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Enhanced Coordinated Checkpointing in
Distributed System

Bakhta Meroufel and Ghalem Belalem

restart is the act of restarting the application from a
Abstract—Coordinated checkpointing is a well-known method checkpointed state. If checkpoints are taken, then when an
for achieving fault tolerance in distributed computing systems. Thigipplication fails, it may be possible to restart it from its most
type of checkpointing selects an initiator to manage and ensure thecent consistent checkpoint. This limits the amount of

checkpointing process. The majority of existing works ignore the ro'%omputation lost because of a failure to the computation
and the importance of this initiator. The work presented in this paper

can be divided on two parts. In the first part, we examine the impa@lerfo”_m':‘(.i between the Ia§t checkpoint and the_ failure.

of initiator choice on different types of coordinated checkpointing!ln @ distributed system, since the processes in the system do
and we prove its importance in term of performances. We propodgot share memory, arf"iglobal stateGS of the system is

also a simple and an effective strategy to select the best initiator eadbfined as a set of local state§, one from each process |
checkpointing round. In the second part of this work, we focused oparticipating in the application:

the soft checkpointing and we have strengthened the role of initiatgs g = {LS;, LS, ..., LS} (1)

by adding a storage manager that ensures atomicity and speed of

storage checkpoints files using a smart I/O strategy. A checkpointing must create a consistent state. In this case,

Keywords—Checkpointing,  consistency,  rollback,  fault GSi must be created without any orphan message. GSi is
tolerance, overhead, initiator, coordination, 1/O, atomicity, datastrongly consistent if IEj Is consistent an(:] W'thOL('jt am(/j tr?]nsn
sieving, collective 1/O. mes;agesSend(m) an Ref:\,g(m) note the send and the
receive events respectively in the system. So:
I. INTRODUCTION 'the messﬂa_ge m ijsgrphan 'f& dILS LS )

: . . _ . ecy(m and Sengm an ,
Smce the computing potential of distributed systems is Oﬂeﬁ'he%rfqeisagsé m is tranﬁit i)f' S L LS} LGS (2)

hindered '

by their susceptibility to failures, many different
techniques of fault tolerance have been developed an%ecw(m) FLS and Sendm) £S5, and {LS, LS} £G5S (3)

mte_gratgd _|_nto them "?‘CC‘?Td'”g'y’ in order to improve .bOthTo satisfy that consistency, the checkpointing technique can be
their reliability and availability and to reduce re'compUtat'onS'cIassified in three categories:

Fault-tolerance is the property that enables a system {0 Independent checkpointing (Uncoordinated) [4][5]: the

continue operating properly in the event of the failure of some i )
of its components. To achieve the fault tolerance, several Checkpoints at each process are taken independently

techniques are proposed such as: replication and checkpointing Without any synchronization among the processes.
[14]. Because of absence of synchronization, there is no
Replication or redundancy creates many identical and guarantee that a set of local checkpoints taken will be a
consistent copies of the object (data or task) in several consistent set of checkpoints. It may require cascaded
resources, in case of failure, one copy can replace the failed g packs that may lead to the initial state due to domino-

one. _The repIu_:atlon ensures a real-tlmg_fault tolerance by effect [4]. The domino effect appears when a subset of
masking the failure but it consumes additional resource and .
processes rollback unboundedly to determine a set of

increases the system complexity. The second technique is the i ) .
checkpointing. Checkpoint/Restart (C/R) is a way to provide mutually_ _conS|stent checkpomts.. The |n.depend_ent
persistence and fault tolerance in both uni-processor and Checkpointing store all the checkpoints file during the job
distributed systems. Checkpointing is the act of saving an life.

application’s state to stable storage during its execution, while Communication induced checkpointing: the processes take

two kinds of checkpoints, local and forced. Local

B. Meroufel, Dept. of Computer Science, Faculty of Exact and Applied checkpoints can be taken independently, while forced
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» Coordinated or synchronous checkpointing [1][12]: theconclusion and some perspectives are given in section 7.
processes will synchronize to take checkpoints in such a
manner that the resulting global state is consistent. The II. RELATED WORKS
main advantage is that it sores only one permanenthe coordinated checkpointing ensures the consistency using
checkpoint in the stable memory and it is domino-effecfWo types of coordination: blocking and non blocking. A
free. blocking, coordinated checkpointing protocol requires flushing
communication channels before taking the state of a process in

