

Abstract—This paper presents a novel approach for optimizing

the results of a traditional OCR system, by implying a prior analysis
of the input image document. The purpose is the interpretation of
highly deteriorated, low resolution images. The idea behind this
approach is to use text redundancy in order to estimate unclear areas.
This is done at the image level, by replacing degraded areas with
other regions likely to contain the same information. This
replacement is done based on two systems: selection of the similar
regions based on surrounding font statistics, constructing lists of
deteriorated and clear words and choosing the best possible
replacements.

Keywords—Font classification, K-Nearest Neighbors,
Normalized cross correlation, OCR preprocessing.

I. INTRODUCTION
PTICAL Character Recognition (OCR) is a method for
converting a raster digital image containing scanned text,

into actual machine encoded text that the computer can
understand and index [4]. To achieve this fascinating task of
understanding the contents of a real world document, it must
pass through multiple processing stages:
1) Conversion to raster digital form by scanning or

photographing.
2) Preprocessing and cleaning up as much as possible in a

phase that offers a grayscale raster image of the document.
Here we can think of noise removal, specular removal or
light uniformization, contrast stretching, decolorization
[10], sharpening, deblurring [11] or super-resolution and
multiple other filters that can generate a clear grayscale
raster image, with very distinguishable text from the
background [12].

3) Some OCR systems are able to work on these grayscale
images, but the vast majority prefers a binary black and
white image as input, not to mention that almost all
geometry correction and page segmentation algorithms

C. A. Boiangiu is with the Computer Science Department from

“Politehnica” University of Bucharest, Romania (e-mail:
costin.boiangiu@cs.pub.ro). The original research carried by C. A. Boiangiu
was supported by Electronic Arts Romania S.R.L.

M. Zaharescu is with the Computer Science Department from
“Politehnica” University of Bucharest, Romania (e-mail:
mihai.zaharescu@cs.pub.ro).

O. Ferche is with the Computer Science Department from “Politehnica”
University of Bucharest, Romania (e-mail: oana.ferche@cs.pub.ro).

A. Danescu is with the Computer Science Department from “Politehnica”
University of Bucharest, Romania (e-mail: andrei.danescu@cti.pub.ro)

work on binary images. Thus the next important step to be
considered is a massive reduction in information:
separation of the background and foreground through
image binarization.

4) On the binarized image geometric correction algorithms can
be applied, for unwarping distorted pages and deskewing
rotated images in order to have horizontal text [13].

5) Page segmentation and interpretation algorithms follow on
these binarized and corrected images. They are able to cut
out images and graphs from text and also label some of
the important text regions (titles, paragraphs, page
numbers, etc.). Our proposed solution falls partially in this
category, by selecting homogeneous text regions, and
partially in the last two, by classifying words and
correcting unrecognizable regions.

6) Only now these text fragments can be sent to the OCR for
conversion to actual text through correlation, neural
networks or feature similarities.

7) The last step is a correction of the low confidence words
with a predefined dictionary. In our solution this step
becomes less important, as many of the words will already
be replaced by a correctly recognized version.

The interpretation of the text is made difficult by low
contrast, inadequate brightness settings or lighting conditions,
inconsistent use of font faces and sizes, small font sizes of
below 6 points [14], typescript, handwritten or texts published
prior to 1850 and for some languages even later, crooked lines
of text, noise, etc. [12] An adequate image that is to be subject
to OCR processing must meet certain requirements [1][5][6].
Once these requirements are not met, the process of
conversion can fail at any of the stages mentioned earlier, the
errors propagating in avalanche to the next stages.

Current recognition rates for good input documents, for
commercial applications, are between 97% and 99%. But as
soon as those conditions are not met, it can drop to as low as
0% for medium readable text.

The method we propose covers a wide range of the
processing phases mentioned. As it is implemented now, it can
be placed after the geometrical correction, as a less common
segmentation, but also as postprocessing when replacing
unrecognizable words, not from a dictionary but from the same
source image, making this approach dictionary- independent.
The proposed method in the future work section, that works
also on the grayscale raster and geometry corrected image, can
be placed a bit closer to the initial phases.

