
 

  
Abstract—In this paper a new model of one-point, one-time 

fourth cumulant of homogeneous and isotropic turbulence in 
wavenumber space is suggested. The fourth cumulant in this model 
varies in wavenumber. In the final period decay it is identically zero, 
in compliance with the zero-fourth cumulant hypothesis, proposed by 
Millionshchikov. But as wavenumber goes to lower values the fourth 
cumulant becomes non-zero. The suggested model is based on a near-
Gaussian distribution, built with the help of Gaussian distribution 
and truncated Hermite polynomial. 
 

Keywords—Millionschikov's hypothesis, zero-fourth cumulant 
hypothesis, homogeneous and isotropic turbulence, Hermite 
polynomial.  

I. INTRODUCTION 
N “zero fourth cumulant hypothesis” of Millionshchikov [1] 
the second and the fourth order moments are related as in 

normal distribution. The hypothesis goes also by the name of 
quasi-normal hypothesis. Millionshchikov has proposed that 
the two point distribution of simultaneous velocity amplitudes 
in a turbulent flow is quasi-normal. Lot of works have been 
done on this hypothesis. Works of legendary mathematicians 
like Heisenberg [2], Obukhov [3], Batchelor [4], 
Chandrasekhar [5] and Reid and Proudman [6] are worth 
mentioning. Experimental results have also been analyzed by 
Batchelor and Uberoi [7] to verify the authenticity of this 
hypothesis.  

Heisenberg has extended the hypothesis to the distribution 
of Fourier coefficients in two times. On the other hand, Reid 
and Proudman have examined the hypothesis in the decay of 
homogenous turbulence using three point simultaneous 
velocity fluctuations. Chandrasekhar has studied the 
hypothesis in hydromagnetic turbulence. The study conducted 
by Ghosh [8] may also be mentioned.  

In the recent times there is a spurt of work considering the 
viability or otherwise of this hypothesis. Bos & Rubenstein 
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[9], Chen, H., Herring, J.R., Kerr, R.M., & Kraichnan R.H 
[10], Chen, S. & Kraichnan, R.H. [11], Mazumdar, H.P. & C. 
Mamaloukas [12] and Mamaloukas [13] have studied the 
hypothesis in detail.  

Suggestions have also been forwarded from time to time to 
modify the hypothesis. Ogura [14] has suggested some 
modification. Mirabel [15] has observed some discrepancies in 
the suggestion, made by Ogura and has suggested some 
modification. The objection regarding the viability of 
Millionshchikov hypothesis forwarded by Kraichnan [16] is 
note-worthy. In the present paper we shall try to suggest a 
modification of the “zero-fourth cumulant hypothesis of 
Millionshchikov”. We would confine our study to one-point 
one-time correlations in isotropic turbulence, that also in 
wavenumber space. 

II. EQUATIONS OF MOTION IN ISOTROPIC TURBULENCE 
It is observed that in the final period of decay of homogenous 
and isotropic turbulence only the smallest eddies are active 
and viscous dissipation is the only mechanism through which 
turbulent energy decays in the form of thermal energy. The 
size or the length scale of these smallest eddies is given as 
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. In wavenumber space these smallest eddies have 

the largest wavenumber, as 
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. In the final period 

of decay neither inertial force nor pressure gradient takes part 
in the decay process. But these two terms, in fact, are the 
sources of third order moment. We now try to examine this 
point from the Navier-Stokes equation of homogenous and 
isotropic turbulence. The unit density, incompressible 
homogenous and isotropic fully developed turbulent flow in 
absence of external force is governed by the following 
equations. 
 

( ) ( ) ( ) ( ) ( )

( )

,
, , , ,

, 0

u x t
u x t u x t p x t u x t

t
u x t

ν
∂

+ ⋅∇ − ∇ = ∆  ∂
∇ =

     (1) 

 

The Role of Millionshschkov's Zero-Fourth 
Cumulant Hypothesis in Homogenous Isotropic 

Turbulence 
Christos Mamaloukas, Amitabha Chanda, Himandri Pai Mazumdar 

I 

 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 8, 2014

ISSN: 2074-1278 77



 

Kraichnan & Panda [17] observe that in turbulent flow the 
variance of the nonlinear term in the Navier-Stokes equations 
i.e. ( ) ( ) ( ), , ,u x t u x t p x t⋅∇ − ∇    is on average smaller 

than what would be expected from a Gaussian estimate. More 
precisely, if one constructs a flow field consisting of random 
statistically independent Fourier modes exhibiting the same 
energy spectrum as the turbulent flow considered, the variance 
of the nonlinear term will be larger than that of the original 
field. This depletion of nonlinearity is the result of a self-
organization process of the turbulent flow, a process which is, 
itself, due to the nonlinear term in the Navier-Stokes 
equations. Kraichnan and Panda give importance on the 
velocity-vorticity alignment in turbulent flows. They show it to 
be one expression of a more general, underlying property of 
nonlinear systems. We consider that this depletion of 
nonlinearity is an important feature of turbulent flows, since 
the nonlinearity of the Navier-Stokes equations is the heart of 
the turbulence problem. 