The experimental results in the literature prove that thé)rOIer to_ ensure the chan_nels during _the chec_kpoi_nt With(.)Ut
coordinated checkpointing is the most convenientMterrupting the computation. It requires logging in-transit

checkpointing strategy in scalable distributed system. IEneszgget_s anih ;ﬁplaylng them _at reztart, which h|mpl|es
minimizes the resource consumption and ensures a consist rdination wi € progress engine and queue mechanisms.

state using only one recovery line. Checkpointing usuall _Chandy-Lamport [2] _algonthm IS th_e _earllest non-
consists of three main phases: consistency management ph cking all-process coordinated checkpointing algorithm.

checkpointing creation phase and storage phase. The maj is technique requires that at least one process sends a
problem of checkpointing is the overhead caused by th arker to notify the other ones to take a snapshot of their local

storage time of checkpointing files in stable storage (70% otates and then forms a global checkpoint. Since markers are

checkpointing time is caused by the storage [16]). During thaent along all channels in the network, this algorithm leads to
storage time, and whatever the checkpointing protocol use%‘I ext_ra_\-o_verhead [1]. - .
(coordinated/ uncoordinated/ communication indexed), node 0 minimize the check_pomtlr_wg averhead for both blocking
will be blocked to ensure the checkpointing atomicity, Whichand non-blockmg_ algonthr_n, It was hecessary to reduce the
significantly increases application execution time and caus mber of nodes involved in the checkpomtmg_process. In th'.s
overhead. case, the system must track all the dependencies created c_zlurlng
To reduce the time of checkpointing storage, several strategi@s checkpomtlng_ interval [8]. Only _t_he no_des depending
are proposed in the literature. The soft checkpointing is glrectly or _transmvely_ to a chosen initiator will be forced to
reate their checkpoints. Koo and Toeg [6], and Cao and

powerful strategy to reduce the storage time. Generally, iff, - ; X
conventional checkpointing, each node involved in the inghal [7] proposed minimum-process blocking coordinated

checkpointing, creates and stores its own checkpointing file iﬁheckpoigfting a:}llgo:th?s._ "? (9], [.1r?]’hthe ‘?‘”Thors proposed_a
stable storage server. In the soft checkpointing, nodes credfg@n-coorn mgte checkpointing wit t € minimum process in
their files and send them to a special node, and then th obile distributed systems. The min-process checkpointing

resume their works immediately. The special node collects th use the creation of useless checkpoints. To overcome this

fles and stores them in the stable memory parallel with thgroblem, Cao and Singhal [11] introduce the concept of

execution of application [18]. The management of 1/O iSmutable checkpoints. The authors in [12] use a probabilistic

another strategy that allows the reduction of the storage time g.pproach to control the creation of mutable checkpoints. A

checkpoints by reducing the transfer time and the data quanti Jocess takes its m“tab'? ChECprint only if the _p_“?b?‘b”i_‘y
needed for the storage [17]. that it will get the checkpoint request in the current initiation is

In this paper we wil focalize on the coordinated high. In [13], the authors combine between min- process and

checkpointing. Our contribution is divided on two parts: theall-process checkpointing to reduce the rollback overhead. The

initiator choice and the soft checkpointing improvement. In théimg’ based co%rdinated CEECprintiEg [1::’] su?pose tr?at _thed
initiator choice, we will study the different strategies of thighedes among the system have not have loosely synchronize

type of checkpointing, not to compare between them, but t Iot_:ks. IE this cas_e,da simple tcontrol O.f tser:d/tretcewe events
study the impact of initiator choice on the performances o uring a known period can create a consistent state.

: : he majority of existing coordinated checkpointing use two-
each strategy. We will propose an approach to improve th il )
checkpointing and the recovery performances. In the part ases checkpointing to reduce the overhead. The first phase

soft checkpointing improvement, we will strengthen the role ofreates tentative checkpoints TCP. It is a checkpointing file

initiator by adding a storage manager. The storage manag‘?atrored only in the local memory of the node. It will be

ensures the atomicity and uses a smart 1/O to manage tHﬁnSfO{)med FO pﬁrn_}_aélsr_lt (;]heck%(l)ints PCP in the second
storage phase. phase by storing the in the stable memory.
The remainder of the paper is organized as follows. Section 2

reviews some coordinated checkpointing strategies existing i

literature and explains also several 1/O techniques. Section % of the time checkpoints, the remaining time is caused by

descnbe_s n det_alls _the most popular coor(_j|_nf';1te he checkpoints storage phase. Minimizing the checkpoint file
checkpointing. Section 4 introduces our approach of initiatoki o .on reduce the storage time. The compression of the

selection. Section 5 explains the soft checkpointing based Qihecknoint files and reducing the number of nodes involved in
our initiator. Section 6 shows some experimental results angq checkpoints can minimize the checkpoint file size.

