

Abstract—Coordinated checkpointing is a well-known method

for achieving fault tolerance in distributed computing systems. This
type of checkpointing selects an initiator to manage and ensure the
checkpointing process. The majority of existing works ignore the role
and the importance of this initiator. The work presented in this paper
can be divided on two parts. In the first part, we examine the impact
of initiator choice on different types of coordinated checkpointing
and we prove its importance in term of performances. We propose
also a simple and an effective strategy to select the best initiator each
checkpointing round. In the second part of this work, we focused on
the soft checkpointing and we have strengthened the role of initiator
by adding a storage manager that ensures atomicity and speed of
storage checkpoints files using a smart I/O strategy.

Keywords—Checkpointing, consistency, rollback, fault
tolerance, overhead, initiator, coordination, I/O, atomicity, data
sieving, collective I/O.

I. INTRODUCTION

ince the computing potential of distributed systems is often
hindered by their susceptibility to failures, many different
techniques of fault tolerance have been developed and

integrated into them accordingly, in order to improve both
their reliability and availability and to reduce re-computations.
Fault-tolerance is the property that enables a system to
continue operating properly in the event of the failure of some
of its components. To achieve the fault tolerance, several
techniques are proposed such as: replication and checkpointing
[14].
Replication or redundancy creates many identical and
consistent copies of the object (data or task) in several
resources, in case of failure, one copy can replace the failed
one. The replication ensures a real-time fault tolerance by
masking the failure but it consumes additional resource and
increases the system complexity. The second technique is the
checkpointing. Checkpoint/Restart (C/R) is a way to provide
persistence and fault tolerance in both uni-processor and
distributed systems. Checkpointing is the act of saving an
application’s state to stable storage during its execution, while

B. Meroufel, Dept. of Computer Science, Faculty of Exact and Applied

Sciences, University of Oran 1 – Ahmed Ben Bella, Oran, Algeria BP.1524,
EL M’Naouer, 31000, Oran, Algeria. (email: bakhtasba@gmail.com).

G. Belalem, Dept. of Computer Science, Faculty of Exact and Applied
Sciences, University of Oran 1 – Ahmed Ben Bella, Oran, Algeria BP.1524,
EL M’Naouer, 31000, Oran, Algeria. (email: ghalem1dz@gmail.com).

restart is the act of restarting the application from a
checkpointed state. If checkpoints are taken, then when an
application fails, it may be possible to restart it from its most
recent consistent checkpoint. This limits the amount of
computation lost because of a failure to the computation
performed between the last checkpoint and the failure.
In a distributed system, since the processes in the system do
not share memory, an ith global state GSi of the system is
defined as a set of local states LSj, one from each process j
participating in the application:
GSi = {LS1, LS2, …, LSn} (1)

A checkpointing must create a consistent state. In this case,
GSi must be created without any orphan message. GSi is
strongly consistent if it is consistent and without any transit
messages. Senda(m) and Recvb(m) note the send and the
receive events respectively in the system. So:
The message m is orphan if:
Recvb(m) ∈LSb and Senda(m) ∉LSa and {LSa, LSb} ⊆GSi (2)
The message m is transit if:
Recvb(m) ∉LSb and Senda(m) ∈LSa and {LSa, LSb} ⊆GSi (3)

To satisfy that consistency, the checkpointing technique can be
classified in three categories:
• Independent checkpointing (Uncoordinated) [4][5]: the

checkpoints at each process are taken independently
without any synchronization among the processes.
Because of absence of synchronization, there is no
guarantee that a set of local checkpoints taken will be a
consistent set of checkpoints. It may require cascaded
rollbacks that may lead to the initial state due to domino-
effect [4]. The domino effect appears when a subset of
processes rollback unboundedly to determine a set of
mutually consistent checkpoints. The independent
checkpointing store all the checkpoints file during the job
life.

• Communication induced checkpointing: the processes take
two kinds of checkpoints, local and forced. Local
checkpoints can be taken independently, while forced
checkpoints are taken to guarantee the eventual progress
of the recovery line. However the messages are
piggybacked and useless checkpoints can be created.

Enhanced Coordinated Checkpointing in
Distributed System

Bakhta Meroufel and Ghalem Belalem

S

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 23

• Coordinated or synchronous checkpointing [1][12]: the
processes will synchronize to take checkpoints in such a
manner that the resulting global state is consistent. The
main advantage is that it sores only one permanent
checkpoint in the stable memory and it is domino-effect
free.

