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Abstract—In this paper we give a new data structure that can be 

used efficiently by space partition. We consider an approximation 

schema introduced recently which is a generalization of space 

partitioning algorithms. The input of the schema is triangular mesh, 

in special case it can be a set of space points as well. The 

approximation schema is an iterative process. The first approximation 

of the input mesh is its bounding box, or an arbitrary convex 

polyhedron containing the mesh. The process gives an atomic 

decomposition of the initial polyhedron. Every iterative step an atom 

is chosen, and divided by a plane into two disjoint atoms. In the n-th 

step the decomposition consists n+1 atoms. We give a sufficient 

condition for the convergence of the method, minimizing a volume 

based error metric and leaving the atoms that are irrelevant to the 

approximation. It can be shown, the convergence depends only on 

the strategy of the choosing and dividing. We define a data structure 

for the atomic decomposition, where vertices and faces of atoms are 

contained in a global list for minimizing the redundancy. We give a 

short survey of geometric operations and properties of polyhedra, the 

dividing operation of the process will be discussed, as well. 

 

Keywords— data structures, polyhedral approximation, spatial 

decomposition, volume based approximation  

I. INTRODUCTION 

HIS paper focuses on approximating algorithms of subsets 

of real plane or space. As we will see, there are many 

possible applications of approximation algorithms of these 

sets. If the input set contains finitely many points, the 

approximation problem can be seen as a kind of space 

partitioning [5][16]. If the input set is a polygonal mesh, then it 

can be considered as boundary of a spatial subset, then mesh 

repairing [1], mesh simplification, approximate convex 

decomposition [10][12], can be obtained by the approximation 

process. Similarly, if input is a closed parametric surface, we 

can modify the process to obtain mesh generation or finite 

element methods [15]. 

The subjects mentioned before are very close to each other, 

our goal is to unify them into a single method, a general 

approximation algorithm. Different tuning of parameters fits 

various approximation problems. First, we give an overview of 

the process, thereafter we discuss its relation to other methods, 

finally we show a few examples about how should we tune the 

parameters to obtain different approximation methods.  
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II. APPROXIMATION SCHEMA 

Let us consider S a bounded subset of the plane or the space 
d

(d=2,3). If S is bounded then it can be transformed into 

the d-dimensional unit ball, i.e. we can assume, that 
dS . 

The main idea is constructing atomic decomposition of the 

ball, which is obviously is a finite dimensional subspace of the 

unit ball. By Riesz projection theorem we can draw up 

immediately the best approximation of any 
dS , it is the 

Fourier-series with respect to the subspace spanned by the 

atoms [3][13]. If the decomposition,
0 , , ,n  is 

iteratively refined, we get a sequence of approximations 

0, , ,nS S   . In [6] we formulated some statements for the 

approximation sequence to be monotonic and convergent in a 

metric defined on “solid” sets of 
d

. Let us take a short 

survey of the mathematical details of the approximation 

schema: 

Let  
( ): (  :  0,1, , )n d

n iB i n      be a finite atomic 

σ-algebra on 
d

 [14], i.e. for n   
( ): (  :  0,1, , )n d

n iB i n     

( ) ( ) ( )n n

i jB B i j    

( )

0

n n d

i iB   

It is easy to check [4][17], that 

( )

( )

( )

1
: ( 0,1, , )

( )
n

i

n

i Bn

i

i n
B

 


    

functions form orthonormed system under the common inner 

product of function spaces, .,.  . Here ( )n
iB

  denotes the 

indicator function of the set  
( )n d

iB  . Then for all f 

function the Fourier-series is defined by 

( ) ( )

0

: ,n

n
n n

i i

i

f f  


    

Consequently, the Fourier-series of an indicator function can 

be written as 

( )

( ) ( ) ( )

0 0

: ,n
n

i

n n
n n n

S S i i i B
i i

b    
 

      

where 
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( )
( )

( )

( )
:

( )

n
n i

i n

i

B S
b

B






  

are the Fourier-coefficients. The main problem, that n

S is 

not an indicator function, therefore we can not assign an 
d

nS  to it. To solve the problem the following operator 

will be introduced: 

0 ( )
( ) :

1 ( )

f x
f x

f x







 


