
  
Abstract—Coordinated checkpointing is a well-known method 

for achieving fault tolerance in distributed computing systems. This 
type of checkpointing selects an initiator to manage and ensure the 
checkpointing process. The majority of existing works ignore the role 
and the importance of this initiator. The work presented in this paper 
can be divided on two parts. In the first part, we examine the impact 
of initiator choice on different types of coordinated checkpointing 
and we prove its importance in term of performances. We propose 
also a simple and an effective strategy to select the best initiator each 
checkpointing round. In the second part of this work, we focused on 
the soft checkpointing and we have strengthened the role of initiator 
by adding a storage manager that ensures atomicity and speed of 
storage checkpoints files using a smart I/O strategy. 
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I. INTRODUCTION 

ince the computing potential of distributed systems is often 
hindered by their susceptibility to failures, many different 
techniques of fault tolerance have been developed and 

integrated into them accordingly, in order to improve both 
their reliability and availability and to reduce re-computations.  
Fault-tolerance is the property that enables a system to 
continue operating properly in the event of the failure of some 
of its components. To achieve the fault tolerance, several 
techniques are proposed such as: replication and checkpointing 
[14]. 
Replication or redundancy creates many identical and 
consistent copies of the object (data or task) in several 
resources, in case of failure, one copy can replace the failed 
one. The replication ensures a real-time fault tolerance by 
masking the failure but it consumes additional resource and 
increases the system complexity.  The second technique is the 
checkpointing. Checkpoint/Restart (C/R) is a way to provide 
persistence and fault tolerance in both uni-processor and 
distributed systems. Checkpointing is the act of saving an 
application’s state to stable storage during its execution, while 
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restart is the act of restarting the application from a 
checkpointed state. If checkpoints are taken, then when an 
application fails, it may be possible to restart it from its most 
recent consistent checkpoint. This limits the amount of 
computation lost because of a failure to the computation 
performed between the last checkpoint and the failure. 
In a distributed system, since the processes in the system do 
not share memory, an ith global state GSi of the system is 
defined as a set of local states LSj, one from each process j 
participating in the application:  
GSi = {LS1, LS2, …, LSn}                    (1) 
 
A checkpointing must create a consistent state. In this case, 
GSi must be created without any orphan message. GSi is 
strongly consistent if it is consistent and without any transit 
messages. Senda(m) and Recvb(m) note the send and the 
receive events respectively in the system. So: 
The message m is orphan if: 
Recvb(m) ∈LSb and Senda(m) ∉LSa and {LSa, LSb} ⊆GSi     (2) 
The message m is transit if:  
Recvb(m) ∉LSb and Senda(m) ∈LSa and {LSa, LSb} ⊆GSi     (3) 
 
To satisfy that consistency, the checkpointing technique can be 
classified in three categories: 
• Independent checkpointing (Uncoordinated) [4][5]: the 

checkpoints at each process are taken independently 
without any synchronization among the processes. 
Because of absence of synchronization, there is no 
guarantee that a set of local checkpoints taken will be a 
consistent set of checkpoints. It may require cascaded 
rollbacks that may lead to the initial state due to domino-
effect [4]. The domino effect appears when a subset of 
processes rollback unboundedly to determine a set of 
mutually consistent checkpoints. The independent 
checkpointing store all the checkpoints file during the job 
life. 

• Communication induced checkpointing: the processes take 
two kinds of checkpoints, local and forced. Local 
checkpoints can be taken independently, while forced 
checkpoints are taken to guarantee the eventual progress 
of the recovery line. However the messages are 
piggybacked and useless checkpoints can be created. 
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• Coordinated or synchronous checkpointing [1][12]: the 
processes  will synchronize to take checkpoints in such a 
manner that the resulting global state is consistent. The 
main advantage is that it sores only one permanent 
checkpoint in the stable memory and it is domino-effect 
free. 

