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Abstract — This article is an expanded version of Article that 

was published in one of the   EUROPMENT Conference (in 

particular to St Petersburg in 2014). In this article the new results 

there are: Tropical Cryptography and matrix one-way function, 

which is the basis building a high-speed algorithm of key exchange, a 

prototype of which, in a sense, is the Diffie-Hellman algorithm and 

also are two versions of protection of this matrix one-way function.  

We can estimate the importance of Tropical cryptography as a new 

trend in cryptography, a fortiori if it will be stable with respect to the 

same researched algebraic methods of attack. With respect to the 

issue of importance of matrix one-way function, we repeat, that the 

main advantage of the matrix one-way function is high speed 

operation. Tropical cryptography opens a new direction in 

cryptography. It should be noted also that the stability of the matrix 

one-way function justified by long-standing tradition of proven 

algorithms of Diffie-Hellman and ElGamal. In the extended version 

of the paper are added the fourth and fifth sections: Matrices with an 

inside recursion dependence and Generation of special classes of 

nn  matrices. 

 

Keywords — Cryptography, matrix one-way function, key 

exchange algorithm, Tropical Operations, Tropical Cryptography. 

I. INTRODUCTION 

HE analysis showed that the matrix one-way function is 

broken, if it is used without a joint application with 

Tropical cryptography or without the use of one-way function 

(ie, the function is not a carrier of properties one-way function 

if it is applied without any special versions of, see below). 

Matrix one-way function is as follows: 

v A' = u.                                      (1) 

Where A' Є Ă, a Ă is a set of high power from an n-

dimensional quadratic commutative matrices [1].  Along with 

this,  v, u Є Vn. Where Vn vector space of dimension n (For 

simplicity Ă and Vn is considered over the Galois field 

GF(2)). In expression (1) v and u are open (without any 

special versions) and A' is                                                                                           

secret, although A - initial matrix is open with which may be 

formed a plurality Ă (e.g., a plurality Ă can be produced with 

degrees of matrix A). Therefore, if the expression (1) is 

considered as a one-way function, then it can break down in 

the following ways: 

 

 
 

1. If the matrix set Ă contains recursion (that was 

identified by us), then the expression (1) can easily 

be broken with the help Companion matrices, that is, 

the set of n2 unknown can be lead to a matrix with n  

unknowns, for any square matrix A' Є Ă can be bring 

to n unknown, i.e., using the equation (1) can obtain 

a system of n equations in n unknowns, etc. These 

issues have been discussed in [2-5, 6]. 

2. If the matrix of set of Ă does not contain recursion (or 

hard to find), then the matrix one-way function can 

be broken with the use of the basic matrixes of  A0, 

A1, A2,..., An-1 which is not hard to get, if we know 

the initial matrix A. 

If the methods will are justified, what tropical 

cryptography and method of matrix one-way function, 

whose prototype is the ElGamal algorithm, the authors  

preoccupied with security and the protection of web-

based systems [10-12]  considerably greatly will are 

interested of methods discussed in the article..                   

II. ON THE POSSIBILITY OF BREAKING THE MATRIX ONE-WAY 

FUNCTION 

We want to show that though (1) the matrix function is broken 

without additional versions, but this is exceptional function. It 

is special function because of its speed and therefore deserves 

special attention. We are convinced that the additional 

versions will not reduce the speed and efficiency of the entire 

system. It is interesting, how it is can be possible with 

additional means maintained the speed, the    efficiency and 

the strength of the system? In addition, for this article we 

consider the ability to break of matrix one-way function, and 

then we will discuss the possibilities of using tropical 

cryptography and  exponential one-way function. We'll look at 

how  break the matrix one-way function with the use, of said, 

of basis matrixes (other questions, how to hack the function 

(1), were considered in [2-5,6]). We will consider breaking 

this function in the particular example. 