 

where (0,1) . Now we can define the n-th approximation 

by 

: { 1}n n SS      

{  |  ( ) 1}d

Sx x    

Let  be a measure on 2
d

. The distance of the sets 

, dA B  can be measured by  

( , ) : ( )A B A B    

where   denotes the symmetric difference. We showed, that 

  is a metric on bounded, connected, regular sets, which 

boundary is set of measure zero. Moreover, Lebesgue-density 

theorem implies that if 
( )( )n

kB  tends to zero 

( (0,1, , )k n   as n tends to infinity, then  

lim ( , ) 0n
n

S S


  

i.e. the sequence of approximations converges to S. Moreover 

the convergence is true, if only 
( )( )n

kB  tends to zero, 

where
( ) (0,1)n

kb  , i.e. atoms with Fourier-coefficients 

exactly 0 or 1 can be ignored. Let  
( ): { {0,1, , } |  (0,1)}n

n ii n b      

be the set of relevant indices, and let us define the diameter of 

a set B: 

2diam( ) : sup{  |  , }B x y x y B  ‖ ‖  

Then the convergence theorem can be formulated as follows: 
( )limmax{diam( ) |  } 0n

k n
n

B k


   

then 

lim ( , ) 0n
n

S S


  

 

To sum up, our input is an 
dS  set, we need to define a 

measure   on 2
d

(or at least outer measure), and choose an 

initial set
(0)

0B S , let : 0n  . Then  

 Choose an index k, where
( )0 1n

kb  , and divide the 

set 
( )n

kB   into two non-empty disjoint sets, the 

resulting algebra is
1n
 . 

 We can compute ( , )nS S  using the measure (more 

accurately, the Fourier-coefficients).  

If ( , )nS S    for some given 0   tolerance, 

go back to previous step, else the process terminates.  

 

We need to answer two important questions. How can we 

choose the k index, and how we divide the 
( )n

kB  atom. We 

introduce two functions,  for choosing and   for dividing. 

is a function from possible atomic decompositions to 

natural numbers,  maps any spatial subset to a pair of 

spatial subsets. Accurately, the following properties are 

required: 

0 ( )nn n     

 

( ) ( , )dB B B B     

, B B B B B        

 

Using our notations the general approximation schema is the 

following. 

 
(0)

0VolumeBasedApproximation( , , , , )S B   

( ) ( )

0

( ) ( ) ( )

1 1 1

1. : 0

2. : ( , , )

3. : ( )

4. : { 1}

5.    ( , )   

6. : ( , , ( ), , )

7. : 1

8.   3.

9.   

n

n n

n n

n

n S

n

n n n

n k k k

n

B B

k

S

S S

B B B

n n







 

  



 



 



  

 

if then

goto

else stop

  

III. RELATION TO SPACE PARTITIONING 

In the followings let us consider, that the dividing operation is 

a splitting by a d-1 dimensional plane. This is not necessary, 

but in real world applications this is justifiable by the finite 

representation of spatial subsets. Therefore the most popular 

spatial decomposition methods like quadtree, octree- k-d tree 

or BSP tree can be obtained naturally from the general 

schema. The space partitioning methods mentioned before 

operate with hyperplanes, i.e. in every step the space will be 

divided into two or more disjoint half-spaces by one or more 

hyperplanes.  

The main features and differences of the methods are 

discussed below, and can be found on Figure 1. 

 

 quadtree/octree: axis-aligned planes at the center of 

atoms 

 k-d-tree: axis-aligned planes anywhere 
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 BSP-tree: arbitrary plane anywhere 

 VBA process: arbitrary surface anywhere 

 

For instance, we will present, how can we get a quadtree using 

our (volume based approximation) VBA process. Let S be a 

finite subset of 
2

, and 
(0)

0B   is the square of side 2 centered 

at the origin. Obviously
(0)

0S B  . We need to define the 

measure. If 
( )n

kB   and S are disjoint sets, then 
( )n

kB   is not 

relevant, therefore a good choice is the following: 

0
( ) :

( )

B S
B

B otherwise




 
 


 

where   denotes the common Lebesgue-measure, in this case 

the area of the B rectangle. 

