



Abstract—In this paper we give a new data structure that can be

used efficiently by space partition. We consider an approximation

schema introduced recently which is a generalization of space

partitioning algorithms. The input of the schema is triangular mesh,

in special case it can be a set of space points as well. The

approximation schema is an iterative process. The first approximation

of the input mesh is its bounding box, or an arbitrary convex

polyhedron containing the mesh. The process gives an atomic

decomposition of the initial polyhedron. Every iterative step an atom

is chosen, and divided by a plane into two disjoint atoms. In the n-th

step the decomposition consists n+1 atoms. We give a sufficient

condition for the convergence of the method, minimizing a volume

based error metric and leaving the atoms that are irrelevant to the

approximation. It can be shown, the convergence depends only on

the strategy of the choosing and dividing. We define a data structure

for the atomic decomposition, where vertices and faces of atoms are

contained in a global list for minimizing the redundancy. We give a

short survey of geometric operations and properties of polyhedra, the

dividing operation of the process will be discussed, as well.

Keywords— data structures, polyhedral approximation, spatial

decomposition, volume based approximation

I. INTRODUCTION

HIS paper focuses on approximating algorithms of subsets

of real plane or space. As we will see, there are many

possible applications of approximation algorithms of these

sets. If the input set contains finitely many points, the

approximation problem can be seen as a kind of space

partitioning [5][16]. If the input set is a polygonal mesh, then it

can be considered as boundary of a spatial subset, then mesh

repairing [1], mesh simplification, approximate convex

decomposition [10][12], can be obtained by the approximation

process. Similarly, if input is a closed parametric surface, we

can modify the process to obtain mesh generation or finite

element methods [15].

The subjects mentioned before are very close to each other,

our goal is to unify them into a single method, a general

approximation algorithm. Different tuning of parameters fits

various approximation problems. First, we give an overview of

the process, thereafter we discuss its relation to other methods,

finally we show a few examples about how should we tune the

parameters to obtain different approximation methods.

Gábor Fábián is with the Eötvös Loránd Science Universtiy, Faculty of

Informatics, 1117 Budapest (e-mail: robagnaibaf@ gmail.com).

Lajos Gergó is with the Eötvös Loránd Science Universtiy, Faculty of

Informatics, 1117 Budapest (e-mail: gergo@ inf.elte.hu).

II. APPROXIMATION SCHEMA

Let us consider S a bounded subset of the plane or the space
d

(d=2,3). If S is bounded then it can be transformed into

the d-dimensional unit ball, i.e. we can assume, that
dS .

The main idea is constructing atomic decomposition of the

ball, which is obviously is a finite dimensional subspace of the

unit ball. By Riesz projection theorem we can draw up

immediately the best approximation of any
dS , it is the

Fourier-series with respect to the subspace spanned by the

atoms [3][13]. If the decomposition,
0 , , ,n  is

iteratively refined, we get a sequence of approximations

0, , ,nS S  . In [6] we formulated some statements for the

approximation sequence to be monotonic and convergent in a

metric defined on “solid” sets of
d

. Let us take a short

survey of the mathematical details of the approximation

schema:

Let
(): (: 0,1, ,)n d

n iB i n    be a finite atomic

σ-algebra on
d

 [14], i.e. for n
(): (: 0,1, ,)n d

n iB i n   

() () ()n n

i jB B i j  

()

0

n n d

i iB 

It is easy to check [4][17], that

()

()

()

1
: (0,1, ,)

()
n

i

n

i Bn

i

i n
B

 


  

functions form orthonormed system under the common inner

product of function spaces, .,.  . Here ()n
iB

 denotes the

indicator function of the set
()n d

iB  . Then for all f

function the Fourier-series is defined by

() ()

0

: ,n

n
n n

i i

i

f f  


  

Consequently, the Fourier-series of an indicator function can

be written as

()

() () ()

