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Abstract—This paper deals with the Ant Colony Optimization 

(ACO) algorithm developed at University of Defence, Brno, Czech 

Republic. This algorithm is a metaheuristic algorithm designed for 

solving the Multi-Depot Vehicle Routing Problem (MDVRP).  The 

algorithm has been integrated into the Tactical Decision Support 

System (TDSS) which is aimed at supporting commanders in their 

decision-making processes. TDSS contains several tactical models 

based on the MDVRP problem. This paper is aimed particularly at 

parameter tuning for the ACO algorithm. 
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I. INTRODUCTION 

ULTI-DEPOT Vehicle Routing Problem (MDVRP) is a 

famous problem formulated in 1959 [1]. There are many 

real applications based on this problem, particularly in the 

areas of transportation, distribution and logistics. 

The problem is based on computing optimal routes for a 

fleet of vehicles to drop off goods or services at multiple 

destinations (customers). The vehicles can start from multiple 

depots, each located in a different place. A simple illustration 

of the problem with 3 depots, 4 vehicles, and 10 customers 

(nodes) is shown in Fig. 1. 

 

Fig. 1 Example of the MDVRP 

MDVRP problem is an NP-hard problem, therefore 

polynomial-time algorithms are unlikely to exist [2]. Since the 

existence of this problem, a lot of methods has been proposed 

to search for solutions. Many of them are heuristic or 
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metaheuristic algorithms based on stochastic and probabilistic 

approaches. 

At University of Defence, Brno, Czech Republic, we 

proposed and developed an algorithm based on the Ant Colony 

Optimization (ACO) theory [3]. This algorithm is a 

probabilistic technique for solving computational problems. 

The algorithm has been subsequently implemented and 

integrated into our Tactical Decision Support System (TDSS) 

which is designed to support commanders in their decision-

making process on the tactical level. 

Development of TDSS was started in 2006 and new 

functions and models are still created and implemented. TDSS 

contains several tactical models which are based on MDVRP 

problem. The models are solved by our ACO algorithm. Some 

of the models are as follows: 

 Optimal distribution of unattended ground sensors (UGS) 

in the area of interest; 

 Optimal logistics for units on the battlefield; 

 Optimal reconnaissance of the area of interest via a fleet 

of unmanned aerial vehicles (UAVs); 

 Optimal reconnaissance of the area of interest via ground 

elements (scouts or unmanned ground vehicles).  

TDSS system is planned to be a part of ISR systems 

(Intelligence, Surveillance and Reconnaissance) currently used 

in the military intelligence to gather, analyze, evaluate and 

distribute intelligence information. TDDS serves for analysis 

of such information and decision support of commanders. 

More details about the TDSS system can be found in [4] and 

[5]. 

II. OBJECTIVES 

This paper does not deal with the algorithm in detail. We 

have already published the principle of the algorithm which 

can be found in [5] or [6]. 

The main aim of this paper is to tune the parameters of the 

algorithm. To do this, we used empirical approach. The 

parameters discussed below are as follows: 

 Mode of selecting depots; 

 Mode of updating pheromone trails; 

 Mode of selecting unvisited nodes; 

 Number of ants in colonies (na); 

 Total number of generations (ng); 

 Pheromone evaporation coefficient (ρ); 

 Pheromone updating coefficient (σ); 
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 Pheromone repelling coefficient ( ); 

 Coefficients to control the influence of pheromone trails 

(α), distance between nodes (β), distance between the 

node and depot (γ), and load in the node (δ) when 

computing probabilities for visiting individual nodes. 

More information about roles and purposes of the 

parameters mentioned above are in [6] along with possible 

values and their meaning. 

III. PARAMETER TUNING 

Empirical approach was used when searching for optimal 

values of parameters mentioned in Section II. We present 

some results here, although there is only room to show a minor 

part of them. All parameters were tested on 20 different  

 

problems (from tens to several hundred of nodes) and at least 

100 executions of every set of values were processed to 

confirm the results statistically. We are also aware of the 

dependences between some parameters, yet we could not cover 

them all as the multidimensional space is too large. 

A. First Set of Parameters 

Fig. 2 compares the results of experiments for various 

values of parameters as follows: mode of selecting depots (red 

color), mode of updating pheromone trails (green color), and 

mode of selecting unvisited nodes in connection with the 

pheromone repelling coefficient (blue color; values of the 

repelling coefficient are written in brackets). All three sets of 

experiments were conducted independently on one another 

with constant values of other parameters. 

 

Fig. 2 Comparing results for three sets of experiments 

All results are expressed as a solution quality in % 

(compared with the best result of a given set). When analyzing 

the graph, we can see that even the worst setting is able to 

achieve at least 90% of the best. From the first set (red color), 

we can conclude that there are substantial differences between 

individual methods; the ideal method of selecting depots is the 

Selection of a depot with the greatest potential (probability 

model). 

The second set of experiments covers the mode of updating 

pheromone trails (green color). The worse results when using 

all solutions in a generation are apparent. Also using only the 

best solution found so far is not ideal as it often causes getting 

stuck in a local optimum. The best variant is updating trails 

according to the best solution found in a current generation as 

this method ensures a diversity of solutions and thus prevents 

remaining in a local optimum. 