 ( ) : max{| | | ( , ),( , ) }xd B x x x y x y B        

the diameter of B in the direction of x-axis, and similarly 

( )yd B   the diameter of B in the direction of y-axis. Then let  

( ) ( ): { 0, ,  |  ( ) ( )n n

n x j y jJ j n d B d B     

i.e. the set of indices of atoms which are not a square, and let  
( ) ( ): { 0, ,  |    ( ( ) ) }n n

n n j kK k n j B B        

i.e. the set of indices of atoms, that have greater or equal 

volume, than the relevant atoms. Then 

min
( ) :

min

n n

n

n

J J

K otherwise

 
 


 

Thereafter, let us define  
1
2

( ) : min {  | ( , ) } ( )x x xc B x x y B d B    

the center of B in the direction x, and similarly ( )yc B  the 

center in the direction y. Then we can define the half-space 

 ( ) : {( , )  |  ( , ) ( ),(1,0) 0}x xH B x y B x y c B        

i.e. the points below the $1$-dimensional plane defined by its 

normal (1,0)   and a point
xc . Similarly, let 

( ) : {( , )  |  ( , ) ( ), (0,1) 0}y yH B x y B x y c B       

Then   can be defined as 

( ) : ( , )B B B   

where 

( ) ( ) ( )
:

( ) ( ) ( ).

x x y

y x y

B H B d B d B
B

B H B d B d B

 
  

 
 

and  

B B B   

It can be seen, that the approximation process with , ,   

defined above generates the quadtree of the point set of S. 

 

IV. EXPERIMENTAL RESULTS 

Without to claim the completeness, we show some results from 

our experiments. We used various choosing and dividing 

functions. Recall, that the output of the general approximation 

schema strongly dependent on these functions. 

 

In every step of the iteration one atom is chosen, for example 

 Random atom 

 Maximum volume atom 

 Maximum diameter atom 

 Atom that containing the most vertices 

 

 

 

 

 
 
Fig. 1: Space partitioning methods from left to right 

from top to bottom: input points with bounding box, 

quadtree, k-d tree, BSP tree, VBA process. 

 
Fig. 2: Approximation of a cube in 6 steps. 

 
Fig. 3: Approximation of a sphere in 65 steps. 
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Similarly, the parameters of the splitting plane can be defined 

in many ways. For example 

 

 Random plane at the centroid of the atom 

 Plane lying on a triangle contained in the atom 

 Plane that least coplanar to any face of the atom 

 Plane that best fitting to a part of the surface 

 

Mesh approximation can be obtained in many ways, we tested 

our algorithm using various parametrization on some simple 

objects. Good example for the mesh simplification is a slowly 

varying surface represented with many vertices and faces. In 

this case our algorithm performs well even if many faces are 

missing from the input mesh. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The approximation schema with random plane splits can be 

used for fracture simulation of meshes, moreover it is possible 

to create BSP-like data structures. 

 

 

 

 

 

V. DECOMPOSITION IN DETAILS 

A. Planning data structure 

 

The three-dimensional decomposition data structure must 

contain three data arrays, namely vertices, faces and atoms. It 

is a similar approach as vertexstreams and indexstreams, but 

there are two important differences.  

 

 the number of elements in a container can be changed 

dynamically 

 the dimension of the elements in a container are 

different (except the vertices) 

 

The second condition is necessary, because atoms are convex 

polyhedrons with arbitrary number of faces, and faces are 

convex polygons with arbitrary number of vertices. The first 

condition provides, that the containers can be extended. Let 

1, , NX X   be arbitrary non-empty sets, the set of indexed 

lists over the sets 1{ }N

i iX    can be defined by  

1

1

N

N i

i

X X X


   

i.e. the indexed list is an ordered N-tuple from a cartesian 

product of 
1, , NX X  . Let us denote the lists with square 

brackets: 

1

N

i

i

l X


   

1[ , , ] ( )N i il x x x X    

in this case obviously 

 : ( [1.. ])i il x i N    

where [ .. ]: [ , ]a b a b   denotes the discrete closed 

interval from a to b. We say that x is the element of the list l, 

if there is an i index for which
ix l  , i.e. 

[1.. ] : ix l i N l x     

In particular, if
1 :NX X X  , then we use the 

NX   

notation. We need to define an operation to extend a list. Let 

be  ( 1, , )i iy Y i n    , then let 

1

1 1

: [ , , , ]
N n

n i i

i i

l l y y X Y
 

       

be a list obtained from l appending the 
1, , ny y   elements to 

it, i.e. 