The nonlinear term of the Navier-Stokes equations is a 
vector and its mean value is zero in isotropic turbulence. It is 
important to study the strength of the fluctuations of the 
nonlinear term and its depletion.  

In order to examine the strength of the fluctuations of the 
nonlinear term and its depletion, we focus on the nonlinearity 
spectrum, which we shall define below. This spectrum 
measures the strength of the fluctuations of the nonlinear term 
as a function of scale, just like the energy spectrum does for 
the strength of velocity fluctuations. Whereas the 
characterization of the energy spectrum has received an 
enormous amount of attention in the field of turbulence 
research, only very few investigations consider the nonlinearity 
spectrum. To our knowledge, only the works by Chen, Herring 
& Kraichnan, Nelkin & Tabor [18] and Ishihara, T., Kaneda, 
Y., Yokokawa, M., Itakura, K. , & Uno, A [19] have 
considered this quantity.  

Chen et al. performed low resolution Direct Numerical 
Simulations and compared their results to the Direct 
Interaction Approximation (DIA). No information was 
obtained on the inertial range behavior of this quantity, since 
the Reynolds number was too low in their simulations. Higher 
Reynolds numbers could in principle be obtained by using the 
DIA, but physically incorrect behavior is observed by 
Kraichnan in the inertial range dynamics of the original 
Eulerian DIA. Nelkin & Tabor considered only the scaling of 
the potential part of the advection term, assuming that the full 
nonlinear term scales as its potential part. Only the high 
resolution simulations by Ishihara et al. give an idea on the 
inertial range scaling of several fourth order spectra.  

It is shown by Bos & Rubenstein that, in the inertial and 
dissipation range, the nonlinearity spectrum is given by 
 

( ) ( )
2 13
3 34w k u k f kη=   . 

 
for very high Reynolds numbers. u  is the root-mean-square 
(rms) velocity fluctuation. The function ( )f kη  tends to a 

constant value in the inertial range and its value is 
approximately 0.8 times the value of its Gaussian estimate. 

The total depletion of nonlinearity is found to exhibit some 
sub-Gaussian behavior. Gryanik & Hartmann [20] have 
observed from CBL data that the Millionshchikov hypothesis 
of quasi-normal (Gaussian) distribution of the one-point 
fourth-order moments fails for convective boundary layer 
conditions. This is because the effect of the semiorganized 
coherent structures (plumes) leads to skewed distributions; the 
third-order moments are non-zero. It must be connected with a 
certain order in the flows, but how this manifests itself in an 
instantaneous flow field cannot be guessed from the statistical 
considerations presented here. The nonlinear term consists of 
two parts: the advection term and the pressure gradient term. 
The pressure spectrum, (Gotoh & Fukayama [21]) ( )kπ  

scales approximately as ( ) ( )
4 1
3 3k k f kπ η

−
≈   and the pressure 

gradient spectrum scales as ( ) ( )
73
34k k f kπ η

−
∇ ≈   

It may be noted, however, that this scaling appears only at 
relatively high Reynolds number, compared to the appearance 
of K41 [22] scaling for the energy spectrum. It is shown by 
Bos & Rubenstein that at large Reynolds numbers the mean 
square nonlinearity is proportional to the Gaussian value, the 
ratio being 0.65. The variance of the nonlinearity is therefore 
dominantly determined by the advection term. The depletion 
of nonlinearity implies hereby directly a depletion of the 
sweeping compared to the kinematic sweeping induced by a 
field consisting of independent Fourier modes. Recent works 
of Hans C. Eggers and Martin Greinerb [23] and Servidio, S., 
Matthaeus, W. H., & Dmitruk, P. [24] and Malecot, Y., 
Auriault, C., Kahaleras, H., Gagne, Y., Chanal, O., Chabaud, 
B. & Casting, B. [25], are worth mentioning. 

In this context we refer to the work by Chen, H., Herring, 
J.R., Kerr, R.M., & Kraichnan, R.H., which discusses the 
possibility of a reduction of sweeping in turbulence. They 
argue that third order cumulants are small but nonzero 
quantities. But in the pre-viscous dissipation ranges, 
dominated by large eddies of smaller wave number k triple 
order interaction are so great in number that their total 
contribution cannot be ignored to get to the realistic analysis of 
turbulence. Chen, H., Herring, J.R., Kerr, R.M., & Kraichnan, 
R.H., argue that a complete reduction of sweeping is 
improbable for stochastically forced turbulence. Their 
arguments are not in disagreement with the experimental 
results, obtained thereafter. 

The dependence of the large and small scales is influenced, 
and the sweeping, as estimated by purely kinematic arguments, 
is partially but definitely not completely suppressed. In this 
light, the depletion of nonlinearity can also be interpreted as a 
reduction of Eulerian acceleration, suggesting a larger Eulerian 
coherence for turbulence than for advection by random Fourier 
modes. The possible link of this enhanced coherence with 
inertial range and dissipation range intermittency is not clear at 
present. The super-Gaussian values of the large-scales of the 
nonlinearity spectrum were shown to be related to the non-
Gaussianity of the Reynolds-stress-fluctuation spectrum. The 
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physical importance of this relation for the dynamics of 
turbulent flow seems to deserve further research. 