analysis the performances of our both contributions. Finally, a

sure consistency and creating checkpoints presents only
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Another way to reduce the overhead is to store onlyhe small pieces of data. The additional unrequested data are
fundamental data at each checkpoint. The ability to identifgalled holes (See Figure 1). The size of holes compared to the
these data depends on the checkpoint level Incrementaquested data controls the efficiency of data sieving.
checkpointing [19] reduces this cost. A runtime monitor tracks

application writes, and if it detects that a given memory regiofror many parallel applications, even though each process may
has not been modified between two adjacent checkpoints, thatcess several non-contiguous portions of a file, the requests
region is omitted from the subsequent checkpoint, therebgf multiple processes are often interleaved and may constitute
reducing the amount of data to be saved. This strategy can Adarge contiguous portion of a file together [20]. In order to
expensive since it tracks all the user’s operations. achieve better I/O performance, a group of processes may
The management of I/0O has proven its efficiency in term o€ooperate with each other in reading or writing data in a
storage time reduction. The I/O can be used in the generabllective and efficient way, which is known as collective 1/O.
cases where there are write/read executions (even without
checkpointing) and is generally based on the notion of

aggregation. The 1/0O management can be also hybridized with | - | | -:-—'_Ll
the other strategies such as the compression and even thei Iﬁ
DataSieving

Holes Strides

incremental checkpointing which makes it very useful and besirec cataof the spplication
powerful strategy.

An important reason for the limitations of classical I/O systems [ ] RI I Llet]—E ]:l </
is that applications often send smaller queries disjoint. This Fgionaccessad By bata sieving
access mode generates a first additional cost to the Iarge ) .

L . . - . FIg. 1: Data sieving approach [15]
number of applications running on various transmission
chaqnels (pus /" network com.munl.catlons), but MO e collective 110 is a general idea that exploits the
significantly increases the processing time of the latter [14]Correlations among accesses from multiple processes of a
To deal with this problem, several "aggregation" methods hav

been proposed we can distinquish two tvpes of aqareqatio arallel application and optimizes its I/O accesses. The basic
b p gul yp 99regaliofifaa behind this technique is to coordinate 1/0 accesses from
strategies: dependent and collective.

Independent I/O is a straightforward form of 1/0O and is widelydézzzz?;gpwﬁ:f Sg;fé -Ie—gih p(r)?c?ﬁsr%rsnsnga?geaéggosréna#ﬁins

used in parallel applications. This form of /G can be C"""‘EC!FIformation is used to derive an efficient 1/0O schedule. Note

independently by an individual process or any subset %hat an 110 schedule may require a processor (aggregator) to

ipnrgge:iintolfloa}s 5}2&'}1rsaﬁgl\'/zatt'h%n%relggma:gvagrt% ?ren I/O ccess data on behalf of some other processors which results in
P P ommunication when executing the 1/0O schedule.

for each individual process or any subset of the processes thﬁ%e collective 1/0 can distinguished by the "physical place”

e S e oo e 2 foyire e operaion grou i perormed (20} 1 soregaton s
the buffer to the local disk from their reception. Buﬁeringexecmed among processes (calculation on the nodes), the most

. ed method is the "Two-Phase I/O" approach; if aggregation
proposes that the buffer will be used for temporary storage 3 - "Nyicl.
I/O. The write operation includes small blocks in a buffer (ofci)S performed at the records, we are talking about system "Disk

e . . . - Directed 1/O" if the approach is finally realized within a
limited size). Once the'buﬁer is completely filled, it will be server, the method is "server-directed 1/O".
forwarded to the local disk.

s . : . - "Two-Phase 1/0", this method [21], as its name suggests,
The_ L'St.l/o approach [23] prowdes_ routines to Indlcateconsists of two main phases: after a consensus between the
within a single call access number. A listaatherence of the

: . . T L processes involved, the first step is to retrieve the data, the
\s/;esvtverzw\lltlr[nﬁ]e. l(:fc;pnt:r?gr?if:ii;r?: C;rfr;:rzoit;nn ISot\t]v(;v(grStr!sti)rL:(t:eedEecond concerns the redistribution between each of the latter