1 1[ , , , , , ]N nl x x y y     

The length of a list is defined by the number of sets in the 

product: 

1

| |:
N

i

i

l X l N


    

 

 
Fig. 4: Approximation of a cube with topological 

errors in 6 steps. The initial mesh has 10×10×10 

segments (2 triangles per segment), several faces are 

removed from the surface. 

 
Fig. 5: Fracture simulation using random planes. 

 
Fig. 6: Space partitioning with random planes, 

the input is the 8 vertices of the cube. 
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Now we can define the decomposition data structure as an 8-

tuple.  

 , , , , , , ,M N K V l F L A  

where 

 M is the total number of vertices 

 N is the total number of faces 

 K is the number of atoms 

 3[ ]MV    is the list of vertices, where vertices are 

3-length lists of real numbers 

 :[1.. ] [1.. ]l N M   such that 
il  is the number of 

vertices of the i-th face 

 
1

[ ]i

N
l

i

F


   is the list of faces, where faces are 

defined by list of vertex indices 

 :[1.. ] [1.. ]L K N  such that jL  is the number of 

faces of the j-th atom 

 
1

][ j

K
L

j

A


  is the list of atoms, where atoms are 

defined by list of face indices  

 

If we assume that the length of a list is an inner property of the 

list itself, we could leave the , , , ,M N K l L  parameters, and 

decomposition data structure may considered as a 3-tuple 

formed by list of vertices, list of vertex indices of faces and list 

of face indices of atoms: 

 , ,V F A  

 

We give a simple example in Figure 7-8. The complete data 

structure can be described using the terminology of lists 

introduced above. 

 

V=[ [-1, 1,-1], [-1,-1,-1], [1, -1,-1],[1, 1,-1],  

[-1, 1, 1], [-1,-1, 1], [1, -1, 1],[1, 1, 1],  

[0,0,0]]  

 

F=[ [9,1,2],[9,2,3],[9,3,4],[9,4,1],  

[9,6,5],[9,7,6],[9,8,7],[9,5,8],  

[1,2,3,4],[8,7,6,5]]  

 

 1,2,3,4,9 , 5,6,7,8,1 ]0]A     

B. Choosing operation 

 

As we mentioned before, the behaviour of the VBA process is 

strongly depends on the choosing and dividing functions. 

Notice, that the choosing operation have to be the function of 

the 
( )

0{ }n n

i ib    Fourier-coefficients according to the 

convergence theorem (recall, in convergence theorem we used 

relevant atoms, that are defined through Fourier-coefficients). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Accurately, we should differentiate that if 
( ) {0,1}n

ib    

or
( ) (0,1)n

ib   . In general it is not enough to estimate the 

Fourier-coefficients, we should calculate their exact value. We 

assumed that the S input mesh is a polyhedron, an arbitrary 
( )n

iB   atom is a convex polyhedron, therefore 
( )n

iB S   is a 

polyhedron, as well. Polyhedron intersection is not an easy 

problem, but the topic is studied intensively. A possible 

algorithm can be found in [11]. If we are able to calculate the 

intersection of polyhedra, then calculating the Fourier-

coefficients means only determining the ratio of the volumes 

of intersecting polyhedron and the original atom. To sum up, 

calculating the exact value of Fourier-coefficients can be done 

in two steps 

 calculating the intersecting polyhedron 

 calculating the volume of two polyhedra (intersecting 

polyhedron and containing atom. 

Due to the content limits of present paper, we discuss only a 

volume calculation technique of polyhedra in detail. 

 

C. Calculating volume of polyhedra 

Let us consider an S compact set of 
3

  having a piecewise 

smooth boundary S  and let 
3 3: f   be a continously 

differentiable vector field on S. Then Gauss-Ostrogradsky 

 
Fig. 7: Example for decomposition with 2 atoms, 10 

faces, 9 vertices. Both atoms have 5 faces, 4 triangles 

and 1 square. The 
9v  vertex is shared between the 

atoms. 