The experimental results in the literature prove that the
coordinated checkpointing is the most convenient
checkpointing strategy in scalable distributed system. It
minimizes the resource consumption and ensures a consistent
state using only one recovery line. Checkpointing usually
consists of three main phases: consistency management phase,
checkpointing creation phase and storage phase. The major
problem of checkpointing is the overhead caused by the
storage time of checkpointing files in stable storage (70% of
checkpointing time is caused by the storage [16]). During the
storage time, and whatever the checkpointing protocol used
(coordinated/ uncoordinated/ communication indexed), nodes
will be blocked to ensure the checkpointing atomicity, which
significantly increases application execution time and causes
overhead.
To reduce the time of checkpointing storage, several strategies
are proposed in the literature. The soft checkpointing is a
powerful strategy to reduce the storage time. Generally, in
conventional checkpointing, each node involved in the
checkpointing, creates and stores its own checkpointing file in
stable storage server. In the soft checkpointing, nodes create
their files and send them to a special node, and then they
resume their works immediately. The special node collects the
files and stores them in the stable memory parallel with the
execution of application [18]. The management of I/O is
another strategy that allows the reduction of the storage time of
checkpoints by reducing the transfer time and the data quantity
needed for the storage [17].
In this paper we will focalize on the coordinated
checkpointing. Our contribution is divided on two parts: the
initiator choice and the soft checkpointing improvement. In the
initiator choice, we will study the different strategies of this
type of checkpointing, not to compare between them, but to
study the impact of initiator choice on the performances of
each strategy. We will propose an approach to improve the
checkpointing and the recovery performances. In the part of
soft checkpointing improvement, we will strengthen the role of
initiator by adding a storage manager. The storage manager
ensures the atomicity and uses a smart I/O to manage the
storage phase.
The remainder of the paper is organized as follows. Section 2
reviews some coordinated checkpointing strategies existing in
literature and explains also several I/O techniques. Section 3
describes in details the most popular coordinated
checkpointing. Section 4 introduces our approach of initiator
selection. Section 5 explains the soft checkpointing based on
our initiator. Section 6 shows some experimental results and
analysis the performances of our both contributions. Finally, a

conclusion and some perspectives are given in section 7.

II. RELATED WORKS

The coordinated checkpointing ensures the consistency using
two types of coordination: blocking and non blocking. A
blocking, coordinated checkpointing protocol requires flushing
communication channels before taking the state of a process in
order to ensure the channels during the checkpoint without
interrupting the computation. It requires logging in-transit
messages and replaying them at restart, which implies
coordination with the progress engine and queue mechanisms.
The Chandy-Lamport [2] algorithm is the earliest non-
blocking all-process coordinated checkpointing algorithm.
This technique requires that at least one process sends a
marker to notify the other ones to take a snapshot of their local
states and then forms a global checkpoint. Since markers are
sent along all channels in the network, this algorithm leads to
an extra-overhead [1].
To minimize the checkpointing overhead for both blocking
and non-blocking algorithm, it was necessary to reduce the
number of nodes involved in the checkpointing process. In this
case, the system must track all the dependencies created during
a checkpointing interval [8]. Only the nodes depending
directly or transitively to a chosen initiator will be forced to
create their checkpoints. Koo and Toeg [6], and Cao and
Singhal [7] proposed minimum-process blocking coordinated
checkpointing algorithms. In [9], [10], the authors proposed a
non-coordinated checkpointing with the minimum process in
mobile distributed systems. The min-process checkpointing
cause the creation of useless checkpoints. To overcome this
problem, Cao and Singhal [11] introduce the concept of
mutable checkpoints. The authors in [12] use a probabilistic
approach to control the creation of mutable checkpoints. A
process takes its mutable checkpoint only if the probability
that it will get the checkpoint request in the current initiation is
high. In [13], the authors combine between min- process and
all-process checkpointing to reduce the rollback overhead. The
time based coordinated checkpointing [13] suppose that the
nodes among the system have not have loosely synchronized
clocks. In this case, a simple control of send/receive events
during a known period can create a consistent state.
The majority of existing coordinated checkpointing use two-
phases checkpointing to reduce the overhead. The first phase
creates tentative checkpoints TCP. It is a checkpointing file
stored only in the local memory of the node. It will be
transformed to permanent checkpoints PCP in the second
phase by storing the TCP in the stable memory.

Ensure consistency and creating checkpoints presents only
30% of the time checkpoints, the remaining time is caused by
the checkpoints storage phase. Minimizing the checkpoint file
size can reduce the storage time. The compression of the
checkpoint files and reducing the number of nodes involved in
the checkpoints can minimize the checkpoint file size.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 24

Another way to reduce the overhead is to store only
fundamental data at each checkpoint. The ability to identify
these data depends on the checkpoint level Incremental
checkpointing [19] reduces this cost. A runtime monitor tracks
application writes, and if it detects that a given memory region
has not been modified between two adjacent checkpoints, that
region is omitted from the subsequent checkpoint, thereby
reducing the amount of data to be saved. This strategy can be
expensive since it tracks all the user’s operations.
The management of I/O has proven its efficiency in term of
storage time reduction. The I/O can be used in the general
cases where there are write/read executions (even without
checkpointing) and is generally based on the notion of
aggregation. The I/O management can be also hybridized with
the other strategies such as the compression and even the
incremental checkpointing which makes it very useful and
powerful strategy.