Automatic Correction of OCR Results Using
Similarity Detection for Words and Fonts

Costin A. Boiangiu, Mihai Zaharescu, Oana Ferche, and Andrei Danescu

O

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 10

Our purpose is improving the OCR results of seriously
damaged document scans, which cannot be corrected by filters
and raster or geometric processing, by feeding the same word,
positioned in different regions of the page, to the OCR for
recognition. The patch containing the most visible word will
be placed over all the other unrecognizable, but very similar
regions. In this way, the damaged text regions won’t be
replaced with junk, and no post-processing needs to take place.

This method can also improve the speed of an OCR system,
by running the recognition module on a single word rather than
on every appearance of the same word, if the replacement is
done at the text level. This, however, needs a fast method for
selecting similar words.

As from the segmentation point of view, we want to firstly
select regions that have similar characteristics, and not
compare, as for example, italic with normal text. To obtain this
we opted for a font similarity classifier at the character level:
regions containing the same fonts being grouped for word
findings. This is done by a K-Nearest neighbor [3] font
classifier that selects the characters and assigns a font type to
each letter. The classifier was previously trained with all the
letters of the alphabet, for every font, with modifiers (bold,
italic, underlined, strike-through etc.) [2].

In the end the cross correlation between segmented words
and the initial uniform-font region can be applied to generate a
list of similar regions that can be merged together.

In the following chapter the proposed solution will be
presented and discussed upon. Then the prototype verification
program results are presented and in the end a few directions
for future research in optimizing this approach are offered.

II. PROPOSED SOLUTION
The proposed solution consists of two major processing

steps: the segmentation of the initial document in
homogeneous regions on which further interpretation makes
sense, and the actual word replacement technique for
correcting damaged regions. Each of these phases has its sub-
steps that are presented now.

A. Phase 1: Segmentation by Font Classification
1) Preprocessing

This stage deals with the preparation of the image for the
classification process and the extraction of the letters to be
classified. The operations are as follows:
1) Simple conversion to grayscale.
2) Noise filtering by a 3x3 Gaussian filter (other filters can be

used here, but future steps can handle remaining artifacts).
3) Binarization, done through combining localized and global

thresholds obtained through Otsu's method in order to
have an adaptive threshold value.

4) Morphological filters, applied for reconnecting letter
fragments resulting from the binarization. Filters include
morphological erosion and dilation (closing). This
operation helps in the case of thin fonts (e.g. Corsica)
whose letters are "breakable" or poor contrast input
image.

The result of this step is a binary image with mostly
connected character fragments and some noise.
2) Character Extraction

After this basic preprocessing, the image is ready for the
contours’ extraction. The method used here is the one
described by Suzuki in [1], and the algorithm is based on
border tracking, the implementation from OpenCV.

The binarized input image at this stage contains graphic
elements, noise and other outliers. Our aim is not a good
cleanup, but a strong cleanup that only keeps some of the
existent characters. As text regions are mostly similar, only the
correct recognition of a few characters is enough to classify a
paragraph. To remove the outlines that remain after
thresholding, the following filtering algorithm is applied:
1) We calculate the width and the height of each frame

rectangle.
2) If the width fits the range []2,2/ ⋅widthwidth of a

previously analyzed rectangle, a value associated to that
rectangle is incremented. Same applies to height.
Otherwise, the rectangle is added in the list of those
analyzed associating a counter value.

3) Excessively large contours, as well as the ones excessively
small as compared to the image size, are excluded from
processing.

4) Having considered all the rectangles, select as average the
one that got the most votes.

5) Eliminate all contours that do not fit in the average value of
height and width (with a margin).

The reason for which we only considered the regions that
are predominant on the page (average width and height) is that
there is no point in running the similarity algorithm on
paragraph regions that contain few words, as the probability of
finding repeating words is very small.

This algorithm produces valid results for most cases,
because there are many more characters in a scanned
document than noise or letter-sized images.

In this step we also obtain the character dimensions which
are useful in the second phase, when we cut out the words
from the document.