0 0

: ,n
n

i

n n
n n n

S S i i i B
i i

b    
 

    

where

Planning data structure for

space partitioning algorithms

Gábor Fábián and Lajos Gergó

T

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 77

()
()

()

()
:

()

n
n i

i n

i

B S
b

B








are the Fourier-coefficients. The main problem, that n

S is

not an indicator function, therefore we can not assign an
d

nS  to it. To solve the problem the following operator

will be introduced:

0 ()
() :

1 ()

f x
f x

f x







 



where (0,1) . Now we can define the n-th approximation

by

: { 1}n n SS    

{ | () 1}d

Sx x  

Let be a measure on 2
d

. The distance of the sets

, dA B can be measured by

(,) : ()A B A B  

where  denotes the symmetric difference. We showed, that

 is a metric on bounded, connected, regular sets, which

boundary is set of measure zero. Moreover, Lebesgue-density

theorem implies that if
()()n

kB tends to zero

((0,1, ,)k n  as n tends to infinity, then

lim (,) 0n
n

S S




i.e. the sequence of approximations converges to S. Moreover

the convergence is true, if only
()()n

kB tends to zero,

where
() (0,1)n

kb  , i.e. atoms with Fourier-coefficients

exactly 0 or 1 can be ignored. Let
(): { {0,1, , } | (0,1)}n

n ii n b    

be the set of relevant indices, and let us define the diameter of

a set B:

2diam() : sup{ | , }B x y x y B  ‖ ‖

Then the convergence theorem can be formulated as follows:
()limmax{diam() | } 0n

k n
n

B k


 

then

lim (,) 0n
n

S S




To sum up, our input is an
dS set, we need to define a

measure  on 2
d

(or at least outer measure), and choose an

initial set
(0)

0B S , let : 0n  . Then

 Choose an index k, where
()0 1n

kb  , and divide the

set
()n

kB into two non-empty disjoint sets, the

resulting algebra is
1n
 .

 We can compute (,)nS S using the measure (more

accurately, the Fourier-coefficients).

If (,)nS S  for some given 0  tolerance,

go back to previous step, else the process terminates.

We need to answer two important questions. How can we

choose the k index, and how we divide the
()n

kB atom. We

introduce two functions, for choosing and for dividing.

is a function from possible atomic decompositions to

natural numbers, maps any spatial subset to a pair of

spatial subsets. Accurately, the following properties are

required:

0 ()nn n   

() (,)dB B B B   

, B B B B B      

Using our notations the general approximation schema is the

following.

(0)

0VolumeBasedApproximation(, , , ,)S B 

() ()

0

() () ()

1 1 1

1. : 0

2. : (, ,)

3. : ()

4. : { 1}

5. (,)

6. : (, , (), ,)

7. : 1

8. 3.

9.

n

n n

n n

n

n S

n

n n n

n k k k

n

B B

k

S

S S

B B B

n n







 

  



 



 



  

 

if then

goto

else stop

III. RELATION TO SPACE PARTITIONING

In the followings let us consider, that the dividing operation is

a splitting by a d-1 dimensional plane. This is not necessary,

but in real world applications this is justifiable by the finite

representation of spatial subsets. Therefore the most popular

spatial decomposition methods like quadtree, octree- k-d tree

or BSP tree can be obtained naturally from the general

schema. The space partitioning methods mentioned before

operate with hyperplanes, i.e. in every step the space will be

divided into two or more disjoint half-spaces by one or more

hyperplanes.

The main features and differences of the methods are

discussed below, and can be found on Figure 1.

 quadtree/octree: axis-aligned planes at the center of

atoms

 k-d-tree: axis-aligned planes anywhere

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 78

 BSP-tree: arbitrary plane anywhere

 VBA process: arbitrary surface anywhere

For instance, we will present, how can we get a quadtree using

our (volume based approximation) VBA process. Let S be a

finite subset of
2

, and
(0)

0B is the square of side 2 centered

at the origin. Obviously
(0)

0S B . We need to define the

measure. If
()n

kB and S are disjoint sets, then
()n

kB is not

relevant, therefore a good choice is the following:

0
() :

()

B S
B

B otherwise




 
 


where  denotes the common Lebesgue-measure, in this case

the area of the B rectangle.