The experimental results in the literature prove that the 
coordinated checkpointing is the most convenient 
checkpointing strategy in scalable distributed system. It 
minimizes the resource consumption and ensures a consistent 
state using only one recovery line. Checkpointing usually 
consists of three main phases: consistency management phase, 
checkpointing creation phase and storage phase. The major 
problem of checkpointing is the overhead caused by the 
storage time of checkpointing files in stable storage (70% of 
checkpointing time is caused by the storage [16]). During the 
storage time, and whatever the checkpointing protocol used 
(coordinated/ uncoordinated/ communication indexed), nodes 
will be blocked to ensure the checkpointing atomicity, which 
significantly increases application execution time and causes 
overhead.  
To reduce the time of checkpointing storage, several strategies 
are proposed in the literature. The soft checkpointing is a 
powerful strategy to reduce the storage time. Generally, in 
conventional checkpointing, each node involved in the 
checkpointing, creates and stores its own checkpointing file in 
stable storage server. In the soft checkpointing, nodes create 
their files and send them to a special node, and then they 
resume their works immediately. The special node collects the 
files and stores them in the stable memory parallel with the 
execution of application [18]. The management of I/O is 
another strategy that allows the reduction of the storage time of 
checkpoints by reducing the transfer time and the data quantity 
needed for the storage [17]. 
In this paper we will focalize on the coordinated 
checkpointing. Our contribution is divided on two parts: the 
initiator choice and the soft checkpointing improvement. In the 
initiator choice, we will study the different strategies of this 
type of checkpointing, not to compare between them, but to 
study the impact of initiator choice on the performances of 
each strategy. We will propose an approach to improve the 
checkpointing and the recovery performances. In the part of 
soft checkpointing improvement, we will strengthen the role of 
initiator by adding a storage manager. The storage manager 
ensures the atomicity and uses a smart I/O to manage the 
storage phase.   
The remainder of the paper is organized as follows. Section 2 
reviews some coordinated checkpointing strategies existing in 
literature and explains also several I/O techniques. Section 3 
describes in details the most popular coordinated 
checkpointing. Section 4 introduces our approach of initiator 
selection. Section 5 explains the soft checkpointing based on 
our initiator. Section 6 shows some experimental results and 
analysis the performances of our both contributions. Finally, a 

conclusion and some perspectives are given in section 7. 

II.  RELATED WORKS 

The coordinated checkpointing ensures the consistency using 
two types of coordination: blocking and non blocking. A 
blocking, coordinated checkpointing protocol requires flushing 
communication channels before taking the state of a process in 
order to ensure the channels during the checkpoint without 
interrupting the computation. It requires logging in-transit 
messages and replaying them at restart, which implies 
coordination with the progress engine and queue mechanisms. 
The Chandy-Lamport [2] algorithm is the earliest non-
blocking all-process coordinated checkpointing algorithm. 
This technique requires that at least one process sends a 
marker to notify the other ones to take a snapshot of their local 
states and then forms a global checkpoint. Since markers are 
sent along all channels in the network, this algorithm leads to 
an extra-overhead [1].  
To minimize the checkpointing overhead for both blocking 
and non-blocking algorithm, it was necessary to reduce the 
number of nodes involved in the checkpointing process. In this 
case, the system must track all the dependencies created during 
a checkpointing interval [8]. Only the nodes depending 
directly or transitively to a chosen initiator will be forced to 
create their checkpoints. Koo and Toeg [6], and Cao and 
Singhal [7] proposed minimum-process blocking coordinated 
checkpointing algorithms.  In [9], [10], the authors proposed a 
non-coordinated checkpointing with the minimum process in 
mobile distributed systems.  The min-process checkpointing 
cause the creation of useless checkpoints. To overcome this 
problem, Cao and Singhal [11] introduce the concept of 
mutable checkpoints. The authors in [12] use a probabilistic 
approach to control the creation of mutable checkpoints. A 
process takes its mutable checkpoint only if the probability 
that it will get the checkpoint request in the current initiation is 
high.  In [13], the authors combine between min- process and 
all-process checkpointing to reduce the rollback overhead. The 
time based coordinated checkpointing [13] suppose that the 
nodes among the system have not have loosely synchronized 
clocks. In this case, a simple control of send/receive events 
during a known period can create a consistent state. 
The majority of existing coordinated checkpointing use two-
phases checkpointing to reduce the overhead. The first phase 
creates tentative checkpoints TCP. It is a checkpointing file 
stored only in the local memory of the node. It will be 
transformed to permanent checkpoints PCP in the second 
phase by storing the TCP in the stable memory. 

