 
Example:  

 serviced vertices (customers locations)  
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Consider the previous distance matrix which expresses 
service centers and serviced vertices (= customer locations) 
and Dmax=40.  

From Dmax=40 we get the reachability matrix of serviced 
vertices from service centers. 
 

 

 

 

 

 

Since only service center 3 is reachable to the second 
serviced vertex (serviced vertex 2 is covered by the 3rd service 
center) and only service center 1 is reachable to service center 
5, these service centers must not be omitted. These two centers 
cover serviced vertices 1, 4, 5 and 2 

It remains to find the service centers which cover the 
remaining uncovered vertices 3, 6, 7 and 8. This can be 
achieved either by selecting the service centers 2 and 5, or 4 
and 5. 

Thus the example has two solutions, where four vertices are 
sufficient to cover serviced vertices (either 1, 3, 2, 5 or 1, 3, 4, 

5).  
Note: 

In the general case, however, the selection of service centers 
for k uncovered vertices has 2k possibilities and thus the 
complexity of tasks increases exponentially with the number of 
uncovered vertices. 

For large k we must solve it using a heuristic method [3], 
[4], [5], [7], [8], e.g., by a genetic algorithm. 

V. GENETIC ALGORITHM FOR SET COVERING PROBLEM 

The skeleton for GA can be described as follows [5]: 
generate an initial population ; 
evaluate fitness of individuals in the population ; 
repeat 
 select parents from the population; 
 recombine (mate) parents to produce children ; 
 evaluate fitness of the children ; 
 replace some or all of the population by the children 
until a satisfactory solution has been found ; 
 

Since the principles of GAs are well-known, we will only 
deal with GA parameter settings for the problems to be 
studied. Now we describe the general settings [3], [6]. 

Individuals in the population (chromosomes) are 
represented as binary strings of length n, where a value of 0 or 
1 at the i-th bit (gene) implies that xi = 0 or 1 in the solution 
respectively.  

The population size N is usually set between n and 2n. 

Many empirical results have shown that population sizes in the 
range [50, 200] work quite well for most problems.  

Initial population is obtained by generating random strings 
of 0s and 1s in the following way: First, all bits in all strings 
are set to 0, and then, for each of the strings, randomly 
selected bits are set to 1 until the solutions (represented by 
strings) are feasible. 

The fitness function corresponds to the objective function to 
be maximised or minimised.  

There are three most commonly used methods of selection 
of two parent solution for reproduction: proportionate 
selection, ranking selection, and tournament selection. The 
tournament selection is perhaps the simplest and most efficient 
among these three methods. We use the binary tournament 
selection method where two individuals are chosen randomly 
from the population. The more fit individual is then allocated a 
reproductive trial. In order to produce a child, two binary 
tournaments are held, each of which produces one parent. 

The recombination is provided by the uniform crossover 
operator, which has a better recombination potential than do 
other crossover operators as the classical one-point and two-
point crossover operators. The uniform crossover operator 
works by generating a random crossover mask B (using 
Bernoulli distribution) which can be represented as a binary 
string B = b1b2b3 ··· bn-1bn where n is the length of the 
chromosome. Let P1 and P2 be the parent strings P1[1], ... 
,P1[n] and P2[1], ... ,P2[n] respectively. Then the child solution 
is created by letting: C[i] = P1[i] if bi = 0 and C[i] = P2[i] if bi 

= 1. Mutation is applied to each child after crossover. It works 
by inverting M randomly chosen bits in a string where M is 
experimentally determined. We use a mutation rate of 5/n as a 
lower bound on the optimal mutation rate. It is equivalent to 
mutating five randomly chosen bits per string. 

When v child solutions have been generated, the children 
will replace v members of the existing population to keep the 
population size constant, and the reproductive cycle will 
restart. As the replacement of the whole parent population 
does not guarantee that the best member of a population will 
survive into the next generation, it is better to use steady-state 
or incremental replacement which generates and replaces only 
a few members (typically 1 or 2) of the population during each 
generation. The least-fit member, or a randomly selected 
member with below-average fitness, are usually chosen for 
replacement. 