. . . . " ' . processes. To implement the first phase, each process must
gi?r? slgrot trgqt#;e I(;?r?:;i O]icr:ncgrzn'ngxgdﬂUtgz'in%_msézfr%g’cgliﬁow the necessary data to others. The advantage of this
corr?munication Eriver [3][4][5] g high-p method is that it allows to access contiguous and wide and

therefore strongly reduce the time of reactivity. This method is

ﬁf ggsi-r?loﬁrflengia(t:goc:gIt?nitec:%rﬁrrlweucrﬁgglirglr?%ofragoigmlf:;nss:s;fe most portable strategies which makes it desirable for the
9 9 ' eterogeneous systems (See Figure 2).

describes the distribution of data in memory and a similar list
is used to perform matching on disk. In this strategy, the
messages will piggyback a lot of data during the 1/O which
increases the overhead.

Data sieving [22] is one of the techniques proposed to address
this issue by aggregating small requests into large ones.

Instead of accessing each small piece of data separately, data
sieving accesses a large contiguous scope of data that includes
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Depuarixli][il= 1 means that the node i depends on node |

(the node j sent a message to node i during the current

Comm.jphase checkpointing interval).

File domains v —— 1 l D D

‘ 11 10

Aggregator 0 ' Aggregator 1 .=
e BE1 Dgp.‘»i‘ctﬂ.r o1 10 (4)

ool
m o ghese When a node receives this message, it freezes its
communication and creates its TCP then it returns "Response”

3 ) - niti i -
S — u s to the initiator (Figure 4, step-3).
D Tcp --—» Request S :?‘:sform TCP to

Fig. 2: Collective /0 @ eer s commit /@\

ROMIO is the most popular I/O platform used in distributed w4

. N

gl = g ,;"i
system [22]. It uses the collective 1/O (Two-phases) to manage / \ B 2l D
the requested blocks of different nodes and then it uses the ,

. . ~ < _i‘:_
data sieving to transfer these blocks to the memory. = @
‘\\.‘ “-\\\\ \‘\\-\.,,v
ugs g

N3

[1l. COORDINATED CHECKPOINTING Na

A message passing system consists of N fixed number of nodeg 4. glocking coordinated checkpointing
that communicate each other only through messages. The

messages generated by underlying distributed application Withe word freeze indicates that the node blocks its execution
be referred to as computation messages. Messages generg{gdn it finds a communication event (sends / receives). The
by the nodes to advance checkpoints, handle failures and f@fitiator collects all the "Response” and sends "Commit" to
recovery will be referred to as system messages. In this papg§des (See Figure4, step-4). This message informs the receiver
the horizontal lines extending towards right hand sidgg transform its TCP to PCP and then continues its running
represent the execution of each process and arrows betwgggk (See Figure, step-5).

them represent the messages. Processes have access to a Sigblgase of All blocking coordinated checkpointing, the

storage device that survives failures. The Figure 3 illustrategigorithm is the same except that all nodes are involved in the
the communication process of three nodes. The message  checkpointing (See Formula 5):

in-transit message, amd3 is an orphan message according to i) 0, Defanslilli]= 1 (5)

the recovery Cl. The message® and m2 are regular \yhere n is the number of the nodes that run the application.
messages.

c1
Noder ’l,,’ B.Non-Blocking Coordinated Checkpointing
\ml\\ Y After the selection of initiator, the initiator sends "Request" to
m 4 the dependent nodes (See Figure 5, step-1) using the
Node? ) dependency matrix in formula (6). Since checkpointing is not
EP N blocking, nodes can communicate with each other during the
Node3 ~~ - checkpointing process.
A @ ver ___» Request
o - i

Fig. 3: System presentation

N1|

In the next section, we will explain the two most popular and

performing coordinated checkpointing types: blocking and w2 /\"\\'/‘

o |
s
=
1 Sso mz

non-blocking.

2S

1 ~.
L ~
~.
H Y
T

A.BlockingCoordinated Checkpointing N3 \

In case of Minimum blocking coordinated checkpointing and ., lﬁ?fm

after selecting initiator (See Figure 4, step-1), the initiatoFig. 5: Non-Blocking coordinated checkpointing
sends "Request" to the dependent nodes (See Figure 4, step-2).