An important reason for the limitations of classical I/O systems
is that applications often send smaller queries disjoint. This
access mode generates a first additional cost to the large
number of applications running on various transmission
channels (bus / network communications), but more
significantly increases the processing time of the latter [14].
To deal with this problem, several "aggregation" methods have
been proposed we can distinguish two types of aggregations
strategies: dependent and collective.
Independent I/O is a straightforward form of I/O and is widely
used in parallel applications. This form of I/O can be called
independently by an individual process or any subset of
processes of a parallel application. The advantage of
independent I/O is that users have the freedom to perform I/O
for each individual process or any subset of the processes that
open the file. The buffering is an Independent I/O [24]. In
conventional strategies, the write operation transfers data from
the buffer to the local disk from their reception. Buffering
proposes that the buffer will be used for temporary storage of
I/O. The write operation includes small blocks in a buffer (of
limited size). Once the buffer is completely filled, it will be
forwarded to the local disk.
The "List I/O" approach [23] provides routines to indicate
within a single call access number. A list of coherence of the
view built [5]. It introduces synchronization in the distributed
system while communications are frozen. However, since it
does not require copies of incoming or outgoing messages, it is
simpler to implement in an existing high-performance
communication driver [3][4][5].
A non-blocking, coordinated checkpointing protocol consists
of saving the state of the communication torque (offset, size)
describes the distribution of data in memory and a similar list
is used to perform matching on disk. In this strategy, the
messages will piggyback a lot of data during the I/O which
increases the overhead.
Data sieving [22] is one of the techniques proposed to address
this issue by aggregating small requests into large ones.
Instead of accessing each small piece of data separately, data
sieving accesses a large contiguous scope of data that includes

the small pieces of data. The additional unrequested data are
called holes (See Figure 1). The size of holes compared to the
requested data controls the efficiency of data sieving.

For many parallel applications, even though each process may
access several non-contiguous portions of a file, the requests
of multiple processes are often interleaved and may constitute
a large contiguous portion of a file together [20]. In order to
achieve better I/O performance, a group of processes may
cooperate with each other in reading or writing data in a
collective and efficient way, which is known as collective I/O.

Fig. 1: Data sieving approach [15]

The collective I/O is a general idea that exploits the
correlations among accesses from multiple processes of a
parallel application and optimizes its I/O accesses. The basic
idea behind this technique is to coordinate I/O accesses from
different processors. The processors exchange information
regarding what data each of them needs to access. This
information is used to derive an efficient I/O schedule. Note
that an I/O schedule may require a processor (aggregator) to
access data on behalf of some other processors which results in
communication when executing the I/O schedule.
The collective I/O can distinguished by the "physical place"
where the operation group is performed [20]: if aggregation is
executed among processes (calculation on the nodes), the most
used method is the "Two-Phase I/O" approach; if aggregation
is performed at the records, we are talking about system "Disk-
Directed I/O" if the approach is finally realized within a
server, the method is "server-directed I/O".
"Two-Phase I/O", this method [21], as its name suggests,
consists of two main phases: after a consensus between the
processes involved, the first step is to retrieve the data, the
second concerns the redistribution between each of the latter
processes. To implement the first phase, each process must
know the necessary data to others. The advantage of this
method is that it allows to access contiguous and wide and
therefore strongly reduce the time of reactivity. This method is
the most portable strategies which makes it desirable for the
heterogeneous systems (See Figure 2).

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 25

Fig. 2: Collective I/O

ROMIO is the most popular I/O platform used in distributed
system [22]. It uses the collective I/O (Two-phases) to manage
the requested blocks of different nodes and then it uses the
data sieving to transfer these blocks to the memory.

III. COORDINATED CHECKPOINTING

A message passing system consists of N fixed number of nodes
that communicate each other only through messages. The
messages generated by underlying distributed application will
be referred to as computation messages. Messages generated
by the nodes to advance checkpoints, handle failures and for
recovery will be referred to as system messages. In this paper
the horizontal lines extending towards right hand side
represent the execution of each process and arrows between
them represent the messages. Processes have access to a stable
storage device that survives failures. The Figure 3 illustrates
the communication process of three nodes. The message m1 is
in-transit message, and m3 is an orphan message according to
the recovery C1. The messages m0 and m2 are regular
messages.

Fig. 3: System presentation

In the next section, we will explain the two most popular and
performing coordinated checkpointing types: blocking and
non-blocking.

A. BlockingCoordinated Checkpointing

In case of Minimum blocking coordinated checkpointing and
after selecting initiator (See Figure 4, step-1), the initiator
sends "Request" to the dependent nodes (See Figure 4, step-2).
Dependencies are identified by the Dependency matrix. The
dependency matrix of Figure 4 is presented in formula (4).