Following this step, we obtain contours corresponding to the
letters that need to be classified.
3) Identifying Fonts

This step is performed using a neural network of type k-
Nearest-Neighbor. In the field of machine learning, k-NN is a
non-parametric method used for classification and regression.
As starting parameters, it employs the closest k training
examples in the characteristics’ space.

In the case of classification, the k-NN output is represented
by the class of the analyzed object [3]. An object is classified
by a majority vote of its neighbors, and it has as objective its
assignment to the class that is the most common among those
of its k neighbors. If 1=k , the object is directly allocated to
the class of its nearest neighbor.

In the training phase, vectors belonging to a
multidimensional space of features, each with a class label, are

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 11

transmitted to the network. Training the algorithm consists of
storing the values of the vectors and the class labels of the
input values. In the classification stage, k and a vector of
unlabeled features are offered in order to be allocated to a
class.

The metric most often used in setting the closest neighbors
is the Euclidean distance for continuous variables, and
Hamming distance for discrete space.

Training the network is achieved by exploring every letter
comprised in an entry set. The letters’ images are resized at a
predetermined dimension. Classifying each character in the
text image follows the same method of image processing: each
character is resized to the imposed dimensions, while
preserving the relative aspect ratio. The k of the network in
the classification stage is 1 and the input data are the pixel
values.

The output of this step is assignation of every character to a
font class.
4) Text segmentation

Characters alone don’t offer sufficient information; it is the
global statistic that says if a paragraph is of a specific type.
The characteristics of a paragraph are obtained by calculating
the convex envelope of all letters belonging to that font.

The results of this method are disturbed by incorrect
classifications. The envelope contains points located in
different font blocks. To counteract this defect, various
methods can be applied:
1) The analysis of the number of neighbors of each identified

character, and its class reallocation based on the majority
of the neighbors;

2) The segmentation of the convex envelope of a font based on
K-Means algorithm with 1>k , while identifying a
character from another font detected inside it;

3) The union of the surrounding rectangles of the close
characters of same font.

The result of Phase 1 is a binary image, containing only
regions having similar font sizes, having paragraphs of similar
fonts encapsulated in a convex hull.

B. Phase Two: Finding Similar Words
This phase deals with the actual word corrections computed

inside each of the similar regions separately.
1) Template matching

The detection of similar words is done through Normalized
Cross Correlation (NCC) which assigns a similarity score
between all words.

Cross Correlation is a sliding product between two
functions. It shows the similarity between the two waveforms
at a shifted time. It is used to find a waveform in a larger
signal. But because Cross Correlation uses the multiplication
to estimate similarity, it is affected by the lightness or integral
of the functions to compare, thus, lighter regions will seem
more similar. In order to avoid this, normalization is applied
by subtracting the mean and dividing by the scattering or
standard deviation.

The NCC algorithm was implemented and used for finding a
zone that would yield the best results in a template matching
procedure. The created functionality receives as input two
images: the first one is the target search domain, whereas the
second is designated as the search pattern (template image), in
our case, each word for which we want to find similar words in
the homogeneous region it belongs to.
2) Exact word finding

The results obtained for this step are presented in the
following images.

Firstly, an image containing a lot of text is required, because
it represents a valid search space to search for templates. Such
an image is exemplified in Figure 1.

Secondly, a template definition is needed, or more

explicitly, a word to act as an image template to look for in the
image domain (see Fig. 2).

The resulted image, after the search algorithm is applied, is
presented in Figure 3; the best match position was visually
marked by underlining.

It can be noted that a very good identification of the word

position in text is obtained after the search operation is
performed.

Fig. 3 The resulted image after the search algorithm running and
the underlining of the best correlation position. Source from [15]

Fig. 2 The word to search in text (the template image, the pattern

to identify in the domain image)

Fig. 1 The original image containing text (the search domain

image). Source from [15

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 12

3) Similar words detection
Until now we offered the searching template manually. But

the algorithm needs to select the templates automatically. This
is done by selecting the words from the binarized image (a
word segmentation algorithm [7]).

The approach used here is smudging on a limited distance,
relative to the detected character dimension deduced in phase
1. Word letters will end up connected in the same block, while
white-space between words will be larger than the smudge
threshold. The individual words are saved in a “Word
Database”.