 

Ensure consistency and creating checkpoints presents only 
30% of the time checkpoints, the remaining time is caused by 
the checkpoints storage phase. Minimizing the checkpoint file 
size can reduce the storage time. The compression of the 
checkpoint files and reducing the number of nodes involved in 
the checkpoints can minimize the checkpoint file size.  
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Another way to reduce the overhead is to store only 
fundamental data at each checkpoint. The ability to identify 
these data depends on the checkpoint level Incremental 
checkpointing [19] reduces this cost. A runtime monitor tracks 
application writes, and if it detects that a given memory region 
has not been modified between two adjacent checkpoints, that 
region is omitted from the subsequent checkpoint, thereby 
reducing the amount of data to be saved. This strategy can be 
expensive since it tracks all the user’s operations. 
The management of I/O has proven its efficiency in term of 
storage time reduction. The I/O can be used in the general 
cases where there are write/read executions (even without 
checkpointing) and is generally based on the notion of 
aggregation. The I/O management can be also hybridized with 
the other strategies such as the compression and even the 
incremental checkpointing which makes it very useful and 
powerful strategy. 

An important reason for the limitations of classical I/O systems 
is that applications often send smaller queries disjoint. This 
access mode generates a first additional cost to the large 
number of applications running on various transmission 
channels (bus / network communications), but more 
significantly increases the processing time of the latter [14]. 
To deal with this problem, several "aggregation" methods have 
been proposed we can distinguish two types of aggregations 
strategies: dependent and collective. 
Independent I/O is a straightforward form of I/O and is widely 
used in parallel applications. This form of I/O can be called 
independently by an individual process or any subset of 
processes of a parallel application. The advantage of 
independent I/O is that users have the freedom to perform I/O 
for each individual process or any subset of the processes that 
open the file. The buffering is an Independent I/O [24]. In 
conventional strategies, the write operation transfers data from 
the buffer to the local disk from their reception. Buffering 
proposes that the buffer will be used for temporary storage of 
I/O. The write operation includes small blocks in a buffer (of 
limited size). Once the buffer is completely filled, it will be 
forwarded to the local disk.  
The "List I/O" approach [23] provides routines to indicate 
within a single call access number. A list of coherence of the 
view built [5]. It introduces synchronization in the distributed 
system while communications are frozen. However, since it 
does not require copies of incoming or outgoing messages, it is 
simpler to implement in an existing high-performance 
communication driver [3][4][5].  
A non-blocking, coordinated checkpointing protocol consists 
of saving the state of the communication torque (offset, size) 
describes the distribution of data in memory and a similar list 
is used to perform matching on disk. In this strategy, the 
messages will piggyback a lot of data during the I/O which 
increases the overhead. 
Data sieving [22] is one of the techniques proposed to address 
this issue by aggregating small requests into large ones. 
Instead of accessing each small piece of data separately, data 
sieving accesses a large contiguous scope of data that includes 

the small pieces of data. The additional unrequested data are 
called holes (See Figure 1). The size of holes compared to the 
requested data controls the efficiency of data sieving. 
 
For many parallel applications, even though each process may 
access several non-contiguous portions of a file, the requests 
of multiple processes are often interleaved and may constitute 
a large contiguous portion of a file together [20]. In order to 
achieve better I/O performance, a group of processes may 
cooperate with each other in reading or writing data in a 
collective and efficient way, which is known as collective I/O.  