The last set deals with the mode of selecting unvisited nodes 

(blue color). There are two options available: attracting mode 

and repelling mode. In the second case, the repelling 

coefficient is of importance (values are stated in brackets). The 

graph shows very similar results for all variants (the biggest 

error smaller than 1%). It follows that the best choice is the 

attracting mode as it is faster than repelling mode. 

B. Number of Ants and Generations 

Fig. 3 plots the solution quality as a function of the number 

of ants (na) and generations (ng). It is apparent that the quality 

increases steadily with the number of ants and generations. 
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The graph also shows that the solution quality better than 80% 

can be achieved only with values na ≥ 30 and ng ≥ 180 (it, 

however, applies only for the specific case where other 

parameters influencing the speed of convergence are constant). 

 

Fig. 3 Solution quality as a function 

of the number of ants and generations 

The similar graph is shown in Fig. 4 where the solution 

quality is shown as a function of the number of generations for 

na = 10, na = 50, and na = 200, respectively. There we can see 

that solution converges quickly and the solution quality better 

than 90% can be achieved for ng > 350 even for na = 10; then 

the quality is improving just slightly. The graph also shows 

that the influence of the number of ants is not substantial 

(average difference about 4.3% between na = 50 and na = 200, 

and about 11.3% between na = 10 and na = 200). 

 

Fig. 4 Solution quality as a function of the number of generations 

Fig. 5 presents the solution quality depending on the number 

of ants in connection with the number of nodes N (for N = 50, 

N = 100 and N = 200). From the graph, we can conclude that it 

is sufficient to set na = 3N (solution quality better than 98% of 

the best solution found). 

 

Fig. 5 Connecting the number of ants with the number of nodes 

C. Pheromone Evaporation and Updating Coefficients 

Next, the pheromone evaporation coefficient ρ and updating 

coefficient σ will be discussed. These two control pheromone 

trails belonging to individual colonies. The graph in Fig. 6 

plots the solution quality as a function of these coefficients. 

The graph shows that the solution quality does not depend on 

the value of the pheromone updating coefficient. On the other 

hand, the value of pheromone evaporation coefficient is of 

importance there. The solution quality is improving quickly up 

to ρ ≤ 0.03, then for bigger values it is decreasing again. 

 

Fig. 6 Solution quality as a function of 

the pheromone evaporation and updating coefficients 

D. Probabilities coefficients α, β, γ, δ 

The last parameters to look at are coefficients α, β, γ, δ 

controlling probabilities of adding so far unvisited nodes on 

the route. The setting of these coefficients depends widely on 

the type of the task to be solved. Fig. 7 presents the solution 

quality as a function of coefficients α, β, and Fig. 8 as a 

function of coefficients γ, δ. 

The first graph (Fig. 7) shows that both α and β needs to be 

at least 1. The bigger the values for both coefficients, the faster 

the convergence to some local optimum. It follows that with 

bigger values we are able to find a very good solution quickly; 

with smaller values, we need more generations to pass but the 

solution is a little bit better. It seems that in most cases the best 

values are α = 1 and β ∈ 〈1; 3〉. 
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When searching for the best values for coefficients γ and δ 

(Fig. 8), we find the situation different. Neither the influence 

of the distance between the node and depot (γ) nor the 

influence of ant’s capacity (δ) when computing probabilities 

proved to affect the solution positively in our algorithm, thus 

the best values are γ = 0 and δ = 0. 

 

Fig. 7 Solution quality as a function of coefficients α, β 

 

Fig. 8 Solution quality as a function of coefficients γ, δ 

IV. RESULTS AND CONCLUSIONS 

We verified the ACO algorithm on benchmarks problems 

consisting of Cordeau’s MDVRP instances [7]. Values of 

parameters of the algorithm were set according to our 

experiences gained from the parameter tuning process 

described in Section III. 

Table 1 presents the results for the benchmark instances. We 

conducted 100 tests on each instance and registered the best 

solution found, the mean along with the standard deviation. 

The best known solutions are received from [7]. 

The results show that error (the difference between our 

solution and the best known solution) is in no case bigger than 

3%. In two cases (p01 and p12), we managed to find the best 

known solution. 

Table 1 Results for MDVRP benchmark instances 

Inst. NoN NoD BKS OBS Mean Stdev Error 

p01 50 4 576.87 576.87 583.15 6.50 0.00% 

p02 50 4 473.53 475.86 482.86 3.44 0.49% 

p03 75 5 641.19 644.46 650.04 4.12 0.51% 

p04 100 2 1001.59 1018.49 1035.39 5.69 1.69% 

p05 100 2 750.03 755.71 763.09 3.68 0.76% 

p06 100 3 876.50 885.84 899.51 4.89 1.07% 

p07 100 4 885.80 895.53 912.48 5.62 1.10% 

p08 249 2 4420.95 4445.51 4572.23 66.75 0.56% 

p09 249 3 3900.22 3990.19 4145.33 96.89 2.31% 

p10 249 4 3663.02 3751.50 3864.92 50.21 2.42% 

p11 249 5 3554.18 3657.16 3760.60 38.94 2.90% 

p12 80 2 1318.95 1318.95 1320.48 1.90 0.00% 

p15 160 4 2505.42 2510.11 2576.27 18.46 0.19% 

p18 240 6 3702.85 3741.80 3812.25 37.22 1.05% 

p21 360 9 5474.84 5631.12 5788.19 46.64 2.85% 

NoN – number of nodes, NoD – number of depots 

BKS – best known solution, OBS – our best solution 
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