 () : max{| | | (,),(,) }xd B x x x y x y B     

the diameter of B in the direction of x-axis, and similarly

()yd B the diameter of B in the direction of y-axis. Then let

() (): { 0, , | () ()n n

n x j y jJ j n d B d B   

i.e. the set of indices of atoms which are not a square, and let
() (): { 0, , | (()) }n n

n n j kK k n j B B      

i.e. the set of indices of atoms, that have greater or equal

volume, than the relevant atoms. Then

min
() :

min

n n

n

n

J J

K otherwise

 
 


Thereafter, let us define
1
2

() : min { | (,) } ()x x xc B x x y B d B  

the center of B in the direction x, and similarly ()yc B the

center in the direction y. Then we can define the half-space

 () : {(,) | (,) (),(1,0) 0}x xH B x y B x y c B     

i.e. the points below the 1-dimensional plane defined by its

normal (1,0) and a point
xc . Similarly, let

() : {(,) | (,) (), (0,1) 0}y yH B x y B x y c B     

Then can be defined as

() : (,)B B B 

where

() () ()
:

() () ().

x x y

y x y

B H B d B d B
B

B H B d B d B

 
  

 

and

B B B 

It can be seen, that the approximation process with , ,

defined above generates the quadtree of the point set of S.

IV. EXPERIMENTAL RESULTS

Without to claim the completeness, we show some results from

our experiments. We used various choosing and dividing

functions. Recall, that the output of the general approximation

schema strongly dependent on these functions.

In every step of the iteration one atom is chosen, for example

 Random atom

 Maximum volume atom

 Maximum diameter atom

 Atom that containing the most vertices

Fig. 1: Space partitioning methods from left to right

from top to bottom: input points with bounding box,

quadtree, k-d tree, BSP tree, VBA process.

Fig. 2: Approximation of a cube in 6 steps.

Fig. 3: Approximation of a sphere in 65 steps.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 79

Similarly, the parameters of the splitting plane can be defined

in many ways. For example

 Random plane at the centroid of the atom

 Plane lying on a triangle contained in the atom

 Plane that least coplanar to any face of the atom

 Plane that best fitting to a part of the surface

Mesh approximation can be obtained in many ways, we tested

our algorithm using various parametrization on some simple

objects. Good example for the mesh simplification is a slowly

varying surface represented with many vertices and faces. In

this case our algorithm performs well even if many faces are

missing from the input mesh.

The approximation schema with random plane splits can be

used for fracture simulation of meshes, moreover it is possible

to create BSP-like data structures.

V. DECOMPOSITION IN DETAILS

A. Planning data structure

The three-dimensional decomposition data structure must

contain three data arrays, namely vertices, faces and atoms. It

is a similar approach as vertexstreams and indexstreams, but

there are two important differences.

 the number of elements in a container can be changed

dynamically

 the dimension of the elements in a container are

different (except the vertices)

The second condition is necessary, because atoms are convex

polyhedrons with arbitrary number of faces, and faces are

convex polygons with arbitrary number of vertices. The first

condition provides, that the containers can be extended. Let

1, , NX X be arbitrary non-empty sets, the set of indexed

lists over the sets 1{ }N

i iX  can be defined by

1

1

N

N i

i

X X X


 

i.e. the indexed list is an ordered N-tuple from a cartesian

product of
1, , NX X . Let us denote the lists with square

brackets:

1

N

i

i

l X


 

1[, ,] ()N i il x x x X  

in this case obviously

 : ([1..])i il x i N 

where [..]: [,]a b a b  denotes the discrete closed

interval from a to b. We say that x is the element of the list l,

if there is an i index for which
ix l , i.e.