 
Fig. 8: Example for some elements of the 

decomposition data structure 
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divergence theorem states that the volume integral of the 

diveregence of f can be calculated by a surface integral of f, 

namely 

div  d ,  d
S S

V A


   f f n  

where dV  is a volume element of S, dA  is a surface element 

of S , n denotes the outward-pointing unit normal field of 

S  and .,.    is the common dot product in 
3
. In 

particular, if  

\begin{equation} 

1
( , , ) ( , , ) : ( / 3, / 3, / 3)

3
x y z x y z x y z f id  

then  

(div )( , , ) 1/ 3 1/ 3 1/ 3 1x y z    f  

therefore in this case the left hand side integral means the 

volume of S, i.e. 

1
vol( ) 1 d ,  d

3S S
S V A


     id n  

Let 
3P    be a polyhedron defined by the faces 

3

1, , mp p   , and let us suppose, that the supporting 

plane of 
ip   passes through an 

3

i a   point, it has a unit 

normal 
in   and its 

iA   area is known. Then using our 

preceding results, it is easy to prove, that the volume of P can 

be calculated using the following formula: 

1

1
vol( ) ,  d

3 i

m

i
p

i

P A


    id n  
1

1
,

3

m

i i i

i

A


  a n  

Notice, that the 
ia   is an arbitrary point of the 

ip   face, 

eventually that is why we can change the order of integration 

and dot product. It can be assumed, that ,i in a   are known, 

because the faces of polyhedrons are simple polygons. A 
ip   

(simple) polygon can be defined by a directed list of its 

vertices, for example
1[ , , ]nv v  , where 

3

j v  , 

moreover 
( ) ( )

1

i i

nv v  . Then we can define the point and the 

normal of the supporting plane of 
ip  as 

( )

1: i

i a v  

and 
( ) ( ) ( ) ( ) ( ): ( ) ( )i i i i i

jkl k j l j   w v v v v  

( )

( )
:

i

jkl

i i

jkl


w

n
w‖ ‖

 

where j,k,l are the indices for which 
( )i

jklw‖ ‖   is maximal. 

Consequently, if a P polyhedron is defined by its vertices and 

polygonal faces, then we can calculate the volume of the 

polyhedron if we can calculate the area of its faces.  

 

D. Area of polygons 

There is a well-known formula to calculate the area of a planar 

polygon. Let be 
2( , )i ix y    and let 

1 1[( , ), ,( , )]n nx y x y  

be the directed vertex list of a two dimensional polygon p. 

Recall, that 
1 1( , ) ( , )n nx y x y . Then the area can be 

calculated by (see e.g. [9]) 
1

1 1

1

1
area( )

2

n

i i i i

i

p x y x y


 



   

The absolute value can be omitted, if we know the orientation 

of p (clockwise or counterclockwise), the formula above is 

right in both case. The problem is, that the polygons in our 

representation are three dimensional, therefore we define an 

affine mapping between an arbitrary (supporting) plane and  
2

. Let  
3

, : {  |  , 0}P x     n a x a n  

be the plane going through a and having a unit normal n. At 

this point we give an orthonormed system, that fits to the 

plane's normal. Let 

\begin{equation} 

2 2 2 2

2 1 1 2
2 2

1 2

2 2 2 2

1 3 1 3 1
2 2

3 1

2 2 2 2

3 2 2 3
2 2

2 3

1
( , ,0)

1
( ) : ( ,0, )

1
(0, , )

i j

i j

i j

n n n n n n
n n

n n n n n n
n n

n n n n n n
n n




    
 



    



    
 

n  

where , {1,2,3}i j   and i j . 

\begin{equation} 

3( ) n n  

2 1( ) ( )  n n n  

It is easy to see, that ( )i n   is an orthonormed system, 

therefore it is a basis in 
3
. Now we define a function, that 

transforms the points of the ,Pn a   plane into its local 

coordinate system. 
2

, ,: P n a n a  

, 1 2( ) : ( , ( ), , ( ))x      n a x a n x a n  

Since  
3

1
( )i i




n  is orthonormed basis, consequently every 

3x   can be written in the local coordinate system as 
3

1

, ( ) ( )i i

i

 


   x x a n n  

Notice, that if ,P n ax   then  

3, ( ) , 0       x a n x a n  
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by definition, i.e. the third coordinate is zero for all ,P n ax  , 

consequently 

,: ( ) n ax x  

is the image of x  in the two dimensional coordinate system 

attached to ,Pn a  . 