We mention here that a similar picture (large-scale super-
Gaussian behavior and sub-Gaussian inertial range and 
dissipation range behavior), was observed in the depletion of 
advection (Bos et al.), where the inertial range scaling of the 
advection spectrum also displayed a constant reduction with 
respect to its Gaussian value. 

III. THE PRESENT MODEL 
Given above the background of study of nonlinearity vis-à-vis 
third order moment of turbulent flow we would now try to 
present a new model of one point one time moment in 
homogenous and isotropic turbulence of incompressible fluid 
with unit density. The main considerations used for 
constructing the model may be enumerated as below. 

1. At the viscous dissipation range i.e where k kν→ , 
turbulence energy dissipates only in the form of thermal 

energy through the set of smallest eddies of size 

1
3 4ν 

 
 

. 

Here 
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 stands for the wavenumber of the 

smallest dissipating eddies. In this range interaction among 
eddies of different size ceases to exist. Distribution of 
Fourier components of velocity fluctuation is assumed 
Gaussian. Zero-fourth cumulant hypothesis is strictly 
followed in this range. 

2. As wave number becomes smaller and smaller a part of 
turbulence energy, not the whole, dissipates as thermal 
energy and the residual part is involved in interacting with 
Fourier modes of velocity fluctuations and cascading from 
smaller wavenumber to larger wavenumber. As k progresses 
to the smallest number, it crosses universal equilibrium 
range and large eddy range one after the other. In this 
passage the ratio between dissipated thermal energy and 
internal energy involved in interaction and cascading 
becomes less and less. In these ranges third order interaction 
is non-zero which indicates the strict presence of third order 
cumulant, however small it may be. 

In consideration of the above points, we now present the 
following model, It may be noted that we are restricting our 
study to wavenumber space only of isotropic turbulence. 
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With targets given above we present a near-Gaussian model of 
distribution of u. The probability density of the proposed 
model is given as below. 
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Here the function ( )U k  in the above equation is such that 

( ) 0 for  , and  U=1 for  .U k k k k kν ν= ≈ <<  In 

addition 'ic s  are given as below. In the present paper we 

model ( )U k  in the following manner. 

( ) 1 kU k
kν

= −                 (3) 
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H is the Hermite polynomial [27, 28]. The first three 

Hermite polynomials in the above expression are given as 
below, 
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ω  being a probability density, it becomes equal to unity, if 

summed up over all Fourier modes. So, integrating over the 
whole range of u we get the following condition. 
 

1duω =∫                 (6) 

 
ω  becomes a Gaussian probability density ω′  in viscous 

dissipation range and fourth cumulant becomes equal to zero 
satisfying zero-fourth cumulant hypothesis of Millionshchikov. 
But in the other ranges it is not so. We state these conditions in 
the following set of equations. 

For viscous dissipation range, when k → ∞  we have the 
following expression for ω , 
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ω′  in (7) is the probability density of Gaussian distribution, 

that supports zero-fourth cumulant hypothesis. For other 
ranges ( )k k∞<<  we shall use the expression ω′′  for ω′  to 

show the difference of these two probability densities. ω′′  is 
given as below,  
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It may be noted that the near-Gaussian probability, 

expressed by ω′′  is far from Gaussian expressed byω′  
 

From (8) integrating over the whole range of values of u we 
can find the third order cumulant as below, 
 

2

23 3 2

3

1 1
!2

u
i

i
i

c uu du u e H du
i

σω
σσ π

∞−

=

    ′′ = +   
    

∑∫ ∫  (9) 

 
The third order cumulant is zero in Gaussian distribution. 

But for the present near-Gaussian distribution (8) we have the 
following expression for third order cumulant, after using (6)  
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IV. CONCLUSION 
It has been opined by Kraichnan that even if zero-fourth 

cumulant theory of Millionshchikov does not hold good in 
fully developed turbulence, third order interaction is weak. But 
because of large number of these interactions their total impact 
cannot be ignored. As a result, there is a nonzero third 
cumulant, indicating non-Gaussianity in distribution of 
velocity components. From this understanding it may be 
conjectured that velocity components are distributed in a near 
Gaussian pattern. In this paper we have considered one-time 
one-point moments in isotropic turbulence. In the background 
of the sets of weak third order interaction we have used 
Hermite polynomial to build a non-Gaussian probability 
density for ranges beyond viscous dissipation range. 

We have ignored any change in the distribution of third 
order interaction in different ranges of turbulence. It may be 
observed that different non Gaussian probability densities may 
be considered by suitably truncating Hermite polynomials in 
their expressions. But the authenticity of such exercise would 
depend on experimental verification. This may be an open 
problem.  
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