Termination of a GA is usually controlled by specifying a 
maximum number of generations tmax or relative improvement 
of the best objective function value over generations. Since the 
optimal solution values for most problems are not known, we 
choose tmax ≤ 5000. 

The chromosome is represented by an n-bit binary string S 
where n is the number of columns in the SCP. A value of 1 for 
the j-th bit implies that column j is in the solution and 0 
otherwise. 
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Since the SCP is a minimisation problem, the lower the 
fitness value, the more fit the solution is. The fitness of a 
chromosome for the unicost SCP is calculated by (8). 

 
1

( ) [ ]
n

j
f S S j

=
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As to the crossover operation, we can use the traditional two-
point crossover, where middle parts of the parent 
chromosomes are changed, see Fig.1, where P1 and P2 are 
parents and O1 and O2 are offsprings.  

  

P1 

 

P2 

 

 

O1 

 

O2 

Fig. 1. Two-point crossover 

For mutation we considered three operators: 
• exchange mutation (it exchanges two randomly 

selected positions in a permutation), 

• shift mutation (it removes a value at one position and 
puts it at another position), see Fig. 2, and 

• mutation inspired by well-known Lin-2-Opt change 
operator usually used for solving the travelling 
salesman problem [9]. Here first two elements are 
added to the permutation (into positions 0 and |n|+1) 
and then the same values are assigned to them to 
simulate a cyclic tour. Two 'edges' (pairs of neighbour 
elements) are randomly chosen ((p1, p2) and (q1, q2) 
say), the inner elements p2, q1 are swapped and the 
elements between p2 and q1 are reversed. 

 

 

 

 

Fig. 2. Shift mutation 

The binary representation causes problems with generating 
infeasible chromosomes, e.g. in initial population, in crossover 
and/or mutation operations. To avoid infeasible solutions a 
repair operator is applied. 

Let   
I = {1, … , m} = the set of all rows;   
J = {1, … , n} = the set of all columns;  
α i = {j∈J | aij =1} = the set of columns that cover row i, i∈I;   
β j = {i∈I | aij =1} = the set of rows covered by column j, j∈J;   
S = the set of columns in a solution;   
U = the set of uncovered rows;  

wi = the number of columns that cover row i, i∈I  in  S. 

The repair operator for the unicost SCP has the following 
form: 
initialise wi : = | S ∩ α i | , ∀i ∈ I ; 
initialise U : = { i | wi = 0 , ∀i ∈ I } ; 
for each row i  in  U  (in increasing order of i) do 

begin find the first column j (in increasing order of j)  
  in α i that minimises  1/ |U ∩ β j | ; 

 S : = S + j ;      
 wi : = wi + 1,  ∀i ∈β j ;     
 U : = U − β j  

end ; 
for each column j  in  S  (in decreasing order of j) do 

if wi ≥ 2 , ∀i ∈β j 
 then begin S : = S − j ;      
 wi : = wi − 1,  ∀i ∈β j  
 end ; 
{ S is now a feasible solution to the SCP and contains no 
redundant columns } 

 Initialising steps identify the uncovered rows. For 
statements are “greedy” heuristics in the sense that in the 1st 
for, columns with low cost-ratios are being considered first 
and in the 2nd for, columns with high costs are dropped first 
whenever possible. 

VI. CROP PROBLEM 
Let us denote: 

p1, … , pm = grounds 

r1, … , rm = area of grounds 

k1, … , kn = crops 

cij , i = 1,2, … , m,  j = 1,2, … , n   

 = profit from 1 ha of ground sown by crop kj 

xij =  number of hectares of ground pi sown by crop kj 

TABLE I.  CROP PROBLEM 

           crops 
grounds k1 k2  kn area [ha] 

p1 c11 c12 … c1n r1 

p2 c21 c22 … c2n r2 

…     … 

pm cm1 cm2 … cmn rm 

1 0 1 0 1 1 0 
 

0 
 

1 0 
 

1 0 0 1 0 1 1 
 

0 
 

1 0 
 

1 0 1 0 1 1 0 
 

1 
 

1 0 
 

1 0 1 1 0 1 1 
 

0 
 

1 0 
 

1 0 1 1 0 1 1 
 

1 
 

1 0 
 

1 0 1 0 1 1 0 
 

0 
 

1 0 
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In the crop problem [10], [11] is to find the optimum sowing 
of areas by crops for given yields of crops (in quintals per 
hectare) and contractual purchase prices so as to maximise the 
total profit [12].  