 
Fig. 1: Data sieving approach [15] 
 
The collective I/O is a general idea that exploits the 
correlations among accesses from multiple processes of a 
parallel application and optimizes its I/O accesses. The basic 
idea behind this technique is to coordinate I/O accesses from 
different processors. The processors exchange information 
regarding what data each of them needs to access. This 
information is used to derive an efficient I/O schedule. Note 
that an I/O schedule may require a processor (aggregator) to 
access data on behalf of some other processors which results in 
communication when executing the I/O schedule.  
The collective I/O can distinguished by the "physical place" 
where the operation group is performed [20]: if aggregation is 
executed among processes (calculation on the nodes), the most 
used method is the "Two-Phase I/O" approach; if aggregation 
is performed at the records, we are talking about system "Disk-
Directed I/O" if the approach is finally realized within a 
server, the method is "server-directed I/O".  
"Two-Phase I/O", this method [21], as its name suggests, 
consists of two main phases: after a consensus between the 
processes involved, the first step is to retrieve the data, the 
second concerns the redistribution between each of the latter 
processes. To implement the first phase, each process must 
know the necessary data to others. The advantage of this 
method is that it allows to access contiguous and wide and 
therefore strongly reduce the time of reactivity. This method is 
the most portable strategies which makes it desirable for the 
heterogeneous systems (See Figure 2). 
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Fig. 2: Collective I/O 

ROMIO is the most popular I/O platform used in distributed 
system [22]. It uses the collective I/O (Two-phases) to manage 
the requested blocks of different nodes and then it uses the 
data sieving to transfer these blocks to the memory. 

 

III.  COORDINATED CHECKPOINTING 

A message passing system consists of N fixed number of nodes 
that communicate each other only through messages. The 
messages generated by underlying distributed application will 
be referred to as computation messages. Messages generated 
by the nodes to advance checkpoints, handle failures and for 
recovery will be referred to as system messages. In this paper 
the horizontal lines extending towards right hand side 
represent the execution of each process and arrows between 
them represent the messages. Processes have access to a stable 
storage device that survives failures. The Figure 3 illustrates 
the communication process of three nodes. The message m1 is 
in-transit message, and m3 is an orphan message according to 
the recovery C1. The messages m0 and m2 are regular 
messages. 

 
 
 
 
 
 
 
 
 

Fig. 3: System presentation 
 
In the next section, we will explain the two most popular and 
performing coordinated checkpointing types: blocking and 
non-blocking. 

A. BlockingCoordinated Checkpointing 

In case of Minimum blocking coordinated checkpointing and 
after selecting initiator (See Figure 4, step-1), the initiator 
sends "Request" to the dependent nodes (See Figure 4, step-2). 
Dependencies are identified by the Dependency matrix. The 
dependency matrix of Figure 4 is presented in formula (4).  

 DepMatrix[i][j]= 1  means that the node i depends on node j 
(the node j sent a message to node i during the current 
checkpointing interval). 

                         (4) 

When a node receives this message, it freezes its 
communication and creates its TCP then it returns "Response" 
to the initiator (Figure 4, step-3).  

Fig. 4: Blocking coordinated checkpointing 
 
The word freeze indicates that the node blocks its execution 
when it finds a communication event (sends / receives). The 
initiator collects all the "Response" and sends "Commit" to 
nodes (See Figure4, step-4). This message informs the receiver 
to transform its TCP to PCP and then continues its running 
task (See Figure, step-5). 
In case of All blocking coordinated checkpointing, the 
algorithm is the same except that all nodes are involved in the 
checkpointing (See Formula 5):  
∀(i,j) ∈ n, DepMatrix[i][j]= 1              (5) 
Where n is the number of the nodes that run the application. 

 

B. Non-Blocking Coordinated Checkpointing 

After the selection of initiator, the initiator sends "Request" to 
the dependent nodes (See Figure 5, step-1) using the 
dependency matrix in formula (6). Since checkpointing is not 
blocking, nodes can communicate with each other during the 
checkpointing process.  