 DepMatrix[i][j]= 1 means that the node i depends on node j
(the node j sent a message to node i during the current
checkpointing interval).

 (4)

When a node receives this message, it freezes its
communication and creates its TCP then it returns "Response"
to the initiator (Figure 4, step-3).

Fig. 4: Blocking coordinated checkpointing

The word freeze indicates that the node blocks its execution
when it finds a communication event (sends / receives). The
initiator collects all the "Response" and sends "Commit" to
nodes (See Figure4, step-4). This message informs the receiver
to transform its TCP to PCP and then continues its running
task (See Figure, step-5).
In case of All blocking coordinated checkpointing, the
algorithm is the same except that all nodes are involved in the
checkpointing (See Formula 5):
∀(i,j) ∈ n, DepMatrix[i][j]= 1 (5)
Where n is the number of the nodes that run the application.

B. Non-Blocking Coordinated Checkpointing

After the selection of initiator, the initiator sends "Request" to
the dependent nodes (See Figure 5, step-1) using the
dependency matrix in formula (6). Since checkpointing is not
blocking, nodes can communicate with each other during the
checkpointing process.

Fig. 5: Non-Blocking coordinated checkpointing

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 26

To ensure the creation of a coherent state, the checkpointing
uses "piggybacked messages." Among piggybacked
information there is the csn (checkpointing sequence number).
The Integer csni keeps track of sequence number of the current
checkpoint of process Ni. It is initialized to 0 and increased by
one each time a new tentative checkpoint is taken.
If a node receives a message with higher csn compared to its
local csn, he knows that the sender of this message has already
created his checkpoint before sending this message. In the
classical coordinate checkpointing approach and in this
situation, the receiving node is forced to create his checkpoint
and increment its csn to prevent the creation of orphan
messages. In this case, several unnecessary checkpoints can be
created because it is possible that the sender is not concerned
by the checkpointing. For this reason, it is preferable to use the
Mutable checkpoint MCP, which is neither a tentative
checkpoint nor a permanent checkpoint. Mutable checkpoints
can be saved anywhere, e.g., the main memory or local disk
and the effort of creating it (mutable checkpoint) is negligible
as compared to the tentative one [11]. Figure 6 illustrates the
three checkpoint types that can be created according to the
message type. Some criteria must be satisfied before creating
this MCP such as: the csn of the received message is higher
than the local csn; the node has send a message to other nodes
during the last checkpointing interval and the current
checkpointing process has not finished yet [11].

Fig. 6: Mutable checkpointing technique

In the case of node N4 in Figure 5, he received the "Request",
creates its TCP (See Figure 5, step-2), increments its csn (csn
= 1) and then sends m1 to N3. Node N3 receives m1 before
the request checkpointing. In this case it only creates an MCP
(See Figure 5, step-3; same for the node N1). The MCP will be
converted to TCP when the node receives a "Request"
checkpointing (See Figure 5, step-4). If after a timeout, the
request is not received, MTC will be deleted without any
overload. In case of distributed checkpointing, nodes that
create MTC do not broadcast the checkpointing requests [15].

 (6)

After the creation of TCP, the node sends "Response" to the
initiator (this phase is not shown in Figure 5). The initiator
collects the responses and sends "Commit" to the concerned
nodes to transform their TCP to PCP.
In case of all non blocking coordinated checkpointing, the
algorithm is the same except that all nodes are involved in the
checkpointing (See Formula 5).

IV. CONTRIBUTION1: INITIATOR CHOICE

In Coordination checkpointing strategies, the initiator has an
important role in the process since it:
• Starts and controls the checkpointing process
• Determines the involved nodes in the checkpointing round
• Ensures the checkpointing atomicity.
• Ensures the checkpointing storage in case of soft

checkpointing
• Declares the checkpointing termination.
• Manages the inter-group checkpointing and ensures the

intra-group checkpointing in case of hierarchical system.
• Its clock is used generally as reference for resynchronization

phase in case of time based coordinated checkpointing.