[1..] : ix l i N l x   

In particular, if
1 :NX X X  , then we use the

NX

notation. We need to define an operation to extend a list. Let

be (1, ,)i iy Y i n   , then let

1

1 1

: [, , ,]
N n

n i i

i i

l l y y X Y
 

     

be a list obtained from l appending the
1, , ny y elements to

it, i.e.

1 1[, , , , ,]N nl x x y y   

The length of a list is defined by the number of sets in the

product:

1

| |:
N

i

i

l X l N


  

Fig. 4: Approximation of a cube with topological

errors in 6 steps. The initial mesh has 10×10×10

segments (2 triangles per segment), several faces are

removed from the surface.

Fig. 5: Fracture simulation using random planes.

Fig. 6: Space partitioning with random planes,

the input is the 8 vertices of the cube.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 80

Now we can define the decomposition data structure as an 8-

tuple.

 , , , , , , ,M N K V l F L A

where

 M is the total number of vertices

 N is the total number of faces

 K is the number of atoms

 3[]MV  is the list of vertices, where vertices are

3-length lists of real numbers

 :[1..] [1..]l N M such that
il is the number of

vertices of the i-th face


1

[]i

N
l

i

F


 is the list of faces, where faces are

defined by list of vertex indices

 :[1..] [1..]L K N such that jL is the number of

faces of the j-th atom


1

][j

K
L

j

A


 is the list of atoms, where atoms are

defined by list of face indices

If we assume that the length of a list is an inner property of the

list itself, we could leave the , , , ,M N K l L parameters, and

decomposition data structure may considered as a 3-tuple

formed by list of vertices, list of vertex indices of faces and list

of face indices of atoms:

 , ,V F A

We give a simple example in Figure 7-8. The complete data

structure can be described using the terminology of lists

introduced above.

V=[[-1, 1,-1], [-1,-1,-1], [1, -1,-1],[1, 1,-1],

[-1, 1, 1], [-1,-1, 1], [1, -1, 1],[1, 1, 1],

[0,0,0]]

F=[[9,1,2],[9,2,3],[9,3,4],[9,4,1],

[9,6,5],[9,7,6],[9,8,7],[9,5,8],

[1,2,3,4],[8,7,6,5]]

 1,2,3,4,9 , 5,6,7,8,1]0]A   

B. Choosing operation

As we mentioned before, the behaviour of the VBA process is

strongly depends on the choosing and dividing functions.

Notice, that the choosing operation have to be the function of

the
()

0{ }n n

i ib  Fourier-coefficients according to the

convergence theorem (recall, in convergence theorem we used

relevant atoms, that are defined through Fourier-coefficients).

Accurately, we should differentiate that if
() {0,1}n

ib 

or
() (0,1)n

ib  . In general it is not enough to estimate the

Fourier-coefficients, we should calculate their exact value. We

assumed that the S input mesh is a polyhedron, an arbitrary
()n

iB atom is a convex polyhedron, therefore
()n

iB S is a

polyhedron, as well. Polyhedron intersection is not an easy

problem, but the topic is studied intensively. A possible

algorithm can be found in [11]. If we are able to calculate the

intersection of polyhedra, then calculating the Fourier-

coefficients means only determining the ratio of the volumes

of intersecting polyhedron and the original atom. To sum up,

calculating the exact value of Fourier-coefficients can be done

in two steps

 calculating the intersecting polyhedron

 calculating the volume of two polyhedra (intersecting

polyhedron and containing atom.

Due to the content limits of present paper, we discuss only a

volume calculation technique of polyhedra in detail.

C. Calculating volume of polyhedra

Let us consider an S compact set of
3

 having a piecewise

smooth boundary S and let
3 3: f be a continously

differentiable vector field on S. Then Gauss-Ostrogradsky

Fig. 7: Example for decomposition with 2 atoms, 10

faces, 9 vertices. Both atoms have 5 faces, 4 triangles

and 1 square. The
9v vertex is shared between the

atoms.