Suppose, it is given the multiplicative group Ă of the 

commutative matrices of dimension 3x3 (the group has a 

maximal order, e = 23 - 1 = 7): 
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Suppose, the two subjects X (Alice) and Y (Bob) can form the 

secure key k with matrix one-way algorithm via public 

channel (This algorithm is based on a matrix one-way 

function (1)). Then Alice selects matrix A1 = A2 as the 

secret matrix in (2). Bob, for his part, chooses the matrix   

A2= A3
, we also assume that v = (110). Then our algorithm 

will be functioning as follows: 

 
Alice computes and sends to Bob the following vector:  

u1 = v A1 = (011).                                (3) 

 Bob computes and sends to Alice the following vector:                                                                             

                      u2 = vA2 = (111).                                 (4)      

 Elice computes the exchanged key:    

                                   k1 = u2A1 = (100).                               (5)                                                                 

Bob computes the exchanged key:                                                                                                        

k2 = u1A2 = (100).                               (6) 

 

As we see k = k1 = k2 and the results are correct (The matrixes 

are commutative: vA1A2 = vA2A1).        

As noted above, we plan to break the algorithm by means of 

the basis matrix comprising a multiplicative set  Ă = { 

 (where {  ... , Є 

GF(2)). For a set of (2) we form an appropriate basis: 

A0 =  I,  A1 , A2 ,                                 (7) 

Where A0 = I is the identity matrix. In the beginning we 

define the matrix A1 = A2 selected by Alice. The required 

matrix is denoted by A1(x), then we will have: 

A1
 (x) = c0 A

0 + c1A
1 + c2 A

2 .                      (8) 

Since Ellis opened calculates the value of u1 = v A1(x), then 

we have: 

u1 = v A1(x) = c0 vA0 + c1vA1 + c2vA2 = c0w0 + c1w1 + c2w2. 

(9) 

Considering (2), (3) and (9) we can determine the values of     

u1 and w0, w1, w2: 

vA0 = (110) A0 = (110) = w0,
 

vA1=(110)A1=(001)=w1 

,                                                                              (10) 

vA2 = (110) A2 = (011) = w2, 

u1 = (011). 

Using (9) and (10) we may form a system of equations for the 

coefficients c0, c1, c2: 

1c0 + 0c1 + 0c2 = 0, 

1c0+0c1+1c2=1, 

                                                                            (11) 

0c0 + 1c1 + 1c2 = 1. 

Solving the system of equations (11), we define the values of 

the coefficients: c0 = 0, c1 = 0, c2 = 1. Then, from (8) we 

obtain the value of the ratio of the desired matrix: A1(x) = A2, 

i.e. get the matrix A2 of (2). The answer is correct. (Similar we 

can find the matrix A2, chosen by Bob).  

III. TWO EMBODIMENT OF THE ONE-WAY FUNCTION MATRIX 

As stated above, this paper first announced two special 

versions of the matrix one-way function. First option, as a 

result of the natural development of cryptography, involves 

the use of new tropical arithmetic operations in cryptography. 

When applying was found that the new tropical operations 

apart from a general purpose can be thought integral part of 

our matrix one-way function. Therefore, if earlier, for the 

construction of matrices Ă had to use classical arithmetic 

operations, it is now necessary to apply our new tropical 

arithmetic. With new tropical operations, we must build a set 

of matrices Ă with the properties with the same as before: 

high dimension and order, i.e. we should construct a 

multiplicative group Ă that is formed by degrees of an initial 

matrix A of new form (of a new structure). Construction of a 

new matrix of Ă, as noted above, is already a meaningful 

(traditional) problem and we would not have shown  

any effect if there was not having contact with her. Consider 

the issues of the first option, that we have introduced, or 

questions about Tropical Cryptography.                                                                              

    The obtained tropical operations, for simplicity, 

considered over the Galois field GF (2). Additive  operations, 

in this case, are the same as  the classical operations: 

0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1  = 0.           (12) 

But the multiplicative operations are fundamentally different 

from the classical operations [7]: 

0* 0 = 0; 0 * 1 = 1; 1 * 0 = 1; 1  * 1 = 1.            (13) 

Interestingly, what feature and utility of our proposed tropical 

operations? Must be stated that the new operations cause so 

impressive effect in their application that raises another 

question? It is about ensuring the stability of the matrix 

function (1), i.e. on the solubility or insolubility of the system 

of equations (11), depending on what kind of arithmetic 

operations will be applied - the classic or offered by us? For 

example, in our opinion, the system of equations (11) does not 

have a unique solution. Matrix function (1), with tropical 

operations, is one-way function, it will not be broken in real 

time, and satisfies the conditions of stability (under 

appropriate conditions, implying the proper dimension and 

higher order for a set of matrices Ă). Indeed, when using the 

new operations (12) and (13), a system (14) has not a unique 

solution (to the counterweight (11)), since by multiplication 

coefficients of c0, c1, c2 on the w0, w1, w2 will not cause the 

formation of null values but on the contrary, causes the 

formation of new unknowns (While, in the classical 

operations and using the Gauss method, the system (11) is 

rapidly soluble): 

1* c0 + 0 * c1 + 0 * c2 = 0, 

1*c0+0*c1+1*c2=1, 

                                                                    (14) 

0* c0+ 1* c1 + 1* c2 = 1. 