Despite the important role of initiator in the coordinated
checkpointing, the majority of existing studies do not take into
account the strategy of initiator selection. When all nodes
decide to create their checkpoints, the system or the
checkpointing manager selects the initiator either randomly or
based on the smallest identifier among the candidates. During
our research, we find a single paper that proposed a strategy
for the selection of initiator.
The paper [15] uses the same strategy described in Section 3.2
with one difference: the selection of initiator is based on
popularity. Each node Ni uses a Boolean dependency vector
Vecti of size n where n is the number of nodes in the system.
This vector is initialized as follows (See Formula 7):

 (7)

At the reception of a computing message sent by Nj to Ni, the
j th column of Vecti will be equal to 1. Vecti will be initialized
after each checkpointing and it is piggybacked in every
computing message. The number of 1 in the vector indicates
the popularity of the node (See Figure 7). The grouping of
dependency vectors built dependency matrix.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 27

Fig. 7: Dependency vector

According to the algorithm proposed in [15], if the node
exceeds a certain threshold of popularity (in paper experiments
threshold =50%), it triggers the checkpointing. The
experimental results of this paper have shown that the choice
of initiator has a great impact on checkpointing. However, this
strategy may cause a conflict where a many initiators may exist
at the same time. This requires a centralized decision to
eliminate this problem. In addition, this strategy can not
decrease the gap between checkpoint sequence numbers.
To overcome these problems, we propose our strategy of
initiator selection, where the initiator is the node with a small
csn and a great speed (MIPS) as presented in Formula 8.

 (8)

Where:
• k: id of checkpointing round; it also represents the new csn.

We suppose that csn in initialized at 1.

• N: set of nodes in the application.

• Si: speed of node i in MIPS

• csni: csn of node i.
Our approach uses csni as criteria for initiator choice, thereby
avoiding the problem of famine where only a few nodes create
their checkpoints each round. In the case of the strategy
proposed in [15], there will be nodes that rarely create their
checkpoints because they often do not communicate with the
initiator (directly or transitively). In case of rollback, the rate
of re-computing for these nodes will be high which increases
the total checkpointing overhead. Selecting initiator based on
speed accelerates the checkpointing because it is its role to
treat all data of involved nodes during the checkpointing
process.

V. CONTRIBUTION2: SOFT CHECKPOINTING IMPROVEMENT

In the previous section, we used the hard checkpointing where
each node is responsible to store its own checkpointing files.
However in this section, we used a soft checkpointing where
the initiator it selected using our proposition in the previous
section. We also implement an I/O manager in the initiator to
improve its role in the checkpointing process and reduce the
checkpointing overhead caused by the storage time. The soft
checkpointing can be used with any coordinated checkpointing
strategy (all/Min and blocking/non blocking checkpointing).
In the soft checkpointing, the initiator collects the
checkpointing files of all the nodes involved in the

checkpointing process and ensures the checkpointing
atomicity. The atomicity means that all the nodes concerned by
the checkpointing have successfully create theirs
checkpointing file. If any node (concerned by the
checkpointing) has failed to create or send its file to the
initiator, the initiator will cancel the actual checkpointing to
preserve the consistency.
After the initiator ensures checkpointing atomicity of its nodes,
its storage manager handles the I/ O management to minimize
the checkpointing latency. The storage manager is similar to
ROMIO. But in ROMIO, the Data Sieving and collective I/O
will always be executed regardless of the size of useless data
quantity caused by Data Sieving (Holes). In this case, the
amount of unnecessary data can be large compared with the
useful data, which increases the cost and the time of the I/O .
To resolve this issue, the storage manager of the initiator
executes Collective I/O for data requested by different nodes,
and then performs Data Sieving only if the size of useless data
Dj does not exceed a certain threshold αj versus the total size
of data to be written Dj by it (initiator). The threshold αj is
specified as an input. The βj parameter of the initiator
represents the percentage of useless data written relative to the
entire data (see Formula 9). The βj will be compared to αj to
decide to perform a Data Sieving or not (simple buffering).

βj = (100×UDj)/Dj (9)
This strategy eliminates the problem of transfer of large
quantity of useless data. The details of storage algorithm
executed by the initiator are illustrated in Figure 8.

Fig. 8: Storage Algorithm

To explain the storage manager of the initiator, we offer the
example of Figure 9. In this Figure, there are three nodes. {N1,
N2, N3} that have the same initiator. Each node requires a set
of blocks of the same file (blocks requested by all these nodes
are from the same file).

Fig. 9: Storage scenario Example

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 28

For example, the N1 requests blocks 7, 11 and 12, these
blocks are useful. Each node sends its useful blocks to its
initiator. The initiator executes the collective I/O in the
requested blocks by collecting the useful blocks in the buffer
of its memory (union of useful blocks of nodes involved in the
checkpointing process). Collective I/O allows to create more
contiguous blocks (case of blocks {11, ..., 14} in N2 and N3)
and removes redundancies (case of blocks {11, 12} in N2 and
N3). In this case, if the block size is 20 bytes so the size of
useful data is 20 × 10 = 200 Bytes. In ROMIO, the system
executes the Data sieving to create more contiguous blocks.
The total data size will be (29-7) × 20 = 440 bytes. But in this
case 440-200 = 240 Bytes will be useless data, so ROMIO can
increase the checkpointing latency. However, in CSDS: UDa =
240 Bytes; Da= 440 Bytes and if α =30% (specified by SLA)
then β= (100×DIa)/Da =(100×240)/440 ≈ 54,5%). In this case,
the storage manager of the initiator decides not to run the Data
sieving and sends only useful data blocks {{7}, {11, 12, 13,
14}, {20}, {28, 29}}.