Fig. 8: Example for some elements of the

decomposition data structure

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 81

divergence theorem states that the volume integral of the

diveregence of f can be calculated by a surface integral of f,

namely

div d , d
S S

V A


   f f n

where dV is a volume element of S, dA is a surface element

of S , n denotes the outward-pointing unit normal field of

S and .,.  is the common dot product in
3
. In

particular, if

\begin{equation}

1
(, ,) (, ,) : (/ 3, / 3, / 3)

3
x y z x y z x y z f id

then

(div)(, ,) 1/ 3 1/ 3 1/ 3 1x y z    f

therefore in this case the left hand side integral means the

volume of S, i.e.

1
vol() 1 d , d

3S S
S V A


     id n

Let
3P  be a polyhedron defined by the faces

3

1, , mp p  , and let us suppose, that the supporting

plane of
ip passes through an

3

i a point, it has a unit

normal
in and its

iA area is known. Then using our

preceding results, it is easy to prove, that the volume of P can

be calculated using the following formula:

1

1
vol() , d

3 i

m

i
p

i

P A


    id n
1

1
,

3

m

i i i

i

A


  a n

Notice, that the
ia is an arbitrary point of the

ip face,

eventually that is why we can change the order of integration

and dot product. It can be assumed, that ,i in a are known,

because the faces of polyhedrons are simple polygons. A
ip

(simple) polygon can be defined by a directed list of its

vertices, for example
1[, ,]nv v , where

3

j v ,

moreover
() ()

1

i i

nv v . Then we can define the point and the

normal of the supporting plane of
ip as

()

1: i

i a v

and
() () () () (): () ()i i i i i

jkl k j l j   w v v v v

()

()
:

i

jkl

i i

jkl


w

n
w‖ ‖

where j,k,l are the indices for which
()i

jklw‖ ‖ is maximal.

Consequently, if a P polyhedron is defined by its vertices and

polygonal faces, then we can calculate the volume of the

polyhedron if we can calculate the area of its faces.

D. Area of polygons

There is a well-known formula to calculate the area of a planar

polygon. Let be
2(,)i ix y  and let

1 1[(,), ,(,)]n nx y x y

be the directed vertex list of a two dimensional polygon p.

Recall, that
1 1(,) (,)n nx y x y . Then the area can be

calculated by (see e.g. [9])
1

1 1

1

1
area()

2

n

i i i i

i

p x y x y


 



 

The absolute value can be omitted, if we know the orientation

of p (clockwise or counterclockwise), the formula above is

right in both case. The problem is, that the polygons in our

representation are three dimensional, therefore we define an

affine mapping between an arbitrary (supporting) plane and
2

. Let
3

, : { | , 0}P x     n a x a n

be the plane going through a and having a unit normal n. At

this point we give an orthonormed system, that fits to the

plane's normal. Let

\begin{equation}

2 2 2 2

2 1 1 2
2 2

1 2

2 2 2 2

1 3 1 3 1
2 2

3 1

2 2 2 2

3 2 2 3
2 2

2 3

1
(, ,0)

1
() : (,0,)

1
(0, ,)

i j

i j

i j

n n n n n n
n n

n n n n n n
n n

n n n n n n
n n




    
 



    



    
 

n

where , {1,2,3}i j and i j .

\begin{equation}

3() n n

2 1() ()  n n n

It is easy to see, that ()i n is an orthonormed system,

therefore it is a basis in
3
. Now we define a function, that

transforms the points of the ,Pn a plane into its local

coordinate system.
2

, ,: P n a n a

, 1 2() : (, (), , ())x      n a x a n x a n

Since  
3

1
()i i




n is orthonormed basis, consequently every

3x can be written in the local coordinate system as
3

1

, () ()i i

i

 


   x x a n n

Notice, that if ,P n ax then

3, () , 0       x a n x a n

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 82

by definition, i.e. the third coordinate is zero for all ,P n ax ,

consequently

,: () n ax x

is the image of x in the two dimensional coordinate system

attached to ,Pn a .