Fig. 5: Non-Blocking coordinated checkpointing 
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To ensure the creation of a coherent state, the checkpointing 
uses "piggybacked messages." Among piggybacked 
information there is the csn (checkpointing sequence number). 
The Integer csni keeps track of sequence number of the current 
checkpoint of process Ni. It is initialized to 0 and increased by 
one each time a new tentative checkpoint is taken.  
If a node receives a message with higher csn compared to its 
local csn, he knows that the sender of this message has already 
created his checkpoint before sending this message. In the 
classical coordinate checkpointing approach and in this 
situation, the receiving node is forced to create his checkpoint 
and increment its csn to prevent the creation of orphan 
messages. In this case, several unnecessary checkpoints can be 
created because it is possible that the sender is not concerned 
by the checkpointing. For this reason, it is preferable to use the 
Mutable checkpoint MCP, which is neither a tentative 
checkpoint nor a permanent checkpoint. Mutable checkpoints 
can be saved anywhere, e.g., the main memory or local disk 
and  the effort of creating it (mutable checkpoint) is negligible 
as compared to the tentative one [11]. Figure 6 illustrates the 
three checkpoint types that can be created according to the 
message type. Some criteria must be satisfied before creating 
this MCP such as: the csn of the received message is higher 
than the local csn; the node has send a message to other nodes 
during the last checkpointing interval and the current 
checkpointing process has not finished yet [11].  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Mutable checkpointing technique 

In the case of node N4 in Figure 5, he received the "Request", 
creates its TCP (See Figure 5, step-2), increments its csn (csn 
= 1) and then sends m1 to N3. Node N3 receives m1 before 
the request checkpointing. In this case it only creates an MCP 
(See Figure 5, step-3; same for the node N1). The MCP will be 
converted to TCP when the node receives a "Request" 
checkpointing (See Figure 5, step-4). If after a timeout, the 
request is not received, MTC will be deleted without any 
overload. In case of distributed checkpointing, nodes that 
create MTC do not broadcast the checkpointing requests [15]. 

                          (6) 

 
After the creation of TCP, the node sends "Response" to the 
initiator (this phase is not shown in Figure 5). The initiator 
collects the responses and sends "Commit" to the concerned 
nodes to transform their TCP to PCP. 
In case of all non blocking coordinated checkpointing, the 
algorithm is the same except that all nodes are involved in the 
checkpointing (See Formula 5).  

IV.  CONTRIBUTION1: INITIATOR CHOICE 

In Coordination checkpointing strategies, the initiator has an 
important role in the process since it: 
• Starts and controls the checkpointing process 
• Determines the involved nodes in the checkpointing round 
• Ensures the checkpointing atomicity. 
• Ensures the checkpointing storage in case of soft 

checkpointing 
• Declares the checkpointing termination.   
• Manages the inter-group checkpointing and ensures the 

intra-group checkpointing in case of hierarchical system. 
• Its clock is used generally as reference for resynchronization 

phase in case of time based coordinated checkpointing. 
 

Despite the important role of initiator in the coordinated 
checkpointing, the majority of existing studies do not take into 
account the strategy of initiator selection. When all nodes 
decide to create their checkpoints, the system or the 
checkpointing manager selects the initiator either randomly or 
based on the smallest identifier among the candidates. During 
our research, we find a single paper that proposed a strategy 
for the selection of initiator. 
The paper [15] uses the same strategy described in Section 3.2 
with one difference: the selection of initiator is based on 
popularity. Each node Ni uses a Boolean dependency vector 
Vecti of size n where n is the number of nodes in the system.  
This vector is initialized as follows (See Formula 7): 

                                          (7) 

 
At the reception of a computing message sent by Nj   to Ni, the 
j th column of Vecti will be equal to 1.  Vecti will be initialized 
after each checkpointing and it is piggybacked in every 
computing message. The number of 1 in the vector indicates 
the popularity of the node (See Figure 7). The grouping of 
dependency vectors built dependency matrix.  
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Fig. 7: Dependency vector 
 
According to the algorithm proposed in [15], if the node 
exceeds a certain threshold of popularity (in paper experiments 
threshold =50%), it triggers the checkpointing. The 
experimental results of this paper have shown that the choice 
of initiator has a great impact on checkpointing. However, this 
strategy may cause a conflict where a many initiators may exist 
at the same time. This requires a centralized decision to 
eliminate this problem. In addition, this strategy can not 
decrease the gap between checkpoint sequence numbers.  
To overcome these problems, we propose our strategy of 
initiator selection, where the initiator is the node with a small 
csn and a great speed (MIPS) as presented in Formula 8. 

                           (8) 

Where: 
• k: id of checkpointing round; it also represents the new csn. 

We suppose that csn in initialized at 1. 

• N: set of nodes in the application. 