From Table II we get the following system of equations: 

x11 + x12 + … + x1n   ≤ r1 

  x21 + x22 + … + x2n  ≤ r2 

   … 

  xm1 + xm2 + … + xmn ≤ rm 

 xij  ≥ 0,   i = 1, 2, … , m,   j = 1, 2, … , n 

z = c11 x11 + c12 x12 + … + c1n x1n  + c21 x21 + c22 x22 + … +  
      c2n x2n + … + cm1 xm1 + cm2 xm2 + … + cmn xmn → max 

It can be expressed as follows:  
Maximise 
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If we require for each crop that were sown at a certain 
minimum area, then the task has become an example of 
maximisation version of the generalized distribution problem. 
It is included in Table III and the corresponding model 
follows: 

TABLE II.  CROP PROBLEM WITH MINIMUM REQUIREMENTS  

         crops 
grounds k1 k2  kn area [ha] 

p1 c11 c12 … c1n r1 

p2 c21 c22 … c2n r2 

…     … 

pm cm1 cm2 … cmn rm 

minimum 
requirements for 
crop sowing area 

d1 d2  dn 
 

 

Maximise 
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VII. CROP PROBLEM WITH UNCERTAIN YIELDS 
Of course, yields of crops are only estimated and in real 

conditions cannot be considered as deterministic. 
This situation can be solved with techniques inspired by 

PERT. 
Denote 
a = estimate of the crop yields under the most favourable 

conditions 
b = estimate of the crop yields under the least favourable 

conditions 
m = most likely value for the crop yields 

PERT requires the assumption that estimated parameter 
follows a beta distribution. Then its mean value may be 
approximated by the following equation: 

 6
4 bmac ++

=  (36) 

Since the beta distribution is not guaranteed, we propose a 
fuzzy approach. 

  Let us assume now that crop yields are given by fuzzy 
numbers [13], [14].  
 A fuzzy number A is a fuzzy set represented by 4-tuple 
(a1, a2, a3, a4) and a piecewise continuous membership function 
with the following properties: 

• a1 ≤ a2 ≤ a3 ≤ a4  
• µA(x) = 0 for x ≤ a1, x ≥ a4 
• µA(x) = 1 for a2 ≤ x ≤ a3  
• µA is increasing on [a1, a2] and decreasing on [a3, a4]. 

The fuzzy set defined by the membership function is an 
example of fuzzy number. In this paragraph we consider 
trapezoidal fuzzy numbers, see (37) and Fig. 3. 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 8, 2014

ISSN: 2074-1278 31



















>

≤<
−
−

≤<

≤≤
−
−

<

=Π

4

43
34

3

32

21
12

1

1

for  0

for  

for  1

for  

for  0

),,,,(

ax

axa
aa
xa

axa

axa
aa
ax

ax

dcbax  (37) 

The addition of fuzzy numbers can be derived using the 
extension principle and it is determined as follows: 

XF ⊕ YF = (x1, x2, x3, x4) ⊕ (y1, y2, y3, y4) =  

 = (x1+ y1, x2+ y2, x3+ y3, x4+ y4) (38) 

Fig. 3. Trapezoidal fuzzy number 

When the maximum operation would be derived in the same 
way, then its results may not be trapezoidal fuzzy numbers. 
Therefore we approximate this operation as follows. 

max(XF,YF)=(max(x1, y1), max(x2, y2), max(x3, y3), max(x4, y4)) (3.20) 

To find a solution of the crop problem which maximises the 
total profit, we must compare fuzzy numbers in some way, 
which is a difficult problem. An ordering relation ≤ can be 
defined e.g. as follows: 
 XF ≤ YF ⇔ (x1≤ y1) ∧ (x2≤ y2) ∧ (x3≤ y3) ∧ (x4≤ y4) (39) 

 However, this relation is not a complete ordering relation, 
as fuzzy numbers XF, YF satisfying   
 (∃ i,j ∈{1,2,3,4}): (xi<yi) ∧ (xj >yj) (40)  

are not comparable by ≤. 