To sum up the methods described before, if P is a polyhedron

defined by its vertices and face indices, we can calculate its

volume in a few steps:

 calculate a normal of every face, and choose one of its

vertices

 transform the vertices of a face into the local

coordinate system of the supporting plane

 calculate the area of the face, using the transformed

(,)x y coordinates

 calculate the volume of the polyhedron, using the

normals, points and areas.

E. Dividing operation

As we mentioned before, when designing VBA processes the

most important is to define the choosing and dividing

operations. In the previous sections the subprocesses of

choosing were discussed, now we give a brief overview of

dividing in the decomposition data structure.

We assumed, that the initial atom of the decomposition is a

convex polyhedron, which faces are convex polygons.

Moreover, let us suppose that operator is always can be

interpreted as intersection with a half-space, so we have only

3+3 free parameters, a normal vector and a point of the

splitting plane. These limitations significantly simplify the

problem. In this context, let us note some remarks (see e.g.

[2]).

 The non-empty intersection of a convex polyhedron

and a half-space is a convex polyhedron.

 If
(0)

0B convex polyhedron and is defined as

splitting by a plane then
()n

kB is convex polyhedron

for all ,k n .

 The non-empty intersection of a convex polygon and

a half-plane is a convex polygon.

 If the faces of
(0)

0B are convex polygons and is

defined as splitting by a plane then the faces of
()n

kB

are convex polyhedron for all ,k n .

As a consequence of the convexity of
(0)

0B we can assume

that the atom to be divided is convex, in this case we obtain a

much simpler problem.

Let us suppose, that p is a convex polygon, defined by the

convex hull of its vertices

1conv({ , , })np  v v

where
3

i v . Let ,Pn a be a plane, and let us suppose

that ,i P n av , i.e. the vertices of the polygon do not lay on

the plane. If ,p P n a then exactly two segments are

intersected, i.e. there exist exactly two indices ,i j such that

1 ,conv({ , })i i P  n av v

1 ,conv({ , }) .j j P  n av v

i.e. there exist

1 ,[,]i i P
  n ax v v

and

1 ,[,]j j P
  n ax v v

The intersecting points can be computed as follows

1

1

,
: ()

,

i
i i i

i i





  
   

  

n a v
x v v v

n v v

1

1

,
: ()

,

j

j j j

j i





  
   

  

n a v
x v v v

n v v

Therefore, for a given atom the splitting operation can be done

in few steps, namely: sort the faces below and above the

splitting plane, collect the intersecting faces, divide the

intersecting faces into two parts, find the caps of the

intersecting surface. The main ideas of a polygonal mesh

Fig. 9: It is possible to compute the volume of a polyhedron

knowing its face normals, points and areas. Area of a simple

polygon can be easily computed knowing the two dimensional

coordinates of its points on the supporting plane.

Fig. 10: An atom is divided into two non-empty atoms. The

newly created face is always a convex polygon.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 83

splitting algorithm can be found in [7]. In details the dividing

operation is the following.

 Find all intersecting faces. Compute all intersecting

points. Every intersecting face has exactly two

intersecting points , x x .

 Every
1conv({ , , })nv v intersecting face will be

divided into two non-empty faces

 1 1conv({ , , , , , , })j n i
   x x v v v v

 and

 1conv({ , , , , })i j
 x v v x

 using the notations introduced earlier.

 Let us suppose, that all the intersecting vertices

1 2, , Lx x are computed ()L . In this case the

plane intersects L pieces of faces, since every convex

face adds exactly 2 intersecting vertices to the list.

The cap, i.e. the new face created on the intersecting

plane is defined the convex hull of the intersecting

vertices, i.e.