A first correlation phase takes place between the words in
the database, in order to form the lists of similar words.

To make sure that the words that have been determined are
unique, a correlation function is called for every possible word
placement position in the input image. When a correlation
greater than a threshold (in our experiments, 0.9 from 1) is
found, the algorithm concludes that it has detected an instance

of the template word in the image and connects it to the word
list.

OCR can be applied now only on the word lists and
selecting only the best recognized word in the list to replace all
similar words.

III. RESULTS

A. Font-based Region Clustering
For testing the font based classification, we used Comic-

Sans-MS and Arial fonts. A salt and pepper noise was applied
to the input image and we also used images of different sizes.
Average classification error was of 8%, due to the similarities
between certain letters as well as the points associated with the
characters i and j, detected as separate symbols.

Font accuracy is very good in this example (Fig. 4) and the
two distinct paragraphs can be clearly differentiated.

B. Word-based text clustering
Inside each of the uniform paragraphs individual words are

found and precisely tagged in their corresponding random
color. A visual example of the application result is shown in
Fig. 5.

Before computing the correlation of a certain word, the

application chose a random color to associate to that individual
word; in the moment a very good match position was found,
the application replaced the word pixels with the
aforementioned color.

The words having the same color belong to the same word-
list that will be fed to the OCR.

Fig. 4 Classified test image: Cyan = Comic-Sans, Purple = Arial.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 13

IV. COMBINING THE APPROACHES
The explanations for the important algorithms were given in

the previous chapters. This chapter aims at integrating the
modules in a system able to process the documents based on
learning words from images.

The main problem with real world images, and especially
old, deteriorated documents, is that the content is far from
being clear to read, as the examples we used for describing the
two main processing phases.

A. Input
In order to exemplify the low resolution processing phases,

we start with a low resolution (100 dpi) photograph of an old
deteriorated book. The input image size is 920x733 pixels and
contains stains, warped text, and variable illumination and
compression artifacts. It is not recommended to pass such an
image to an OCR engine and still expecting reasonable results.

B. Binarization
The images that we worked with so far were binary image,
meaning the foreground was clearly separated from the
background. Because binarization is not the purpose of this
paper, in order to convert it to black and white, we applied a
simple global Otsu binarization algorithm:

As it can be noticed, the input image contains more non-text

objects than actual letters, and the letters themselves are either
combined or broken and highly deteriorated.

This result can be strongly improved by using a more
advanced binarization algorithm (here we can mention an
adaptive algorithm that not only selects the threshold inside a
local window, but also chooses the best size for each local
window for each pixel, basing on statistics, in order to contain
equal amounts of foreground and background. Though it may
seem very expensive, we tested this approach, optimized on
the GPU, and it offers a result for a 63 megapixel image in one
minute). This approach, not containing the optimization, is
detailed in [17].

C. Similar Font Region Detection
The first phase in the mentioned pipeline is selecting regions

of text having similar fonts. However, the neural network
algorithm used by us would have trouble clustering textual
elements containing as much non-textual data as in this input
image. Thus a first pre-filtering is needed. The proposed
method preserves only the most common size elements from
the page.

For this example 2480 elements were deduced. Everything
exceeding a font size of 36 and below 5 was removed. Using
the remaining elements the most common font size was
calculated, as the mean of the objects’ sizes, and that font size
was the only one kept. Because some of the letters were split,
this process resulted in the elimination of useful text
information.

However, this problem can be solved by inserting a text
filtering algorithm in the pipeline. This includes grouping
together fragments that are likely to be part of the same letter,
basing on:
1) inside filter (combines elements that are included in the

bounding box of a larger element)
2) merge filter (combined elements belonging to the same line

of text and are one on top of one another (ex. the dot from

Fig. 7 Result after binarization

Fig. 6 Highly deteriorated, low resolution input image used for

testing the system

Fig. 5 Input (top) and output (bottom) image resulted after the

final step; every individual word is properly tagged using a unique
random color

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 14

the letter “i”)
3) width filter (large width elements most likely contain

merged letters that need to be split at the thinnest bridge
point that keeps them equal in size)

The process is described in more detail in [16]. Alternate
processing may be performed using a similar approach
described in [20].