Dependencies are identified by the Dependency matrix. The

dependency matrix of Figure 4 is presented in formula (4).
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To ensure the creation of a coherent state, the checkpointing

uses "piggybacked messages.” Among piggybackedfter the creation of TCP, the node sends "Response” to the
information there is thesn (checkpointing sequence number). initiator (this phase is not shown in Figure 5). The initiator
The Integercsn keeps track of sequence number of the currentollects the responses and sends "Commit" to the concerned
checkpoint of proceshl. It is initialized to 0 and increased by nodes to transform their TCP to PCP.

one each time a new tentative checkpoint is taken. In case of all non blocking coordinated checkpointing, the
If a node receives a message with higtercompared to its algorithm is the same except that all nodes are involved in the
local csn he knows that the sender of this message has alreadigeckpointing (See Formula 5).

created his checkpoint before sending this message. In the

classical coordinate checkpointing approach and in this [VV. CONTRIBUTIONL: INITIATOR CHOICE

situation, the receiving node is forced to create his checkpoiff, coordination checkpointing strategies, the initiator has an
and increment _|tscsn to prevent the creation of o_rphan important role in the process since it:

messages. In this case, several unnecessary checkpoints Ca':'e?arts and controls the checkpointing process

created becaus_e itis possd_)le that th(? _sender IS Ot CONCINeR o0 mines the involved nodes in the checkpointing round
by the checkpointing. For this reason, it is preferable to use the - -
*~ Ensures the checkpointing atomicity.

Mutable checkpoint MCP, which is neither a tentative. E th hecknoint i . f t
checkpoint nor a permanent checkpoint. Mutable checkpoints nsures - the - checkpointing - storage In— case ot S0
can be saved anywhere, e.g., the main memory or local disk checkpointing - o

and the effort of creating it (mutable checkpoint) is negligible’ Declares the checkpomtmg termmatl.on_.

as compared to the tentative one [11]. Figure 6 illustrates tHe Manages the inter-group checkpointing and ensures the
three checkpoint types that can be created according to the [Ntra-group checkpointing in case of hierarchical system.
message type. Some criteria must be satisfied before creatihglS ¢lock is used generally as reference for resynchronization
this MCP such as: the csn of the received message is higher Phase in case of time based coordinated checkpointing.

than the local csn; the node has send a message to other nodes

during the last checkpointing interval and the currenespite the important role of initiator in the coordinated
checkpointing process has not finished yet [11]. checkpointing, the majority of existing studies do not take into
account the strategy of initiator selection. When all nodes

decide to create their checkpoints, the system or the
checkpointing manager selects the initiator either randomly or
based on the smallest identifier among the candidates. During

Computing /l\ Request our research, we find a single paper that proposed a strategy
l messdge for the selection of initiator.

Verify the existance The paper [15] uses the same strategy described in Section 3.2
[ of MCP } with one difference: the selection of initiator is based on
MCP exist popularity. Each nodé&\; uses a Boolean dependency vector
No Vect of size n where n is the number of nodes in the system.

This vector is initialized as follows (See Formula 7):

[ Verify the message type ]

[ Verify the MCP criteria ]

criteria satisfied

No Yes

[ Transforme MCP to ]

Create MCP

TCP

else @)

{L’Eft-[."] =1 ifi=j
Vect;[j1=0

Fig. 6: Mutable checkpointing technique

In the case of nodd4 in Figure 5, he received the "Request”, ) .
creates its TCP (See Figure 5, step-2), incrementsitcsn At the reception of a computing message seritjbyto N, the
.th - . . .y -
column ofVect will be equal to 1.Vect will be initialized

= 1) and then sends m1 3. NodeN3 receives m1 before | DS L. VELY )
the request checkpointing. In this case it only creates an MCPter each checkpointing and it is piggybacked in every

(See Figure 5, step-3; same for the niddg The MCP will be computing message. The number gf 1 in the vector in(_jicates
converted to TCP when the node receives a "Request® popularity of the node (See Figure 7). The grouping of
checkpointing (See Figure 5, step-4). If after a timeout, thé€pendency vectors built dependency matrix.

request is not received, MTC will be deleted without any

overload. In case of distributed checkpointing, nodes that

create MTC do not broadcast the checkpointing requests [15].

(6)

DeDygrriz =

oo e
R
= ]
==
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checkpointing process and ensures the checkpointing
atomicity. The atomicity means that all the nodes concerned by

K / the checkpointing have successfully create theirs
lete - \ checkpointing file. If any node (concerned by the

1jojojo 1loj1j0

checkpointing) has failed to create or send its file to the

N3 initiator, the initiator will cancel the actual checkpointing to
N \ s preserve the consistency.

