
 

 

  
Abstract—This paper presents a novel approach for optimizing 

the results of a traditional OCR system, by implying a prior analysis 
of the input image document. The purpose is the interpretation of 
highly deteriorated, low resolution images. The idea behind this 
approach is to use text redundancy in order to estimate unclear areas. 
This is done at the image level, by replacing degraded areas with 
other regions likely to contain the same information. This 
replacement is done based on two systems: selection of the similar 
regions based on surrounding font statistics, constructing lists of 
deteriorated and clear words and choosing the best possible 
replacements. 
 

Keywords—Font classification, K-Nearest Neighbors, 
Normalized cross correlation, OCR preprocessing. 

I. INTRODUCTION 
PTICAL Character Recognition (OCR) is a method for 
converting a raster digital image containing scanned text, 

into actual machine encoded text that the computer can 
understand and index [4]. To achieve this fascinating task of 
understanding the contents of a real world document, it must 
pass through multiple processing stages: 
1) Conversion to raster digital form by scanning or 

photographing. 
2) Preprocessing and cleaning up as much as possible in a 

phase that offers a grayscale raster image of the document. 
Here we can think of noise removal, specular removal or 
light uniformization, contrast stretching, decolorization 
[10], sharpening, deblurring [11] or super-resolution and 
multiple other filters that can generate a clear grayscale 
raster image, with very distinguishable text from the 
background [12]. 

3) Some OCR systems are able to work on these grayscale 
images, but the vast majority prefers a binary black and 
white image as input, not to mention that almost all 
geometry correction and page segmentation algorithms 

 
C. A. Boiangiu is with the Computer Science Department from 

“Politehnica” University of Bucharest, Romania (e-mail: 
costin.boiangiu@cs.pub.ro). The original research carried by C. A. Boiangiu 
was supported by Electronic Arts Romania S.R.L. 

M. Zaharescu is with the Computer Science Department from 
“Politehnica” University of Bucharest, Romania (e-mail: 
mihai.zaharescu@cs.pub.ro). 

O. Ferche is with the Computer Science Department from “Politehnica” 
University of Bucharest, Romania (e-mail: oana.ferche@cs.pub.ro). 

A. Danescu is with the Computer Science Department from “Politehnica” 
University of Bucharest, Romania (e-mail: andrei.danescu@cti.pub.ro) 

work on binary images. Thus the next important step to be 
considered is a massive reduction in information: 
separation of the background and foreground through 
image binarization. 

4) On the binarized image geometric correction algorithms can 
be applied, for unwarping distorted pages and deskewing 
rotated images in order to have horizontal text [13]. 

5) Page segmentation and interpretation algorithms follow on 
these binarized and corrected images. They are able to cut 
out images and graphs from text and also label some of 
the important text regions (titles, paragraphs, page 
numbers, etc.). Our proposed solution falls partially in this 
category, by selecting homogeneous text regions, and 
partially in the last two, by classifying words and 
correcting unrecognizable regions. 

6) Only now these text fragments can be sent to the OCR for 
conversion to actual text through correlation, neural 
networks or feature similarities. 

7) The last step is a correction of the low confidence words 
with a predefined dictionary. In our solution this step 
becomes less important, as many of the words will already 
be replaced by a correctly recognized version. 

The interpretation of the text is made difficult by low 
contrast, inadequate brightness settings or lighting conditions, 
inconsistent use of font faces and sizes, small font sizes of 
below 6 points [14], typescript, handwritten or texts published 
prior to 1850 and for some languages even later, crooked lines 
of text, noise, etc. [12] An adequate image that is to be subject 
to OCR processing must meet certain requirements [1][5][6]. 
Once these requirements are not met, the process of 
conversion can fail at any of the stages mentioned earlier, the 
errors propagating in avalanche to the next stages. 

Current recognition rates for good input documents, for 
commercial applications, are between 97% and 99%. But as 
soon as those conditions are not met, it can drop to as low as 
0% for medium readable text. 