Even without applying these steps, the result is still very
good for our demonstration purpose.

The page now contains only elements having similar size,

thus the font classifier now has a much simpler task. It can be
noticed that the Arabic symbols at the top of the right page are
now also gone.

This image is now the input for the font detection algorithm.
Because of the very small resolution, the system isn’t able to
make a finer classification than italic and non-italic text.
Because of the noise levels in the shape of the text, the class
outputs of the neural network are limited to a very small
number.

In order to automatize the process of choosing between a
full font search and only basic features search, the output
obtained when using the full training set is used by noticing the
very high variety of fonts obtained. In this situation, an italic,

bold, simple and non-text separation is enough. In our
situation, most of the elements are textual and non-italic, and
the entire page is sent to the next processing step - similar
word detection. If an entire paragraph contained bold or italic
elements, the page would have been split in multiple regions
needing to be processed separately. This process is
accomplished by applying closing operation on the words and
selecting the paragraphs. The paragraph’s font is considered
the font of the most numerous similar words.

D. Similar Word Detection
For demonstration purpose, a very simple approach for

word detection was used: Smudging the image with a distance
dependent on the letter size (one pixel less than half font size
was experimentally observed to work good in order to keep
words connected and not merge adjacent words, either from
the same lines of from neighboring lines). The smudging is
done only in the text direction (which can be automatically
detected via projection profiling methods).

Now the connected elements are encapsulated in bounding

boxes and saved as a list of words. The list of words is
generated from the original, unprocessed image, by cropping
the bounding boxes of the connected components.

Fig. 9 Results for word segmentation

Fig. 8 Results after object filtering

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 15

Most of the words are recovered correctly, the problems

noticed here being a few connected words and more split
words.

Considering that we used only basic methods for obtaining
necessary input data, the result is impressive. It can be
however greatly improved by adding the aforementioned
processing steps in the pipeline.

However, the problem that we encountered on the real
world data is that even for a full text page, in a domain that
words are likely to repeat, they do not repeat enough. A list of
some of the most popular similar words found shows that only
a small fraction of the words from the page actually repeat and
those are mostly connection words:

Fig. 10 Words extracted from the input document

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 16

By optimizing the system, the list can be grown with some

words that were not identified correctly because of unification
or segmentation. Examples include:

However, repeating words account only for a small number

of the entire text, considering only one page of scanned
document. And usually those words are the ones the OCR post
processor is able to correct without the need of a separate
system. This draws us to the concussion that this system
becomes useful only when converting multiple pages (like a
book), in order to increase the chances of repeating words.

However, this brings a new problem: how will the word
classification be made, because correlating each word in the
list with each page from the book is too expensive.

In order to cope with this problem, some pre optimizations
must be taken:

The correlations are done only between segmented words
(so each word will be correlated with all the other words, after
a word list is generated from all the files).

Only similar sized words are worth correlating. A difference
of more than one letter size in word length forces those words
to fall in different bins. So the word list is firstly sorted by
width, this being the first classification. Words of similar width
being considered the same, until a later phase, when only
words from the same bin are measured for differences.

Because some words can be very similar from the
correlation point of view, for example “and” and “end”, it is
better to sort the words based on similarity, and as soon as the

similarity score has a discontinuity, or an abrupt drop, the
words must be considered different, even if we risk to create
two identical bins. The idea is that it is better to have repetitive
bins than to risk to merge two bins, the first introducing only a
small performance issue, but the second a wrong result. This is
achieved not by choosing a similarity threshold, but by
inspecting the similarity variation between the similar words.

Because the bounding box system centers almost perfectly

the words, the correlation can be entirely skipped, a simple
difference being enough for measuring similarity. In the future
we will try to imagine a hash function, resistant to small
variations, so the classification will be done by comparing the
hashes after the widths. This will decrease the processing time
a lot, as there will be only number comparisons instead of
image comparisons on the long original lists, and image
comparisons will be used only inside very small bins.