VI. EXPERIMENTAL RESULTS

It is clear that non-blocking coordinated checkpointing
minimizes the overhead of checkpointing but the blocking
checkpointing is easier to implement and minimizes the rate of
stored data to ensure consistent rollback. For further details,
paper [1] presents a comparative study between two strategies
for checkpointing.
The aim of the first part of our work is studing the impact of
the initiator choice on the four coordinated checkpointing
strategies: Min-process blocking checkpointing, Min-process
non-blocking checkpointing, All-process blocking
checkpointing and All- process non-blocking checkpointing.
For the initiator choice, we selected three strategies: LID
(Lowest ID), Hpop (Higher popularity) and our approach that
we name it simply Our Init. The used parameters in our
simulations are presented in Table1.

Table1: Simulation parameters

Parameter Value
Number of VM per server 10-100
Server BW 1 Gega bit per second

Cloudlet number (Tasks) 1500
Cloudlet length 100-12000 MIPS
communication rate µ 2-100

Checkpoint interval CPInterval 100-500 second
Failure rate λ 2 to 5 per period

A. Initiator Choice

The first series of experiments studied the Overhead cau
The first series of experiments studied the Overhead caused by
the four checkpointing protocols using several initiator choice
strategies. The overhead in this work in presented as the
rapport between the response time with and without the
checkpointing (See Formula10):

 (10)

Where:
• : Response time using a fault tolerance strategy

• : Response time without using any fault tolerance

strategy.

In the case of min-coordinated checkpointing and in both types
of this checkpointing: blocking (Figure 10 -a-) and non-
blocking (Figure 10 -b -) we have notice two points:
First, Hpop improves checkpointing (minimizes overhead)
with an average of 20%. However, our approach provides an
improvement of 29%. The second point is: the impact of
choice of initiator is greater in the case of blocking
coordinated checkpointing compared to non-blocking
coordinated checkpointing with a percentage of 4.6%. In
blocking coordinated checkpointing, nodes suspend the
execution to record their statements. So the selection of
initiator based on its processing speed can minimize the time
to create checkpoints.
In the case of ALL-Coordinated checkpointing and in both
types of this checkpointing: blocking (Figure 10 -c-) and non-
blocking (Figure 10 -d -) / we notice that Hpop strategy has no
impact on checkpointing performance because it is based on
the popularity of the node and in case of ALL-checkpointing,
the nodes have the same popularity that equal the number of
nodes in the system. So Hpop is created for min-coordinated
checkpointing. But our strategy has improved in performances
by 2.7% because the initiator is the most powerful node in the
system in term of speed.

The second series of experiments calculates the rollback cost
(See Figure 11). Both types of strategy min blocking / non-
blocking use the min rollback [1], and also All-blocking/ non
blocking coordinated checkpointing use All-rollback
technique. In case of Min-rollback (See Figure 11 –a-), our
approach appears effective over other strategies, it avoids the
problem of famine by ensuring checkpointing selection
according to the node’s csn. In case of All-Rollback strategy
(See Figure 11 –b-), the initiator choice has no impact on the
rollback performances.

During our researches, we found many works proposed and
managed the concurrent checkpointing [11][12]. In the
concurrent checkpointing, multiple initiators trigger
checkpointing at the same time. In the latest round of
experiments we studied the impact of checkpointing
concurrency in the overload and the rollback cost in the case
of min coordinated checkpointing (See Figure 12). Increase
the number of initiators by checkpointing increases the
overhead and even the cost of recovery in all approaches of
initiator selection (See Figure 12 –a-). Unexpected results of
concurrent checkpointing in case of rollback (See Figure 12 –
b-) due to the relation between the initiators in each
checkpointing round. It is possible to improve the performance

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 29

of our approach and other approaches even in case of recovery
if insured by concurrent initiators are totally independent of
each other directly and transitively. The independence

condition requires centralized decision otherwise the overload
checkpointing become unbearable.

Fig. 10: Overhead vs Number of checkpointing

Fig. 11: Rollback cost Vs failure rate.

Fig. 12: Impact of Number of initiators on cost and overhead

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 30

B. Soft Checkpointing

All previous experiments were carried out with a hard
checkpointing (without the use of soft checkpointing),
that is to say that the initiator manages just the
checkpointing and each node is responsible for storing its
own checkpointing file. The goal was: to measure the
minimum impact on the initiator checkpointing without
assigning the other roles.
In this part of the experiments, we focused on the soft
checkpointing in minimum coordinated checkpointing
and we used the same parameters of Table1. According to
the results of comparing hard and soft checkpointing, we
noticed that the initiator impact on checkpointing
increases by almost 17% compared to a hard
checkpointing whatever the strategy of initiator choice. It
is clear that in case of all coordinated checkpointing; the
impact of soft checkpointing will be bigger (See Figure
13).