The method we propose covers a wide range of the 
processing phases mentioned. As it is implemented now, it can 
be placed after the geometrical correction, as a less common 
segmentation, but also as postprocessing when replacing 
unrecognizable words, not from a dictionary but from the same 
source image, making this approach dictionary- independent. 
The proposed method in the future work section, that works 
also on the grayscale raster and geometry corrected image, can 
be placed a bit closer to the initial phases. 
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Our purpose is improving the OCR results of seriously 
damaged document scans, which cannot be corrected by filters 
and raster or geometric processing, by feeding the same word, 
positioned in different regions of the page, to the OCR for 
recognition. The patch containing the most visible word will 
be placed over all the other unrecognizable, but very similar 
regions. In this way, the damaged text regions won’t be 
replaced with junk, and no post-processing needs to take place. 

This method can also improve the speed of an OCR system, 
by running the recognition module on a single word rather than 
on every appearance of the same word, if the replacement is 
done at the text level. This, however, needs a fast method for 
selecting similar words. 

As from the segmentation point of view, we want to firstly 
select regions that have similar characteristics, and not 
compare, as for example, italic with normal text. To obtain this 
we opted for a font similarity classifier at the character level: 
regions containing the same fonts being grouped for word 
findings. This is done by a K-Nearest neighbor [3] font 
classifier that selects the characters and assigns a font type to 
each letter. The classifier was previously trained with all the 
letters of the alphabet, for every font, with modifiers (bold, 
italic, underlined, strike-through etc.) [2]. 

In the end the cross correlation between segmented words 
and the initial uniform-font region can be applied to generate a 
list of similar regions that can be merged together. 

In the following chapter the proposed solution will be 
presented and discussed upon. Then the prototype verification 
program results are presented and in the end a few directions 
for future research in optimizing this approach are offered. 

II. PROPOSED SOLUTION 
The proposed solution consists of two major processing 

steps: the segmentation of the initial document in 
homogeneous regions on which further interpretation makes 
sense, and the actual word replacement technique for 
correcting damaged regions. Each of these phases has its sub-
steps that are presented now. 

A. Phase 1: Segmentation by Font Classification 
1) Preprocessing 

This stage deals with the preparation of the image for the 
classification process and the extraction of the letters to be 
classified. The operations are as follows: 
1) Simple conversion to grayscale. 
2) Noise filtering by a 3x3 Gaussian filter (other filters can be 

used here, but future steps can handle remaining artifacts). 
3) Binarization, done through combining localized and global 

thresholds obtained through Otsu's method in order to 
have an adaptive threshold value. 

4) Morphological filters, applied for reconnecting letter 
fragments resulting from the binarization. Filters include 
morphological erosion and dilation (closing). This 
operation helps in the case of thin fonts (e.g. Corsica) 
whose letters are "breakable" or poor contrast input 
image. 

The result of this step is a binary image with mostly 
connected character fragments and some noise. 
2) Character Extraction 

After this basic preprocessing, the image is ready for the 
contours’ extraction. The method used here is the one 
described by Suzuki in [1], and the algorithm is based on 
border tracking, the implementation from OpenCV. 

The binarized input image at this stage contains graphic 
elements, noise and other outliers. Our aim is not a good 
cleanup, but a strong cleanup that only keeps some of the 
existent characters. As text regions are mostly similar, only the 
correct recognition of a few characters is enough to classify a 
paragraph. To remove the outlines that remain after 
thresholding, the following filtering algorithm is applied: 
1) We calculate the width and the height of each frame 

rectangle. 
2) If the width fits the range [ ]2,2/ ⋅widthwidth  of a 

previously analyzed rectangle, a value associated to that 
rectangle is incremented. Same applies to height. 
Otherwise, the rectangle is added in the list of those 
analyzed associating a counter value. 

3) Excessively large contours, as well as the ones excessively 
small as compared to the image size, are excluded from 
processing. 

4) Having considered all the rectangles, select as average the 
one that got the most votes. 

5) Eliminate all contours that do not fit in the average value of 
height and width (with a margin). 

The reason for which we only considered the regions that 
are predominant on the page (average width and height) is that 
there is no point in running the similarity algorithm on 
paragraph regions that contain few words, as the probability of 
finding repeating words is very small. 

This algorithm produces valid results for most cases, 
because there are many more characters in a scanned 
document than noise or letter-sized images. 