• Si: speed of node i in  MIPS 

• csni: csn of node i. 
Our approach uses csni as criteria for initiator choice, thereby 
avoiding the problem of famine where only a few nodes create 
their checkpoints each round. In the case of the strategy 
proposed in [15], there will be nodes that rarely create their 
checkpoints because they often do not communicate with the 
initiator (directly or transitively). In case of rollback, the rate 
of re-computing for these nodes will be high which increases 
the total checkpointing overhead. Selecting initiator based on 
speed accelerates the checkpointing because it is its role to 
treat all data of involved nodes during the checkpointing 
process. 

V. CONTRIBUTION2: SOFT CHECKPOINTING IMPROVEMENT 

In the previous section, we used the hard checkpointing where 
each node is responsible to store its own checkpointing files. 
However in this section, we used a soft checkpointing where 
the initiator it selected using our proposition in the previous 
section. We also implement an I/O manager in the initiator to 
improve its role in the checkpointing process and reduce the 
checkpointing overhead caused by the storage time. The soft 
checkpointing can be used with any coordinated checkpointing 
strategy (all/Min and blocking/non blocking checkpointing). 
In the soft checkpointing, the initiator collects the 
checkpointing files of all the nodes involved in the 

checkpointing process and ensures the checkpointing 
atomicity. The atomicity means that all the nodes concerned by 
the checkpointing have successfully create theirs 
checkpointing file. If any node (concerned by the 
checkpointing) has failed to create or send its file to the 
initiator, the initiator will cancel the actual checkpointing to 
preserve the consistency. 
After the initiator ensures checkpointing atomicity of its nodes, 
its storage manager handles the I/ O management to minimize 
the checkpointing latency. The storage manager is similar to 
ROMIO. But in ROMIO, the Data Sieving and collective I/O 
will always be executed regardless of the size of useless data 
quantity caused by Data Sieving (Holes). In this case, the 
amount of unnecessary data can be large compared with the 
useful data, which increases the cost and the time of the I/O . 
To resolve this issue, the storage manager of the initiator 
executes Collective I/O for data requested by different nodes, 
and then performs Data Sieving only if the size of useless data 
Dj does not exceed a certain threshold αj versus the total size 
of data to be written Dj by it (initiator). The threshold αj is 
specified as an input. The βj parameter of the initiator 
represents the percentage of useless data written relative to the 
entire data (see Formula 9). The βj will be compared to αj to 
decide to perform a Data Sieving or not (simple buffering).  

βj = (100×UDj)/Dj         (9) 
This strategy eliminates the problem of transfer of large 
quantity of useless data. The details of storage algorithm 
executed by the initiator are illustrated in Figure 8.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Storage Algorithm 
 
To explain the storage manager of the initiator, we offer the 
example of Figure 9. In this Figure, there are three nodes. {N1, 
N2, N3} that have the same initiator. Each node requires a set 
of blocks of the same file (blocks requested by all these nodes 
are from the same file).  
 

 
 
 
 
 
 
 

Fig. 9: Storage scenario Example 
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For example, the N1 requests blocks 7, 11 and 12, these 
blocks are useful. Each node sends its useful blocks to its 
initiator. The initiator executes the collective I/O in the 
requested blocks by collecting the useful blocks in the buffer 
of its memory (union of useful blocks of nodes involved in the 
checkpointing process). Collective I/O allows to create more 
contiguous blocks (case of blocks {11, ..., 14} in N2 and N3) 
and removes redundancies (case of blocks {11, 12} in N2 and 
N3). In this case, if the block size is 20 bytes so the size of 
useful data is 20 × 10 = 200 Bytes. In ROMIO, the system 
executes the Data sieving to create more contiguous blocks. 
The total data size will be (29-7) × 20 = 440 bytes. But in this 
case 440-200 = 240 Bytes will be useless data, so ROMIO can 
increase the checkpointing latency. However, in CSDS: UDa = 
240 Bytes; Da= 440 Bytes and if α =30% (specified by SLA) 
then β= (100×DIa)/Da =(100×240)/440 ≈ 54,5%). In this case, 
the storage manager of the initiator decides not to run the Data 
sieving and sends only useful data blocks {{7}, {11, 12, 13, 
14}, {20}, {28, 29}}. 