It is evident that, for non-comparable fuzzy numbers XF, YF, 
this fuzzy max operation results in a fuzzy number different 
from both of them. For example, for XF =(4,9,12,16) and 
YF =(6,8,13,15), we get from (23) a fuzzy max (6,9,13,16) 
which differs from XF and YF. 

This problem can be solved by assigning a scalar value to 
each resulting fuzzy number and comparing these scalars.   

We use the fuzzy ranking method described in [15], 
modified for the case of trapezoidal fuzzy numbers. This 
method uses inverse functions  

],[]1,0[: 21 aag L
A →  and ],[]1,0[: 43 aag R

A →  derived from 
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The ranking function is defined as the distance between the 
centroid point (x0, y0) and the origin 
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and Supp A is the support of A. 

Fuzzy numbers A, B are then ranked by their ranking 
function values R(A) and R(B). 

Let us now consider the described approach on specific 
dates. The Czech Farm Weekly magazine states that barley 
yield ranged from 3.5 to 6 tons per hectare, rape yields are 
between 3.5 and 5 t/ha and wheat yields between 5.5 and 7.5 
t/ha. Commodity prices are constantly changing. Price of 
barley is roughly from 3300 to 3500 CZK/t., wheat from 3700 
to 4000 CZK /t and rape price is between 8000 and 8500 
CZK/t. 

The interval boundaries of products of yields and prices 
correspond to the values a1, a4 in the fuzzy number by Fig. 2, 
or b and a in (26). The parameters a2, a3 and m must be 
estimated. Let us assume that corresponding values evaluated 
by (36) or (42) are as follows in Table IV.  

Using these data we can compute by (32)-(35) the value of 
decision variables xij maximising the total income. This model 
was implemented in GAMS (General Algebraic Modelling 
System) [16]. This package was developed by A. 
Meeraus and A. Brooke at the World Bank especially 
for the tasks of linear, nonlinear and mixed integer 
programming.  

In the calculation we assumed decision variables 
restricted to integers. Computational results are summarised 
in Table V. The total income is 7 512 247 CZK 

µA(x) 

1 

 
0 
 

x a1
 a2 a3 a4 
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TABLE III.  DATA FOR 3 CROPS AND 10 GROUNDS  

         crops 

grounds 
barley rape wheat area [ha] 

p1 15625 34436 25291 22 
p2 13355 37556 22756 15 
p3 12881 31263 28350 38 
p4 15522 39245 26423 10 
p5 13895 36328 25689 42 
p6 18254 40634 27105 16 
p7 17425 38231 26725 23 
p8 16233 33252 24490 17 
p9 15880 34567 25562 31 
P10 16540 37843 26243 25 
minimum 
requirements 
for crop 
sowing area 

30 90 80 

 

 

TABLE IV.  COMPUTATIONAL RESULTS 

            crops 

sown areas 
barley rape wheat area [ha] 

22 13 0 9 22 

15 0 15 0 15 

38 0 0 38 38 

10 0 10 0 10 

42 0 40 2 42 

16 0 16 0 16 

23 0 23 0 23 

17 17 0 0 17 

31 0 0 31 31 

25 0 25 0 25 
total sown 
areas 30 129 80 

 

 

VIII. CONCLUSIONS 
In this paper we studied the well-known transportation 

problem and presented several modifications which are 
important in various application areas.  

We showed that the allocation, location and set covering 
problem can be derived from the linear transportation problem, 
but the last problem cannot be solved for large instances using 
linear programming methods and heuristics must be used. We 

presented a genetic algorithm (GA) approach and GA 
parameter settings. Since traditional operators generate 
infeasible solutions, a repair operator was proposed.  

Finally, we investigated the crop problem, important in 
agriculture engineering, and generalised it for case of uncertain 
crop yields. Besides traditional interval and PERT approach, 
we propose a fuzzy algebra based on fuzzy numbers. Using the 
Cheng ranking function based on the distance between the 
centroid point and the origin was the problem defuzzified and 
we could use the deterministic mixed integer model.   

In the future, in spite of no free lunch theorem, we foresee 
further tests with other stochastic heuristics.  
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