In this step we also obtain the character dimensions which 
are useful in the second phase, when we cut out the words 
from the document. 

Following this step, we obtain contours corresponding to the 
letters that need to be classified. 
3) Identifying Fonts 

This step is performed using a neural network of type k-
Nearest-Neighbor. In the field of machine learning, k-NN is a 
non-parametric method used for classification and regression. 
As starting parameters, it employs the closest k training 
examples in the characteristics’ space. 

In the case of classification, the k-NN output is represented 
by the class of the analyzed object [3]. An object is classified 
by a majority vote of its neighbors, and it has as objective its 
assignment to the class that is the most common among those 
of its k neighbors. If 1=k , the object is directly allocated to 
the class of its nearest neighbor. 

In the training phase, vectors belonging to a 
multidimensional space of features, each with a class label, are 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 11



 

 

transmitted to the network. Training the algorithm consists of 
storing the values of the vectors and the class labels of the 
input values. In the classification stage, k  and a vector of 
unlabeled features are offered in order to be allocated to a 
class. 

The metric most often used in setting the closest neighbors 
is the Euclidean distance for continuous variables, and 
Hamming distance for discrete space. 

Training the network is achieved by exploring every letter 
comprised in an entry set. The letters’ images are resized at a 
predetermined dimension. Classifying each character in the 
text image follows the same method of image processing: each 
character is resized to the imposed dimensions, while 
preserving the relative aspect ratio. The k  of the network in 
the classification stage is 1 and the input data are the pixel 
values. 

The output of this step is assignation of every character to a 
font class. 
4) Text segmentation 

Characters alone don’t offer sufficient information; it is the 
global statistic that says if a paragraph is of a specific type. 
The characteristics of a paragraph are obtained by calculating 
the convex envelope of all letters belonging to that font. 

The results of this method are disturbed by incorrect 
classifications. The envelope contains points located in 
different font blocks. To counteract this defect, various 
methods can be applied: 
1) The analysis of the number of neighbors of each identified 

character, and its class reallocation based on the majority 
of the neighbors; 

2) The segmentation of the convex envelope of a font based on 
K-Means algorithm with 1>k , while identifying a 
character from another font detected inside it; 

3) The union of the surrounding rectangles of the close 
characters of same font. 

The result of Phase 1 is a binary image, containing only 
regions having similar font sizes, having paragraphs of similar 
fonts encapsulated in a convex hull. 

B. Phase Two: Finding Similar Words 
This phase deals with the actual word corrections computed 

inside each of the similar regions separately. 
1) Template matching 

The detection of similar words is done through Normalized 
Cross Correlation (NCC) which assigns a similarity score 
between all words. 

Cross Correlation is a sliding product between two 
functions. It shows the similarity between the two waveforms 
at a shifted time. It is used to find a waveform in a larger 
signal. But because Cross Correlation uses the multiplication 
to estimate similarity, it is affected by the lightness or integral 
of the functions to compare, thus, lighter regions will seem 
more similar. In order to avoid this, normalization is applied 
by subtracting the mean and dividing by the scattering or 
standard deviation. 

The NCC algorithm was implemented and used for finding a 
zone that would yield the best results in a template matching 
procedure. The created functionality receives as input two 
images: the first one is the target search domain, whereas the 
second is designated as the search pattern (template image), in 
our case, each word for which we want to find similar words in 
the homogeneous region it belongs to. 
2) Exact word finding 

The results obtained for this step are presented in the 
following images. 

Firstly, an image containing a lot of text is required, because 
it represents a valid search space to search for templates. Such 
an image is exemplified in Figure 1. 

 
Secondly, a template definition is needed, or more 

explicitly, a word to act as an image template to look for in the 
image domain (see Fig. 2). 

 
 

The resulted image, after the search algorithm is applied, is 
presented in Figure 3; the best match position was visually 
marked by underlining. 

 
It can be noted that a very good identification of the word 

position in text is obtained after the search operation is 
performed. 
 