Na S After the initiator ensures checkpointing atomicity of its nodes,
its storage manager handles the I/ O management to minimize
the checkpointing latency. The storage manager is similar to
According to the algorithm proposed in [15], if the nodeROMIO. But in ROMIO, the Data Sieving and collective 1/0

exceeds a certain threshold of popularity (in paper experimen‘M" always be executed regardless of the size of useless data

threshold 50%), it triggers the checkpointing. The quantity caused by Data Sieving (Holes). In this case, the

experimental results of this paper have shown that the choit‘?'én?ulnfj of unr;}gck? ssary data k(:an be Iargehcompare? g\"trll/(tJhe
of initiator has a great impact on checkpointing. However, ghigiSeful data, which increases the cost and the time of the ’

strategy may cause a conflict where a many initiators may exi-srt0 resolve this ISSUE, the storage manager qf the initiator
at the same time. This requires a centralized decision gxecutes Collective 1/O for data requested by different nodes,

eliminate this problem. In addition, this strategy can nofind then performs Data Sieving only if the size of useless data

decrease the gap between checkpoint sequence numbers. Dj d0€s not exceed a certain threshmldersus the total size
To overcome these problems, we propose our strategy gf data to be writterD; by it (initiator). The threshold; is

initiator selection, where the initiator is the node with a smalfPecified as an input. The; parameter of the initiator
csn and a great speed (MIPS) as presented in Formula 8. represents the percentage of useless data written relative to the
entire data (see Formula 9). TRewill be compared tay; to

Fig. 7: Dependency vector

Lk 5 decide to perform a Data Sieving or not (simple buffering).
Init™ = max;ex(Z5) ®) B, = (100<UD,)/D); ©9)
Where: This strategy eliminates the problem of transfer of large

« k: id of checkpointing round: it also represents the new csrfluantity of useless data. The details of storage algorithm
We suppose that csn in initializeti1 executed by the initiator are illustrated in Figure 8.

* N: set of nodes in the application. ( Buffering checkpoints files of all ]
. nodesinvolved on the checkpointing

* S:speed of nodeiin MIPS

* csn: csn of node . i et

Our approach usessn as criteria for initiator choice, thereby

avoiding the problem of famine where only a few nodes create (Satcutate pofbuffereddata ]

their checkpoints each round. In the case of the stratq wun o by biocs Yes =«

No

proposed in [15], there will be nodes that rarely create their

checkpoints because they often do not communicate with the ¢ R C |
initiator (directly or transitively). In case of rollback, the rate 1

of re-computing for these nodes will be high which increases Execurethe o )

the total checkpointing overhead. Selecting initiator based ofig. 8: Storage Algorithm

speed accelerates the checkpointing because it is its role to

treat all data of involved nodes during the checkpointingfo explain the storage manager of the initiator, we offer the

process. example of Figure 9. In this Figure, there are three nodes. {N1,
N2, N3} that have the same initiator. Each node requires a set
V.CONTRIBUTION2: SOFT CHECKPOINTING IMPROVEMENT of blocks of the same file (blocks requested by all these nodes

In the previous section, we used the hard checkpointing whefe® from the same file).

each node is responsible to store its own checkpointing files.
However in this section, we used a soft checkpointing where
the initiator it selected using our proposition in the previous
section. We also implement an I/O manager in the initiator to

N2 N3

EE |crEm = @m0 |

R U 4

improve its role in the checkpointing process and reduce the ] E €3 E3 60 =] E3ED
checkpointing overhead caused by the storage time. The soft
checkpointing can be used with any coordinated checkpointing ([userueioc [ vseless siozts

strategy (all/Min and blocking/non blocking checkpointing).  Fig. 9: Storage scenario Example
In the soft checkpointing, the initiator collects the
checkpointing files of all the nodes involved in the
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For example, the N1 requests blocks 7, 11 and 12, these e (10)
blocks are useful. Each node sends its useful blocks to i€7¢™" = &
initiator. The initiator executes the collective 1/0 in the Where:
requested blocks by collecting the useful blocks in the buffer RETg: Response time using a fault tolerance strategy
of its memory (union of useful blocks of nodes involved in the, K1z Response time without using any fault tolerance
checkpointing process). Collective 1/0 allows to create more
contiguous blocks (case of blocks {11, ..., 14} in N2 and N3)