V. CONCLUSIONS
The purpose behind this system was to be integrated with an

OCR engine for improving results on very deteriorated
documents. The correlation system builds a list of similar
words, the OCR tries to recognize at least one word from the
vector and replaces all the occurrences with the recognized
word. In this way, the damaged words won’t produce junk on
the output and unrecognizable words can be replaced with the
most likely variant, without the need of using a post processing
step based upon dictionaries.

Real images were used for testing and the results show that
this is a valuable direction for further research. Based on the
test results, optimizations that can make the system more
accurate and faster are proposed.

VI. FUTURE WORK
The current version of the code uses normalized cross

correlation for estimating the similarity between words. The
reasoning behind choosing this slow approach is that the words
are not placed identically inside their bounded boxes, and the y
also may be warped or rotated. Noise is also a factor.
However, upon testing, the differences were so small that a
simple subtraction can be used. If however higher accuracy is
needed, a fast variant is available: using the Fast-NCC [7]. The
fast algorithm uses a formula for standard deviation based on
the sums and squared sums in the image. These can be
computed only once in)(NO , by generating the run-lengths
of the elements and squared elements.

The brute force normalized cross correlation formula is:

Fig. 13 Two different but similar words

Fig. 12 Wrongly classified words

Fig. 11 A list of some similar words

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 17

()()∑ −−

yx tf

tyxtfyxf
n ,

),(),(1
σσ

where n is the number of sample points, aσ is the standard

deviation of a and a is the meaning of a.

This works in)(2NO because the mean and standard

deviation are also computed in)(NO .
The mean can easily be optimally calculated by pre-

generating a run-length image, in which each pixel, p(x,y), has
the value equal to the sums of all the pixels contained in the
rectangle (p(0, 0), p(x, y)). Then the mean is just computed by
interrogating four values, in)1(O .

A bit more complicated is for the standard deviation, but a
rewrite of the equation shows this is the same problem:





























−
−

= ∑
∑

yx

yx

n

yxf
yxf

n ,

2

,22

),(
),(

1
1σ

Then the statistics can be interrogated for every pixel in
O(1). If the words are very deteriorated, the FNCC algorithm
positions the words one on top of the other and a merging
between them, at pixel level, will probably yield an image the
OCR will understand better. Having multiple low resolution
images, super-resolution and denoising can be applied. If the
merging is done for the binarized images, a voting approach, at
pixel level, will generate a single image clearer than each
individual one.

One of the most important aspects for the future would be to
remove the comparison phase altogether, at least at root of the
classification tree. This can be achieved by constructing a hash
from each word image. The hash must be resilient to small
changes, small variations in the image generating a small
difference in the output number. An initial idea would be to
use the sum of the 2D gradient at different scales, the most
important weight being offered by the smallest resolution.
Using this approach, firstly the words will be classified based
on length, then only for the same length words, a classification
based on hash will be applied and inside the hash FNCC or
differences at the image level can be applied.

Other aspects include extra processing phases included in
the pipeline for optimizing the result, or the utilization of more
performant algorithms. These include smart binarization,
rotation detection, connected letter splitting and split letter
grouping. More advanced techniques like noise removal, light
uniformization, super resolution and deblurring on the input
image are also useful.

REFERENCES
[1] S. Suzuki, K. Abe, Topological structural analysis of digitized binary

images by border following, Computer Vision, Graphics, and Image
Processing, Volume 30, Issue 1, April 1985, pp. 32-46, http://
dx.doi.org/ 10.1016/ 0734-189X(85)90016-7

[2] M. Pietikainen, O. Okun, Edge-based method for text detection from
complex document images, Document Analysis and Recognition, 2001.
Proceedings. Sixth International Conference on , vol., no., pp. 286-291,
2001, doi: 10.1109/ ICDAR.2001.953800

[3] M. Abaynarh, H. Elfadili and L. Zenkouar, Handwritten Characters
Classification Using Neural Networks, International Journal of Modern
Engineering Research (IJMER), Vol.2, Issue.5, Sep-Oct. 2012, pp.
3572-3577