We have strengthened the role of initiator in the soft
checkpointing by the Storage Service (CS + SS) and
compared its performance with the soft checkpointing
without checkpointing Storage Service (SC). Both (SC +
SS) and (SC) select their initiators using our
contribution1.

The first experiment in this part is destined to measure the
overhead in case of different sizes of checkpointing files.
According the results illustrated in Figure 14-a-, the
Overhead time increases if the size of files increases
because of the storage time. However, our strategy CS +
SS is better than CS because the storage service reduces
the transfer of useless data during the I/O.
The goal of the second experiment is measuring the
impact of the number of nodes involved in the
checkpointing on the overhead caused by (SC + SS) and
(SC) .the results (See Figure 14-b-) prove that increasing
the number of the nodes concerned by the checkpointing
process increases automatically the overhead because the
number of checkpointing files will increase. However in
CS + SS, the storage service in the initiator uses the
collective I/O to collect and organise data and it uses also
smart data sieving to reduce the transfer time.

Fig.13: Overhead in soft and hard checkpointing

Fig.14: Overhead in soft checkpointing with and without storage service

VII. CONCLUSION

The checkpointing is a high performance tool to ensure
fault tolerance and system reliability. The literature offers
many checkpointing protocols that ensure the creation of
a coherent state for the rollback. In this paper, we have
explained in details the most popular coordinated
checkpointing strategies and the I/O techniques. Then we
proposed two contributions. In the first contribution, we
studied the impact of initiator choice on these protocols.
We also proposed a strategy for the selection of initiator
that accelerates checkpointing and minimizes the rollback
cost. The second contribution proposes a soft

checkpointing with a storage service based on collective
I/O and smart data sieving. The experimental results
prove that:
• The strategy of initiator choice has a non-negligible

impact on checkpointing performances, especially in
case of blocking coordinated checkpointing.

• Considering the physical characteristics of initiator
(speed, overhead, ...) reduces the checkpointing
overhead.

• Decreasing the gap between checkpoint sequence
numbers improve greatly the performances of
minimum rollback strategies.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 31

• The initiator choice has no impact on all-rollback
strategies.

• The concurrent checkpointing increases the
checkpointing overhead. And does not necessarily
improve the rollback performances.

• The concurrent checkpointing can improve recovery
performance if the initiators are completely
independent with minimum csn.

• The initiator choice has higher impact in case of soft
checkpointing compared to hard checkpointing.

• The soft checkpointing can improve the checkpointing
performances.

• Using I/O management in soft checkpointing reduces
the storage time of checkpointing and therefore it
reduces also the overhead.

• Using a smart data sieving reduces the transfert of
useless data during the storage.

 In the future works, we will use a smart strategy for the
initiator selection by using the techniques of consensus
between nodes represented by agents. We will also
improve the I/O technique using other parameters to
balance between the collective I/O with or without data
sieving such as cost and consumed energy during the I/O.

REFERENCES

[1] D. Buntinas, C. Coti, Thomas Herault, Pierre Lemarinier, Laurence
Pilard, Ala Rezmerita, Eric Rodriguez, Franck Cappello: Blocking
vs. non-blocking coordinated checkpointing for large-scale fault
tolerant MPI Protocols, Future Generation Computer Systems,
Vol.24, No.1, 2008, pp. 73-84

[2] K.M. Chandy, L. Lamport, Distributed snapshots: Determining
global states of distributed systems, Transactions on Computer
Systems, Vol.3, No.1, 1985, pp. 63–75.

[3] H. Hui, Z. Zhan, W. Bai Ling, Z. De Cheng and Y. Xiao-Zong, A
Two-level Application Transparent Checkpointing Scheme in
Cloud Computing Environment, International Journal of Database
Theory and Application, Vol.6, No.2, 2013, pp. 61-71.

[4] M Slawinska, J Slawinski and V.Sunderam, Unibus: Aspects of
heterogeneity and fault tolerance in cloud computing , In
Proceeding of IEEE International Symposium on Parallel &
Distributed Processing, Workshops and PhD Forum (IPDPSW),
2010, pp. 1-10.

[5] T. Yuval and C.H. Séquin. Error recovery in multi-computers using
global checkpoints. In Proceeding of International Conference on
Parallel Processing, 1984, pp. 32–41.

[6] Koo R. and Toueg S., Checkpointing and Roll-Back Recovery for
Distributed Systems, IEEE Trans. on Software Engineering,
Vol.13, No.1, 1987, pp. 23-31.

[7] Cao G. and Singhal M., On coordinated checkpointing in
Distributed Systems, IEEE Transactions on Parallel and
Distributed Systems, Vol.9, No.12, 1998, pp. 1213-1225.