and removes redundanmes (cas.e Of, blocks {11, 12} in N_Z anﬁil the case of min-coordinated checkpointing and in both types
N3). In this case, if the block size is 20 bytes so the size Qff his checkpointing: blocking (Figure 10 -a- ) and non-
useful data is 20 x 10 = 200 Bytes. In ROMIO, the systemp|ocking (Figure 10 -b -) we have notice two points:

executes the Data sieving to create more contiguous blocksist. Hpop improves checkpointing (minimizes overhead)
The total data size will be (29-7) x 20 = 440 bytes. But in thigyith an average of 20%. However, our approach provides an
case 440-200 = 240 Bytes will be useless data, so ROMIO camprovement of 29%. The second point is: the impact of
increase the checkpointing latency. However, in CSDS;+JD choice of initiator is greater in the case of blocking
240 Bytes; = 440 Bytes and itt =30% (specified by SLA) coordinated checkpointing compared to non-blocking
thenB= (100<DI,)/D, =(100x240)/440= 54,5%). In this case, coordinated checkpointing with a percentage of 4.6%. In
the storage manager of the initiator decides not to run the Dal@docking coordinated checkpointing, nodes suspend the

sieving and sends only useful data blocks {7}, {11, 12, 13,execution to record their statements. So the selection of
14}, {20}, {28, 29}}. initiator based on its processing speed can minimize the time

to create checkpoints.

In the case of ALL-Coordinated checkpointing and in both

) ) , .. types of this checkpointing: blocking (Figure 10 -c- ) and non-
It. is _clear that non-blocking coor_dn_‘lated checkpomupgmocking (Figure 10 -d -) / we notice that Hpop strategy has no
minimizes the overhead of checkpointing but the blockingmnact on checkpointing performance because it is based on
checkpointing is easier to implement and minimizes the rate gf,o popularity of the node and in case of ALL-checkpointing,
stored data to ensure consistent rollback. For further detail§,s nodes have the same popularity that equal the number of
paper [1] presents a comparative study between two strategig§qes in the system. So Hpop is created for min-coordinated

for checkpointing. checkpointing. But our strategy has improved in performances

The aim of the first part of our work is studing the impact ofy,y, 5 794 hecause the initiator is the most powerful node in the
the initiator choice on the four coordinated checkpomtlngSystem in term of speed.

strategies: Min-process blocking checkpointing, Min-process

non-blocking  checkpointing, ~ All-process  blocking The second series of experiments calculates the rollback cost
checkpomu_qg and AI_I— process non-blocking checkp_omtlng.see Figure 11). Both types of strategy min blocking / non-
For the initiator ch0|_ce, we seleqted three strategies: LI locking use the min rollback [1], and also All-blocking/ non
(Lowest ID), Hpop (Higher popularity) and our approach thayyocking  coordinated  checkpointing  use  All-rollback
we name it simply Our Init. The used parameters in OUfgchnique. In case of Min-rollback (See Figure 11 —a-), our
simulations are presented in Tablel. approach appears effective over other strategies, it avoids the
problem of famine by ensuring checkpointing selection
according to the node’s csn. In case of All-Rollback strategy

strategy.

VI. EXPERIMENTAL RESULTS

Tablel: Simulation parameters

Parameter Value (See Figure 11 —b-), the initiator choice has no impact on the

Number of VM per server 10—100_ rollback performances.

Server BW 1 Gega hit per second

Cloudlet number (Tasks) 1500 During our researches, we found many works proposed and

Cloudlet length 100-12000 MIPS managed the concurrent checkpointing [11][12]. In the

communication ratg 2-100 concurrent  checkpointing, multiple initiators  trigger
— - checkpointing at the same time. In the latest round of

Egitlal::rl;p;);?;\lnterval CRterva ;‘28 gc;)%rsgce?igi experiments we studied the impact of checkpointing

concurrency in the overload and the rollback cost in the case
A.Initiator Choice of min coordinated checkpointing (See Figure 12). Increase
the number of initiators by checkpointing increases the

The first series of experiments studied the Overhead caused B e_rhead and_ even the FOSt of recovery in all approaches of
tiator selection (See Figure 12 —a-). Unexpected results of

the four checkpointing protocols using several initiator choicé o .
strategies. The overhead in this work in presented as ggneurrent checkpainting in case of rollback (See Figure 12 —

rapport between the response time with and without thB') due_ t_o the relatl_on be_tween _the iniiators in each
checkpointing (See Formula10): checkpointing round. It is possible to improve the performance