VI.  EXPERIMENTAL RESULTS 

It is clear that non-blocking coordinated checkpointing 
minimizes the overhead of checkpointing but the blocking 
checkpointing is easier to implement and minimizes the rate of 
stored data to ensure consistent rollback. For further details, 
paper [1] presents a comparative study between two strategies 
for checkpointing.  
The aim of the first part of our work is studing the impact of 
the initiator choice on the four coordinated checkpointing 
strategies: Min-process blocking checkpointing, Min-process 
non-blocking checkpointing, All-process blocking 
checkpointing and All- process non-blocking checkpointing. 
For the initiator choice, we selected three strategies: LID 
(Lowest ID), Hpop (Higher popularity) and our approach that 
we name it simply Our Init. The used parameters in our 
simulations are presented in Table1. 
 
Table1: Simulation parameters 

Parameter Value 
Number of VM per server 10-100 
Server BW  1 Gega bit per second 

Cloudlet number (Tasks) 1500 
Cloudlet length 100-12000 MIPS 
communication rate µ  2-100   

Checkpoint  interval CPInterval 100-500 second 
Failure rate λ 2 to 5 per period 

A. Initiator Choice 

The first series of experiments studied the Overhead cau 
The first series of experiments studied the Overhead caused by 
the four checkpointing protocols using several initiator choice 
strategies. The overhead in this work in presented as the 
rapport between the response time with and without the 
checkpointing (See Formula10): 

                                (10) 

Where: 
• : Response time using a fault tolerance strategy 

• : Response time without using any fault tolerance 

strategy. 
 

In the case of min-coordinated checkpointing and in both types 
of this checkpointing: blocking (Figure 10 -a- ) and non-
blocking (Figure 10 -b -)  we have notice two points:  
First, Hpop improves checkpointing (minimizes overhead) 
with an average of 20%. However, our approach provides an 
improvement of 29%. The second point is: the impact of 
choice of initiator is greater in the case of blocking 
coordinated checkpointing compared to non-blocking 
coordinated checkpointing with a percentage of 4.6%.  In 
blocking coordinated checkpointing, nodes suspend the 
execution to record their statements. So the selection of 
initiator based on its processing speed can minimize the time 
to create checkpoints.  
In the case of ALL-Coordinated checkpointing and in both 
types of this checkpointing: blocking (Figure 10 -c- ) and non-
blocking (Figure 10 -d -) /  we notice that Hpop strategy has no 
impact on checkpointing performance because it is based on 
the popularity of the node and in case of ALL-checkpointing, 
the nodes have the same popularity that equal the number of 
nodes in the system. So Hpop is created for min-coordinated 
checkpointing. But our strategy has improved in performances 
by 2.7% because the initiator is the most powerful node in the 
system in term of speed. 
 
The second series of experiments calculates the rollback cost 
(See Figure 11). Both types of strategy min blocking / non-
blocking use the min rollback [1], and also All-blocking/ non 
blocking coordinated checkpointing use All-rollback 
technique. In case of Min-rollback (See Figure 11 –a-), our 
approach appears effective over other strategies, it avoids the 
problem of famine by ensuring checkpointing selection 
according to the node’s csn. In case of All-Rollback strategy 
(See Figure 11 –b-), the initiator choice has no impact on the 
rollback performances. 
 
During our researches, we found many works proposed and 
managed the concurrent checkpointing [11][12]. In the 
concurrent checkpointing, multiple initiators trigger 
checkpointing at the same time.  In the latest round of 
experiments we studied the impact of checkpointing 
concurrency in the overload and the rollback cost in the case 
of min coordinated checkpointing (See Figure 12). Increase 
the number of initiators by checkpointing increases the 
overhead and even the cost of recovery in all approaches of 
initiator selection (See Figure 12 –a-). Unexpected results of 
concurrent checkpointing in case of rollback (See Figure 12 –
b-) due to the relation between the initiators in each 
checkpointing round. It is possible to improve the performance 
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of our approach and other approaches even in case of recovery 
if insured by concurrent initiators are totally independent of 
each other directly and transitively. The independence 

condition requires centralized decision otherwise the overload 
checkpointing become unbearable. 