 

 
Fig. 3 The resulted image after the search algorithm running and 
the underlining of the best correlation position. Source from [15] 

 

 
Fig. 2 The word to search in text (the template image, the pattern 

to identify in the domain image) 

 

 
Fig. 1 The original image containing text (the search domain 

image). Source from [15 
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3) Similar words detection 
Until now we offered the searching template manually. But 

the algorithm needs to select the templates automatically. This 
is done by selecting the words from the binarized image (a 
word segmentation algorithm [7]). 

The approach used here is smudging on a limited distance, 
relative to the detected character dimension deduced in phase 
1. Word letters will end up connected in the same block, while 
white-space between words will be larger than the smudge 
threshold. The individual words are saved in a “Word 
Database”. 

A first correlation phase takes place between the words in 
the database, in order to form the lists of similar words. 

To make sure that the words that have been determined are 
unique, a correlation function is called for every possible word 
placement position in the input image. When a correlation 
greater than a threshold (in our experiments, 0.9 from 1) is 
found, the algorithm concludes that it has detected an instance 

of the template word in the image and connects it to the word 
list. 

OCR can be applied now only on the word lists and 
selecting only the best recognized word in the list to replace all 
similar words. 

III. RESULTS 

A. Font-based Region Clustering 
For testing the font based classification, we used Comic-

Sans-MS and Arial fonts. A salt and pepper noise was applied 
to the input image and we also used images of different sizes. 
Average classification error was of 8%, due to the similarities 
between certain letters as well as the points associated with the 
characters i and j, detected as separate symbols. 

Font accuracy is very good in this example (Fig. 4) and the 
two distinct paragraphs can be clearly differentiated. 

 

 
 

B. Word-based text clustering 
Inside each of the uniform paragraphs individual words are 

found and precisely tagged in their corresponding random 
color. A visual example of the application result is shown in 
Fig. 5. 

Before computing the correlation of a certain word, the 

application chose a random color to associate to that individual 
word; in the moment a very good match position was found, 
the application replaced the word pixels with the 
aforementioned color. 

The words having the same color belong to the same word-
list that will be fed to the OCR. 

 

 
Fig. 4 Classified test image: Cyan = Comic-Sans, Purple = Arial. 
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IV. COMBINING THE APPROACHES 
The explanations for the important algorithms were given in 

the previous chapters. This chapter aims at integrating the 
modules in a system able to process the documents based on 
learning words from images. 

The main problem with real world images, and especially 
old, deteriorated documents, is that the content is far from 
being clear to read, as the examples we used for describing the 
two main processing phases. 

A. Input 
In order to exemplify the low resolution processing phases, 

we start with a low resolution (100 dpi) photograph of an old 
deteriorated book. The input image size is 920x733 pixels and 
contains stains, warped text, and variable illumination and 
compression artifacts. It is not recommended to pass such an 
image to an OCR engine and still expecting reasonable results. 

 
B. Binarization 
The images that we worked with so far were binary image, 
meaning the foreground was clearly separated from the 
background. Because binarization is not the purpose of this 
paper, in order to convert it to black and white, we applied a 
simple global Otsu binarization algorithm: 

 
As it can be noticed, the input image contains more non-text 

objects than actual letters, and the letters themselves are either 
combined or broken and highly deteriorated. 

This result can be strongly improved by using a more 
advanced binarization algorithm (here we can mention an 
adaptive algorithm that not only selects the threshold inside a 
local window, but also chooses the best size for each local 
window for each pixel, basing on statistics, in order to contain 
equal amounts of foreground and background. Though it may 
seem very expensive, we tested this approach, optimized on 
the GPU, and it offers a result for a 63 megapixel image in one 
minute). This approach, not containing the optimization, is 
detailed in [17]. 

C. Similar Font Region Detection 
The first phase in the mentioned pipeline is selecting regions 

of text having similar fonts. However, the neural network 
algorithm used by us would have trouble clustering textual 
elements containing as much non-textual data as in this input 
image. Thus a first pre-filtering is needed. The proposed 
method preserves only the most common size elements from 
the page. 

For this example 2480 elements were deduced. Everything 
exceeding a font size of 36 and below 5 was removed. Using 
the remaining elements the most common font size was 
calculated, as the mean of the objects’ sizes, and that font size 
was the only one kept. Because some of the letters were split, 
this process resulted in the elimination of useful text 
information. 