[8] N. Limrungsi, J. Zhao, Y. Xiang, T. Lan, H. H. Huang and S.
Subramaniam, Providing reliability as an elastic service in cloud
computing, In Proceeding of IEEE International Conference on
Communications (ICC12), 10-15 June 2012, Ottawa, Canada, pp.
2912-2917.

[9] R. Prakash and M. Singhal. Low-Cost Checkpointing and Failure
Recovery in Mobile Computing Systems. IEEE Transactions on
Parallel and Distributed Systems, Vol.7, No.10, 1996, pp.1035–
1048.

[10] P. Kumar, P. Gahlan, A Low-Overhead Minimum Process
Coordinated Checkpointing Algorithm for Mobile Distributed
System, International Journal of Computer Applications, Vol.3,
No.1, 2010, pp. 17-21.

[11] G. Cao, M. Singhal, Mutable Checkpoints: A New Checkpointing
Approach for Mobile Computing systems, IEEE Transaction On
Parallel and Distributed Systems, Vol.12, No.2, 2001, pp. 157-
172.

[12] Chaoguang Men, Xiaozong Yang , Using Computing Checkpoints
Implement Consistent Low-Cost Non-blocking Coordinated
Checkpointing, Parallel and Distributed Computing: Applications
and Technologies Lecture Notes in Computer Science Vol.3320,
2005, pp. 570-576 .

[13] J. Surender, S. Arvind, K. Anil and S. Yashwant, Low Overhead
Time Coordinated Checkpointing Algorithm for Mobile
Distributed Systems, Computer Networks & Communications
(NetCom) in Lecture Notes in Electrical Engineering, 131(2013)
pp. 173 -182.

[14] Y. Liu, W. Wei and Y. Zhang, Checkpoint and Replication
Oriented Fault Tolerant Mechanism for Map Reduce Framework,
Telkomnika Indonesian Journal of Electrical Engineering, Vol.12,
No.2, 2014, pp.1029-1036.

[15] Z. Abdelhafidi, M. Djoudi, M.B. Yagoubi An Improved schema
of coordinated checkpointing protocol for distributed systems
based on popular process. International Conference on
Innovations in Information Technology (IIT), 2012, pp. 367-372.

[16] Ouyang, X., K. Gopalakrishnan and D-K. Panda. 2009.
Accelerating checkpoint operation by node-level write aggregation
on multicore systems. In proceeding of International Conference
on Parallel Processing (ICPP’2009), Vienna, Austria, 22-25
September 2009, pp : 34-41.

[17] Cornwell, J. and A. Kongmunvattana, 2011. Optimized I/O
Operations for Checkpoint Creation in BLCR”, 24th International
Conference on Computers and Their Applications in Industry and
Engineering (CAINE’11) Honolulu, Hawaii, USA 16-18
November 2011. pp. 284-289.

[18] Meroufel, Bakhta; Belalem, Ghalem, Lightweight coordinated
checkpointing in cloud computing, Journal of High Speed
Networks , Volume 20 (3): 131-143, 2014

[19] Jose Carlos Sancho, Fabrizio Petrini, Greg Johnson, Juan
Fernandez, and Eitan Frachtenberg. On the feasibility of
incremental checkpointing for scienti_c computing. In 18th
International Parallel and Distributed Processing Symposium
(IPDPS), page 58, 2004.

[20] Chen, Y., X.-H. Sun, R. Thakur, P. C. Roth and W. D. Gropp,
2011. LACIO: A New Collective I/O Strategy for Parallel I/O
Systems, IEEE International Parallel & Distributed Processing
Symposium (IPDPS), Anchorage, Alaska 16-20 May 2011, pp:
794-804.

[21] Del Rosario, J., R. Bordawekar and A. Choudhary. 1993.
Improved parallel I/O via a two-phase runtime access
strategy.ACM SIGARCH Computer Architecture News - Special
issue on input/output in parallel computer systems. 21(5): 31-38.

[22] Thakur, R., W. Gropp and E. Lusk, 1999. Data Sieving and
Collective I/O in ROMIO. In Proceedings of the Seventh
Symposium on the Frontiers of Massively Parallel Computation,
February 1999, pp:182–189.

[23] Thakur, R., W. Gropp, and E. Lusk. 1999b. On Implementing
MPI-IO Portably and with High Performance. In Proceedings of
the Sixth Workshop on I/O in Parallel and Distributed Systems,
pp: 23-32

[24] Cornwell, J. and A. Kongmunvattana, 2011. Optimized I/O
Operations for Checkpoint Creation in BLCR”, 24th International
Conference on Computers and Their Applications in Industry and
Engineering (CAINE’11) Honolulu, Hawaii, USA 16-18
November 2011. pp. 284-289.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 9, 2015

ISSN: 2074-1278 32