1 2conv({ , , })new Lp  x x

After the theoretical overview let us suppose, that the n-th step

of the VBA process we have the decomposition data structure

 , ,V F A . Now if ()n k then the k-th atom will be

divided in this step. Let us consider a ,Pn a plane, which

divides the
()n

kB atom into two non-empty disjoint sets.

Notice, that the
kA element of the data structure corresponds

to the
()n

kB , moreover as every atom is convex,
()n

kB equals

the convex hull of the vertices corresponding to
kA , i.e.

() conv({ | })n

k j i kB v V j F i A

Considering the foregoing, we can determine the
1n
 system

described by the (, ,)V F A   decomposition data structure.

With our notations

1 (, ,) (, ,)n nV F A V F A 
    

Let us suppose, that the plane intersects exactly L faces of the

k-th atom, and the indices of the intersecting faces are

1, , L ki i A

As every face creates exactly two new vertices, let be the

coordinates of intersecting vertices
1 2 2 1 2, , ,L Lx x x x of

faces
1, , Li i respectively.

Now let  be a permutation of{1, ,2 }L , such that the

intersecting vertices are sorted by polar angle when  is

applied. Then we have a list of vertices

(1) (2)[, ,]L x x

wherein there are exactly two vertices at every polar angle

which belong to adjacent faces. The new vertices can be

obtained by taking every second vertices from the list, i.e.

(2) (4) (2): [, , , ,]LV V   
  x x x

Notice, that the vertices belonging to the ji face are 2 1jx

and 2 jx , after sorting the vertices receive new indices

(2 1)j  and (2)j , leaving every second vertex and

appending to the list V, we get, that the new indices of the

intersecting vertices of ji face in the 'V list are

Fig. 11: An atom is divided into two non-empty atoms. The

non-intersecting faces are unchanged, the intersecting faces

are divided into exactly two convex polygons.

Fig. 12: Splitting an intersecting polygon by a plane

Fig. 13: Caps of the intersecting surface can be computed by

sorting vertices by polar angle.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 84

(2 1)

| |
2

j
V

  
  
 

 and
(2)

| |
2

j
V

 
  
 

 where .  

denotes the ceiling function. So we can determine the new

faces '
ji

p and ''
ji

p which are obtained after applying the

dividing operation on the face ji , where instead of

, ,m
 v x x

we use the corresponding indices:
(2 1) (2)

2 2
{ | }, | | , | |

j

j j

im m F V V
        

If we have all of the intersecting faces, we need to add them to

the face list. As
jiF does not exist anymore, the

jiF elements

will be replaced by '
ji

p and ''
ji

p will be appended to the

list.

1

: (), : [, , ,]
j j L

i i i i
F p j F F p p  

   

Finally, we add the caps twice (in opposite direction too) to the

list:

: [,[| | 1, ,| |],[| | , , 1]]F F V V L V L V       

At the last step, we need to update the list of atoms. Let

11 , , Li i  and
21 , , Li i  be the face indices of the

kA

atom that are above and below the dividing plane, respectively

(this property can be easily checked). Similarly, as the face

lists we redefine the
kA atom as

11: [, ,]k LA i i  

and we append the other atom to the list

11: [,[, ,]]LA A i i   

By this the decomposition data structure after the dividing

operation is obtained.

F. Getting results

The decomposition is refined iteratively, in every step exactly

one atom is chosen and split. There are many ways to export

data from the data structure. It is worth mentioning, that we

can export every single atoms separately for e.g. fracture

simulation, or we can export the boundary of the

decomposition for e.g. mesh simplification. The boundary of

the decomposition is defined by the faces of atoms, such that

the face-adjacent atom is not a part of the approximation. So

if is a boundary face if and only if it is a face of
()n

kB

and
()n

lB , moreover
()n

kb  , but
()n

lb  , see the

definition of
nS . If it is needed the polygonal mesh trivially

can be converted to a simple triangular mesh, since all the

polygons are convex.