However, this problem can be solved by inserting a text 
filtering algorithm in the pipeline. This includes grouping 
together fragments that are likely to be part of the same letter, 
basing on: 
1) inside filter (combines elements that are included in the 

bounding box of a larger element) 
2) merge filter (combined elements belonging to the same line 

of text and are one on top of one another (ex. the dot from 

 

 
Fig. 7 Result after binarization 

 

 
Fig. 6 Highly deteriorated, low resolution input image used for 

testing the system 

 

 

 
Fig. 5 Input (top) and output (bottom) image resulted after the 

final step; every individual word is properly tagged using a unique 
random color 
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the letter “i”) 
3) width filter (large width elements most likely contain 

merged letters that need to be split at the thinnest bridge 
point that keeps them equal in size) 

The process is described in more detail in [16]. Alternate 
processing may be performed using a similar approach 
described in [20]. 

Even without applying these steps, the result is still very 
good for our demonstration purpose. 

 
The page now contains only elements having similar size, 

thus the font classifier now has a much simpler task. It can be 
noticed that the Arabic symbols at the top of the right page are 
now also gone. 

This image is now the input for the font detection algorithm. 
Because of the very small resolution, the system isn’t able to 
make a finer classification than italic and non-italic text. 
Because of the noise levels in the shape of the text, the class 
outputs of the neural network are limited to a very small 
number. 

In order to automatize the process of choosing between a 
full font search and only basic features search, the output 
obtained when using the full training set is used by noticing the 
very high variety of fonts obtained. In this situation, an italic, 

bold, simple and non-text separation is enough. In our 
situation, most of the elements are textual and non-italic, and 
the entire page is sent to the next processing step - similar 
word detection. If an entire paragraph contained bold or italic 
elements, the page would have been split in multiple regions 
needing to be processed separately. This process is 
accomplished by applying closing operation on the words and 
selecting the paragraphs. The paragraph’s font is considered 
the font of the most numerous similar words. 

D. Similar Word Detection 
For demonstration purpose, a very simple approach for 

word detection was used: Smudging the image with a distance 
dependent on the letter size (one pixel less than half font size 
was experimentally observed to work good in order to keep 
words connected and not merge adjacent words, either from 
the same lines of from neighboring lines). The smudging is 
done only in the text direction (which can be automatically 
detected via projection profiling methods). 

 
Now the connected elements are encapsulated in bounding 

boxes and saved as a list of words. The list of words is 
generated from the original, unprocessed image, by cropping 
the bounding boxes of the connected components. 

 

 
Fig. 9 Results for word segmentation 

 

 
Fig. 8 Results after object filtering 
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Most of the words are recovered correctly, the problems 

noticed here being a few connected words and more split 
words. 

Considering that we used only basic methods for obtaining 
necessary input data, the result is impressive. It can be 
however greatly improved by adding the aforementioned 
processing steps in the pipeline. 

However, the problem that we encountered on the real 
world data is that even for a full text page, in a domain that 
words are likely to repeat, they do not repeat enough. A list of 
some of the most popular similar words found shows that only 
a small fraction of the words from the page actually repeat and 
those are mostly connection words: 

 
 

 

 
Fig. 10 Words extracted from the input document 
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By optimizing the system, the list can be grown with some 

words that were not identified correctly because of unification 
or segmentation. Examples include: 

 
However, repeating words account only for a small number 

of the entire text, considering only one page of scanned 
document. And usually those words are the ones the OCR post 
processor is able to correct without the need of a separate 
system. This draws us to the concussion that this system 
becomes useful only when converting multiple pages (like a 
book), in order to increase the chances of repeating words. 

However, this brings a new problem: how will the word 
classification be made, because correlating each word in the 
list with each page from the book is too expensive. 

In order to cope with this problem, some pre optimizations 
must be taken: 

The correlations are done only between segmented words 
(so each word will be correlated with all the other words, after 
a word list is generated from all the files). 

Only similar sized words are worth correlating. A difference 
of more than one letter size in word length forces those words 
to fall in different bins. So the word list is firstly sorted by 
width, this being the first classification. Words of similar width 
being considered the same, until a later phase, when only 
words from the same bin are measured for differences. 