[4] J. Gllavata, R. Ewerth, B. Freisleben, A Robust algorithm for Text
Detection in images, Proceedings of the 3rd international symposium
on Image and Signal Processing and Analysis, 2003, Vol.2, 611 - 616

[5] S. A. Angadi and M. M Kodabagi, Text region extraction from low
resolution natural scene images using texture features, 2nd International
Advance Computing Conference, IEEE, 2010, pp. 121 - 128

[6] S. M. Hanif and L. Prevost, Texture based Text Detection in Natural
Scene Image: A help to blind and visually impaired persons, Conference
& Workshop on Assistive Technologies for People with Vision &
Hearing Impairments Assistive Technology for All Ages CVHI 2007,
M.A. Hersh (Ed.).

[7] J. P. Lewis, Fast Normalized Cross-Correlation, Vision Interface, pp.
120-123, 1995.

[8] D. M. Tsai and C. T. Lin, Fast normalized cross-correlation for defect
detection, Pattern Recognition Letters, vol. 24, pp. 2625-2631, 2003.

[9] D. M. Tsai, C. T. Lin, and J. F. Chen, The evaluation of normalized
cross-correlations for defect detection, Pattern Recognition Letters, vol.
24, pp. 2525-2535, 2003.

[10] A. Tigora, C. A. Boiangiu, Image Color Reduction Using Iterative
Refinement, International Journal of Mathematical Models and
Methods in Applied Sciences, NAUN, Volume 8, 2014, pp. 203-207

[11] M. Zaharescu, C. A. Boiangiu, An Investigation of Image Deblurring
Techniques, International Journal of Mathematical Models and
Methods in Applied Sciences, NAUN, Volume 8, 2014, pp. 75-83

[12] J. M. Booth, J. Gelb, Optimizing OCR Accuracy on Older Documents,
A Study of Scan Mode, File Enhancement, and Software Products,
Revised June 2006 (v.2)

[13] W. Bieniecki, S. Grabowski, W. Rozenberg, Image Preprocessing for
Improving OCR Accuracy, International Conference on Perspective
Technologies and Methods in MEMS Design - MEMSTECH, 2007

[14] C. Jacobs , P. Y. Simard , P. Viola , J. Rinker, Text recognition of low-
resolution document images, Proc. ICDAR, pp. 695--699, 2005

[15] K. Briechle, U. D. Hanebeck, Template matching using fast normalized
cross correlation. Proc. SPIE 4387, Optical Pattern Recognition XII, 95
(March 20, 2001); doi:10.1117/ 12.421129

[16] C. A. Boiangiu, A. Topliceanu, I. Bucur, Efficient Solutions for OCR
Text Remote Correction in Content Conversion Systems, Journal of
Control Engineering and Applied Informatics, Vol.15, No.1 pp. 22-32,
2013

[17] C. A. Boiangiu, A. Olteanu, A. V. Stefanescu, D. Rosner, A. I. Egner
(2010). „Local Thresholding Image Binarization using Variable-
Window Standard Deviation Response” (2010), Annals of DAAAM for
2010, Proceedings of the 21st International DAAAM Symposium, 20-23
October 2010, Zadar, Croatia, pp. 133-134

[18] C. A. Boiangiu, M. Zaharescu, O. Ferche, A. Danescu, “Improving OCR
by Detecting Similar Words in Similar Fonts”, Proceedings of the 6th
International Conference on Applied Informatics and Computing Theory
(AICT '15), Salerno, Italy, June 27-29, 2015, WSEAS Press, pp. 74-80.

[19] R. Bernhaupt, S. Schönet, “Using artificial neural networks as an
image segmentation module of an OCR-system: A Preliminary Study”,
ID no. 675, WSEAS NNA-FSFS-EC 2001, February 11-15, 2001,
Puerto De La Cruz, Tenerife, Spain.

[20] A. Momin, Sharad, S. Sanyal, “Novel Approach for Segmenting Fused /
Merged Characters During Character Segmentation”, WSEAS
International Conference on Information Technology and Computer
Networks (ITCN '12), Vienna; 2012, pp. 344-348.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 18