For example, the first line of system (14) has the six 

unknowns, therefore, when dimension has high order (and 

there are used our tropical operations), the system (14) does 

not has a solution in real time. Therefore, our matrix one-way 

function according to the first embodiment ensures durability, 

since it is not can to break in real time (Take into account the 

fact that tropical group (15) is a multiplicative group and not a 

field). As an example we present the multiplicative group 

(15). For the key exchange algorithm are used: A is an Initial 

Matrix of (15) and the corresponding u = vA3, where v = 

(110): 
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                                            (15) 

The implementation of the algorithm according to (15) does 

not differ from the implementation of the algorithm (3) - (6), 

since the main issue here - the generation of the multiplicative 

group of maximal order, which meets the requirements of 

Tropical Cryptography (12) - (13). 

     Interestingly than can one explain that - the second 

embodiment has, too, a high efficiency and durability as the 

first, whereas radically different from the first? In a second 

embodiment, with respect to the matrix of our one-way 

function is used a different one-way function (i.e. there is a 

new problem), but as a method of processing, it shows identity 

with the decision of other cryptography tasks, which, in our  

opinion, deserves attention (see. below). For example, 

ElGamal uses an exponential one-way function to solve their 

problems, but the thing is - how? He uses a one-way function 

periodically, for a certain length of time [8]. The similarity 

with our second option is a period of time for which use the 

function [9]. In the algorithm of ElGamal degree (exponential) 

one-way function is used within a certain time period, to meet 

the challenges of authentication and verification. We use it 

also within a certain time period, to resolve the problem of the 

stability of our matrix one-way function. For this, by using 

exponential one-way function occurs a key exchange via the 

open channel. The result of this key exchange is a secret            

parameter k = v. In this same time period occurs the key 

exchange, or other operations carried out, with our algorithm. 

In this case, in (1) parameters v, A' are secret and only 

parameter u is open. This change defines the stability of one-

way function (1) and also of algorithm (3) - (6), and it does 

not cause decrease the rate of operations. 

IV. MATRICES WITH AN INSIDE RECURSION DEPENDENCE 

We want to draw attention to the fact that some non-

degenerate matrices (matrices with nonzero determinants) 

contain inside-matrix recursion dependence. This dependence 

exists among matrix rows or columns. However it is not a 

usual linear dependence. That is why such matrices remain 

non-degenerate.   

       Matrices of this kind can be easily broken when they are 

used for cryptographic purposes. It is possible to construct 

special classes with inside-matrix recursion dependence, but 

in a number of cases (especially for matrices of large size) the 

revealing of inside-matrix recursion dependence is not a 

simple task.  

matrices with inside-matrix recursion dependence can be 

constructed with the aid of the galois field
)p(GF n

. for the 

sake of simplicity, this construction will be considered here as 

a field of polynomials 
)(GF n2

 modulo an irreducible 

polynomial 
)x(p

over
)(GF 2

. for example, a multiplicative 

group of the field 
)(GF 32
 generated by means of , which 

is the root of a primitive polynomial
31 xx)x(p 

, has 

the form  [2,3]: 
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The multiplicative group (16) is written in terms of powers 

of , the corresponding entries are written in terms of 

polynomials of  with their corresponding vectors which 

together with a zero vector form the vector space  3nV
 over 

the field
)(GF 2

.  By virtue of (16), we can write, for 

example, a multiplicative group of matrices A , 
2A , 

IA 7 3A , . . . , ( I  is the unit matrix) as follows: 
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This group is generated by the primitive matrix  A  which 

corresponds to an element  (it is assumed that (1) and (2) are 

isomorphic). It is obvious that the order of each matrix 
iA  

coincides with the order of an element
i . 