VI. CONCLUSIONS AND FURTHER WORK

We are working on the implementation of the data structure

introduced in this paper to perform fast dividing operations on

polyhedrons. Obviously the conversion between our data

structure and the common data structures (vertexstrem-

indexstream) should be possible to design and to supervise

VBA processes.

Our goal was to give a theoretical foundation for some

similar approaches of space partitioning. The topics mentioned

are often thought to be different, but all them can be described

by a simple iterative approximation process. This

approximation process is based on the theory of Fourier-series

in Hilbert-spaces, which is well-known topic in mathematics,

there are many useful theorems, that can be used during our

work. But there are not just theoretical advantages of the

method, we have a convergence theorem, necessary and

sufficient condition for the monotonicity, and an exact error

formula. If we can calculate exactly the volume of an

intersection of an atom and the input, then we can calculate the

exact distance, as well. Intersection of polyhedra can be

calculated, but it is a difficult problem. Our idea is to calculate

the volume of intersection without producing the intersection

itself. If we had the exact error formula, and the Fourier-

coefficients, we could optimize the performance of the

approximation process, and maybe it would be more widely

used.

REFERENCES

[1] M. Campen, M. Attene, L. Kobbelt, “A Practical Guide to Polygon

Mesh Repairing”, ACM Transactions on Graphics, vol. 21, no. 2, pp.

88-105, 2002.

[2] B. Chazelle, D. P. Dobkin, “Intersection of Convex Objects in Two and

Three Dimensions”, Journal of the ACM, vol. 34, issue 1, pp. 1-27,

1987.

[3] E. W. Cheney, Introduction to Approximation Theory, AMS Chelsea

Pub., 1982.

[4] J. L. Doob, Measure Theory (Graduate Text in Mathematics), Springer,

1994.

[5] C. Ericson, Real-Time Collision Detection, Elsevier, 2005.

[6] G. Fábián, L. Gergó, “Adaptive algorithm for polyhedral approximation

of 3D solids”, Stud. Univ. Babes-Bolyai Mathematica vol. 60, no. 2, pp.

277–293, 2015.

[7] G. Fábián, L. Gergó, “Fast Algorithm to Split and Reconstruct

Triangular Meshes”, Stud. Univ. Babes-Bolyai Informatica, special

issue 1, pp. 90-102, 2014.

[8] G. Fábián, L. Gergó, “On Constructing Volume Based Approximation

Algorithms of Spatial Subsets”, Advances in Computer Science,

(Proceedings of the 6th European Conference of Computer Science,

Rome, Italy, November 7-9), pp. 60-65, 2015.

[9] S. Ghali, Introduction to Geometric Computing, Springer-Verlag

London Limited, 2008.

[10] M. Ghosh et al. “Fast approximate convex decomposition using relative

concavity”, Computer-Aided Design vol. 45, issue 2, pp. 494-504,

2013.

[11] K. Mehlhorn K. Simon, “Intersecting two polyhedra one of which is

convex”, Fundamentals of Computation Theory vol. 199 of the series

Lecture Notes in Computer Science, pp. 534-542, 2005.

[12] M. Muller N. Chentanez, T. Kim, “Real Time Dynamic Fracture with

Volumetric Approximate Convex Decompositions”, ACM Transactions

on Graphics vol. 32, issue 4, article no. 115, 2013.

[13] I. P. Natanson, Constructive Function Theory, vol. 1., Frederick Ungar

Publishing Co., 1964.

[14] J. Neveu, Discrete Parameter Martingales, Elsevier, 1975.

[15] S. J. Owen “A Survey of Unstructured Mesh Generation Technology”,

International Meshing Roundtable, pp. 239-267, 1998.

[16] S. R. Tate, K. Xu, “General-Purpose Spatial Decomposition Algorithms:

Experimental Results”, Chapman\&Hall/CRC, 2004.

[17] M. E. Taylor, Measure Theory and Integration, Graduate Studies in

Mathematics, vol. 76, 2006.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 85