The first series of experiments studied the Overhead cau
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of our approach and other approaches even in case of recovegndition requires centralized decision otherwise the overload
if insured by concurrent initiators are totally independent otheckpointing become unbearable.
each other directly and transitively. The independence

Min-Blocking CP: Mumb CP ws Owerhead Flin-Mon-Blocking OF: Mumb CP ws Owerhead
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Fig. 10: Overhead vs Number of checkpointing
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Fig. 11: Rollback cost Vs failure rate.
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Fig. 12: Impact of Number of initiators on cost and overhead
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B. Soft Checkpointing We have strengthened the role of initiator in the soft

All previous experiments were carried out with a hard checkpointing by the Storage Service (CS + SS) and
checkpointing (without the use of soft checkpointing), compared its performance with the soft checkpointing

that is to say that the initiator manages just the yjthout checkpointing Storage Service (SC). Both (SC +
checkpointing and each node is responsible for storing its 55y and (SC) select their initiators using our

own checkpointing file. The goal was: to measure the contributionl.
minimum impact on the initiator checkpointing without

assigning the other roles. The first experiment in this part is destined to measure the
In this part of the experiments, we focused on the soft gyerhead in case of different sizes of checkpointing files.
checkpointing in minimum  coordinated checkpointing  According the results illustrated in Figure 14-a-, the

and we used the same parameters of Tablel. According toQverhead time increases if the size of files increases
the results of comparing hard and soft checkpointing, we pecause of the storage time. However, our strategy CS +

noticed that the initiator impact on checkpointing ss s better than CS because the storage service reduces
increases by almost 17% compared to a hard the transfer of useless data during the I/O.

checkpointing whatever the strategy of initiator choice. It The goal of the second experiment is measuring the
is clear that in case of all coordinated checkpointing; the jmpact of the number of nodes involved in the

impact of soft checkpointing will be bigger (See Figure checkpointing on the overhead caused by (SC + SS) and

13). (SC) .the results (See Figure 14-b-) prove that increasing
Numb CP vs Overhead the number of the nodes concerned by the checkpointing
25 process increases automatically the overhead because the
20 — e number of checkpointing files will increase. However in
g / CS + SS, the storage service in the initiator uses the
3" P collective 1/0 to collect and organise data and it uses also
g0 e data sieving to reduce the transfer time
E / o smart data sieving .
S
’ 25 50 75 100 125 150
Number of checkpaints

Fig.13: Overhead in soft and hard checkpointing
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Fig.14: Overhead in soft checkpointing with and without storage service

checkpointing with a storage service based on collective

VII. CONCLUSION I/O and smart data sieving. The experimental results
The checkpointing is a high performance tool to ensure Prove that: o _ o
fault tolerance and system reliability. The literature offers * The strategy of initiator choice has a non-negligible
many checkpointing protocols that ensure the creation of impact on checkpointing performances, especially in
a coherent state for the rollback. In this paper, we have case of blocking coordinated checkpointing.
explained in details the most popular coordinated « Considering the physical characteristics of initiator
checkpointing strate_g|e§ and the I/O_technlqu_es. _Then we (speed, overhead, ..) reduces the checkpointing
proposed two contributions. In the first contribution, we head
studied the impact of initiator choice on these protocols. over e.a ' )
We also proposed a strategy for the selection of initiator * Decreasing the gap between checkpoint sequence
that accelerates checkpointing and minimizes the rollback numbers improve greatly the performances of
cost. The second contribution proposes a soft minimum rollback strategies.
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e The initiator choice has no impact on all-rollback
strategies.

e The concurrent checkpointing increases the
checkpointing overhead. And does not necessarily
improve the rollback performances.

« The concurrent checkpointing can improve recovery
performance if the initiators are completely
independent with minimum csn.

< The initiator choice has higher impact in case of soft
checkpointing compared to hard checkpointing.

» The soft checkpointing can improve the checkpointing
performances.

« Using I/0O management in soft checkpointing reduces
the storage time of checkpointing and therefore it
reduces also the overhead.

* Using a smart data sieving reduces the transfert of
useless data during the storage.

In the future works, we will use a smart strategy for the

initiator selection by using the techniques of consensus

between nodes represented by agents. We will also
improve the I/O technique using other parameters to
balance between the collective 1/0 with or without data

sieving such as cost and consumed energy during the 1/O.
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