Because some words can be very similar from the 
correlation point of view, for example “and” and “end”, it is 
better to sort the words based on similarity, and as soon as the 

similarity score has a discontinuity, or an abrupt drop, the 
words must be considered different, even if we risk to create 
two identical bins. The idea is that it is better to have repetitive 
bins than to risk to merge two bins, the first introducing only a 
small performance issue, but the second a wrong result. This is 
achieved not by choosing a similarity threshold, but by 
inspecting the similarity variation between the similar words. 

 
Because the bounding box system centers almost perfectly 

the words, the correlation can be entirely skipped, a simple 
difference being enough for measuring similarity. In the future 
we will try to imagine a hash function, resistant to small 
variations, so the classification will be done by comparing the 
hashes after the widths. This will decrease the processing time 
a lot, as there will be only number comparisons instead of 
image comparisons on the long original lists, and image 
comparisons will be used only inside very small bins. 

V. CONCLUSIONS 
The purpose behind this system was to be integrated with an 

OCR engine for improving results on very deteriorated 
documents. The correlation system builds a list of similar 
words, the OCR tries to recognize at least one word from the 
vector and replaces all the occurrences with the recognized 
word. In this way, the damaged words won’t produce junk on 
the output and unrecognizable words can be replaced with the 
most likely variant, without the need of using a post processing 
step based upon dictionaries. 

Real images were used for testing and the results show that 
this is a valuable direction for further research. Based on the 
test results, optimizations that can make the system more 
accurate and faster are proposed. 

VI. FUTURE WORK 
The current version of the code uses normalized cross 

correlation for estimating the similarity between words. The 
reasoning behind choosing this slow approach is that the words 
are not placed identically inside their bounded boxes, and the y 
also may be warped or rotated. Noise is also a factor. 
However, upon testing, the differences were so small that a 
simple subtraction can be used. If however higher accuracy is 
needed, a fast variant is available: using the Fast-NCC [7]. The 
fast algorithm uses a formula for standard deviation based on 
the sums and squared sums in the image. These can be 
computed only once in )(NO , by generating the run-lengths 
of the elements and squared elements. 

The brute force normalized cross correlation formula is: 

 

 
Fig. 13 Two different but similar words 

 

 
Fig. 12 Wrongly classified words 

 

 
Fig. 11 A list of some similar words 
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where n is the number of sample points, aσ  is the standard 

deviation of a and a  is the meaning of a. 

This works in )( 2NO  because the mean and standard 

deviation are also computed in )(NO . 
The mean can easily be optimally calculated by pre-

generating a run-length image, in which each pixel, p(x,y), has 
the value equal to the sums of all the pixels contained in the 
rectangle (p(0, 0), p(x, y)). Then the mean is just computed by 
interrogating four values, in )1(O . 

A bit more complicated is for the standard deviation, but a 
rewrite of the equation shows this is the same problem: 
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Then the statistics can be interrogated for every pixel in 
O(1). If the words are very deteriorated, the FNCC algorithm 
positions the words one on top of the other and a merging 
between them, at pixel level, will probably yield an image the 
OCR will understand better. Having multiple low resolution 
images, super-resolution and denoising can be applied. If the 
merging is done for the binarized images, a voting approach, at 
pixel level, will generate a single image clearer than each 
individual one. 

One of the most important aspects for the future would be to 
remove the comparison phase altogether, at least at root of the 
classification tree. This can be achieved by constructing a hash 
from each word image. The hash must be resilient to small 
changes, small variations in the image generating a small 
difference in the output number. An initial idea would be to 
use the sum of the 2D gradient at different scales, the most 
important weight being offered by the smallest resolution. 
Using this approach, firstly the words will be classified based 
on length, then only for the same length words, a classification 
based on hash will be applied and inside the hash FNCC or 
differences at the image level can be applied. 

Other aspects include extra processing phases included in 
the pipeline for optimizing the result, or the utilization of more 
performant algorithms. These include smart binarization, 
rotation detection, connected letter splitting and split letter 
grouping. More advanced techniques like noise removal, light 
uniformization, super resolution and deblurring on the input 
image are also useful. 
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