All matrices 
iA (2) have an inside-matrix recursion 

dependence predetermined by the polynomial )x(p . We will 

illustrate this dependence using 
31 xx)x(p   as an 

example. Any matrix from (2) consists of 92 n  unknowns: 


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333231

232221

131211

xxx
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However, if we take into account inside-matrix recursion 

dependence, then we can easily obtain from (18) a matrix 
iA1  

with the number of unknowns equal to 3n : 
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This matrix can be easily broken even in the case of a single 

cryptographic application, for example, when it is used to 

fulfil  the operation of multiplication of a vector by a matrix 

(we mean, say, the realization of the Diffie-Hellman protocol 

on matrices). 

It is obvious that the number of matrices with an inside-

matrix recursion dependence corresponds to the number of 

irreducible polynomials used for the construction of )(GF n2 , 

but may be greater.  In our opinion, this question is essential 

and therefore we consider it in the next example.  

As an example we give a construction, different from (2), 

of a multiplicative group of matrices with a period 3e : 
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In the matrices A , 
2A  and 

3A  (20) the observed 

recursion dependence has a different form. It is connected 

with a certain sequence of elements from (16). For example, 

the rows in the matrix A   (20) are the vectors corresponding 

to the elements 
3 , 

5 , 
07   (16), while in the matrix  

2A (20) they are the vectors corresponding to the elements 
2 , 

6 , 
310   (16), and the rows in the matrix 

3A  (20) 

are the vectors corresponding to the elements 
0 , 

1 , 
2  

(16).                                                                     

     It should be said that it is not evidently a simple matter to 

reveal and count such modified dependences having a regular 

character. However, if the considered dependence )k(fl   

is linear, as in the example (20) (where l  is the exponent of 

the power of a field element 
l  (16), and k  is the matrix row 

number, n,...,,k 21 , then the revealing of such a 

dependence may turn out to be a relatively simple task. The 

dependence )k(fl    shown in Fig. 1 for matrices of the 

group (20) is linear.  It is obvious that the       

dependence )k(fl   for all the above-considered 

matrices with an  inside-matrix recursion dependence is also 

linear. However, as different from the matrices (20) (see Fig. 

1), the linearity of all matrices of the form (17) is one and the 

same (i.e.   is a constant value) and can be easily determined. 

Therefore inside-matrix recursion dependence in them is 

trivial. 

 

 

In reality, not all matrix sets (groups) will have the linear 

dependence )k(fl  . For example, matrices of the 

multiplicative group (21), with period 7e , do not contain 

the recursion dependences considered above: 
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Summarizing and generalizing the above results, we 

distinguish three cases (three kinds of matrix sets): 

 For a set of nn  matrices of the form (17)-(19) we 

have a trivial inside-matrix recursion  dependence; 

 For a set of nn  matrices of the form (20), we have 

linear inside-matrix recursion dependence )k(fl  . 

 For a set of nn  matrices, of the form (21), the 

inside-matrix recursion dependence is not observed. 

 

V. THE GENERATION OF SPECIAL CLASSES OF  nn  

MATRICES 

Our aim is to construct a multiplicative group of matrices 

that will be free of an inside-matrix recursion dependence. 

Besides, each initial nn  matrix must be primitive, i.e. have 

a maximal order equal to 12  ne  and generate a 

multiplicative group with a maximal period. The considered 

matrix groups are commutative. Formulas (7) show the initial 

matrices, which, in the authors’ opinion, satisfy the  

conditions discussed above. The construction of initial matrix 

structures is based (for example) on the symmetry of elements 

and at the same time the asymmetry with respect to the 

diagonals is also taken into account.                                                                                                                                                        

The initial 55  matrix 5nA  is constructed on the basis of 

the matrix 3nA . Next initial matrix 7nA  is constructed on 

the basis of the matrix 5nA , i.e. to obtain the matrix 7nA , the 

matrix 5nA  is also encircled by a sequence of 1’s and 0’s 

according to a certain rule. This rule also remains in force 

when constructing the initial matrix 9nA  on the basis of the 

matrix 7nA  and so on until we obtain an nn  matrix  

l

k1 2 3
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2
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3 13 A

2A

A

Fig. 1 The linear dependence )(kfl   for the 

multiplicative group (20) 
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Fig. 2 The method of construction of special classes 

of nn matrixes. 

 

Each initial nn  matrix AA  generates a multiplicative 

group which may have a maximum order e, 

then IA,...,A,A,A
n

1232
, and which in the case of a 

sufficiently large value of  n  ( 150n ) generates a set of 

commutative matrices A  (of high power) to be used for 

cryptographic purposes. 
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