 

Fig. 10: Overhead vs  Number of checkpointing 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Rollback cost Vs failure rate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Impact of Number of initiators on cost and overhead 
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B. Soft Checkpointing 

All previous experiments were carried out with a hard 
checkpointing (without the use of soft checkpointing), 
that is to say that the initiator manages just the 
checkpointing and each node is responsible for storing its 
own checkpointing file. The goal was: to measure the 
minimum impact on the initiator checkpointing without 
assigning the other roles. 
In this part of the experiments, we focused on the soft 
checkpointing in minimum coordinated checkpointing 
and we used the same parameters of Table1. According to 
the results of comparing hard and soft checkpointing, we 
noticed that the initiator impact on checkpointing 
increases by almost 17% compared to a hard 
checkpointing whatever the strategy of initiator choice.  It 
is clear that in case of all coordinated checkpointing; the 
impact of soft checkpointing will be bigger (See Figure 
13). 

 

 
We have strengthened the role of initiator in the soft 
checkpointing by the Storage Service (CS + SS) and 
compared its performance with the soft checkpointing 
without checkpointing Storage Service (SC). Both (SC + 
SS) and (SC) select their initiators using our 
contribution1. 
 
The first experiment in this part is destined to measure the 
overhead in case of different sizes of checkpointing files. 
According the results illustrated in Figure 14-a-, the 
Overhead time increases if the size of files increases 
because of the storage time. However, our strategy CS + 
SS is better than CS because the storage service reduces 
the transfer of useless data during the I/O. 
The goal of the second experiment is measuring the 
impact of the number of nodes involved in the 
checkpointing on the overhead caused by (SC + SS) and 
(SC) .the results (See Figure 14-b-) prove that increasing 
the number of the nodes concerned by the checkpointing 
process increases automatically the overhead because the 
number of checkpointing files will increase. However in 
CS + SS, the storage service in the initiator uses the 
collective I/O to collect and organise data and it uses also 
smart data sieving to reduce the transfer time.      
 
 

Fig.13: Overhead in soft and hard checkpointing 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.14: Overhead in soft checkpointing with and without storage service 

VII.  CONCLUSION 

The checkpointing is a high performance tool to ensure 
fault tolerance and system reliability. The literature offers 
many checkpointing protocols that ensure the creation of 
a coherent state for the rollback. In this paper, we have 
explained in details the most popular coordinated 
checkpointing strategies and the I/O techniques. Then we 
proposed two contributions. In the first contribution, we 
studied the impact of initiator choice on these protocols. 
We also proposed a strategy for the selection of initiator 
that accelerates checkpointing and minimizes the rollback 
cost. The second contribution proposes a soft 

checkpointing with a storage service based on collective 
I/O and smart data sieving. The experimental results 
prove that: 
• The strategy of initiator choice has a non-negligible 

impact on checkpointing performances, especially in 
case of blocking coordinated checkpointing. 

• Considering the physical characteristics of initiator 
(speed, overhead, ...) reduces the checkpointing 
overhead. 

• Decreasing the gap between checkpoint sequence 
numbers improve greatly the performances of 
minimum rollback strategies. 
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• The initiator choice has no impact on all-rollback 
strategies. 

• The concurrent checkpointing increases the 
checkpointing overhead. And does not necessarily 
improve the rollback performances. 

• The concurrent checkpointing can improve recovery 
performance if the initiators are completely 
independent with minimum csn. 

• The initiator choice has higher impact in case of soft 
checkpointing compared to hard checkpointing. 

• The soft checkpointing can improve the checkpointing 
performances. 

• Using I/O management in soft checkpointing reduces 
the storage time of checkpointing and therefore it 
reduces also the overhead. 

• Using a smart data sieving reduces the transfert of 
useless data during the storage.   

 In the future works, we will use a smart strategy for the 
initiator selection by using the techniques of consensus 
between nodes represented by agents. We will also 
improve the I/O technique using other parameters to 
balance between the collective I/O with or without data 
sieving such as cost and consumed energy during the  I/O. 
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