 

To sum up the methods described before, if P is a polyhedron 

defined by its vertices and face indices, we can calculate its 

volume in a few steps: 

 calculate a normal of every face, and choose one of its 

vertices 

 transform the vertices of a face into the local 

coordinate system of the supporting plane 

 calculate the area of the face, using the transformed 

( , )x y  coordinates 

 calculate the volume of the polyhedron, using the 

normals, points and areas. 

 

E. Dividing operation 

 

As we mentioned before, when designing VBA processes the 

most important is to define the choosing and dividing 

operations. In the previous sections the subprocesses of 

choosing were discussed, now we give a brief overview of 

dividing in the decomposition data structure. 

 

 

We assumed, that the initial atom of the decomposition is a 

convex polyhedron, which faces are convex polygons. 

Moreover, let us suppose that  operator is always can be 

interpreted as intersection with a half-space, so we have only 

3+3 free parameters, a normal vector and a point of the 

splitting plane. These limitations significantly simplify the 

problem. In this context, let us note some remarks (see e.g. 

[2]). 

 The non-empty intersection of a convex polyhedron 

and a half-space is a convex polyhedron. 

 If 
(0)

0B   convex polyhedron and   is defined as 

splitting by a plane then 
( )n

kB   is convex polyhedron 

for all ,k n . 

  The non-empty intersection of a convex polygon and 

a half-plane is a convex polygon. 

  If the faces of 
(0)

0B   are convex polygons and   is 

defined as splitting by a plane then the faces of 
( )n

kB   

are convex polyhedron for all ,k n . 

 

As a consequence of the convexity of 
(0)

0B   we can assume 

that the atom to be divided is convex, in this case we obtain a 

much simpler problem.  

 

Let us suppose, that p is a convex polygon, defined by the 

convex hull of its vertices 

1conv({ , , })np  v v  

where
3

i v  . Let ,Pn a   be a plane, and let us suppose 

that ,i P n av  , i.e. the vertices of the polygon do not lay on 

the plane. If ,p P n a   then exactly two segments are 

intersected, i.e. there exist exactly two indices ,i j  such that 

1 ,conv({ , })i i P  n av v  

1 ,conv({ , }) .j j P  n av v  

i.e. there exist  

1 ,[ , ]i i P
  n ax v v  

and  

1 ,[ , ]j j P
  n ax v v  

The intersecting points can be computed as follows 

1

1

,
: ( )

,

i
i i i

i i





  
   

  

n a v
x v v v

n v v
 

1

1

,
: ( )

,

j

j j j

j i





  
   

  

n a v
x v v v

n v v
 

 

Therefore, for a given atom the splitting operation can be done 

in few steps, namely: sort the faces below and above the 

splitting plane, collect the intersecting faces, divide the 

intersecting faces into two parts, find the caps of the 

intersecting surface. The main ideas of a polygonal mesh 

 
Fig. 9: It is possible to compute the volume of a polyhedron 

knowing its face normals, points and areas. Area of a simple 

polygon can be easily computed knowing the two dimensional 

coordinates of its points on the supporting plane. 

 
Fig. 10: An atom is divided into two non-empty atoms. The 

newly created face is always a convex polygon. 
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splitting algorithm can be found in [7]. In details the dividing 

operation is the following. 

 

 Find all intersecting faces. Compute all intersecting 

points. Every intersecting face has exactly two 

intersecting points , x x  . 

 Every 
1conv({ , , })nv v  intersecting face will be 

divided into two non-empty faces 

         1 1conv({ , , , , , , })j n i
   x x v v v v  

              and 

        1conv({ , , , , })i j
 x v v x   

              using the notations introduced earlier. 

 Let us suppose, that all the intersecting vertices 

1 2, , Lx x  are computed ( )L . In this case the 

plane intersects L pieces of faces, since every convex 

face adds exactly 2 intersecting vertices to the list. 

The cap, i.e. the new face created on the intersecting 

plane is defined the convex hull of the intersecting 

vertices, i.e. 

1 2conv({ , , })new Lp  x x  

 

After the theoretical overview let us suppose, that the n-th step 

of the VBA process we have the decomposition data structure 

 , ,V F A . Now if ( )n k   then the k-th atom will be 

divided in this step. Let us consider a ,Pn a   plane, which 

divides the 
( )n

kB   atom into two non-empty disjoint sets. 

Notice, that the 
kA   element of the data structure corresponds 

to the
( )n

kB  , moreover as every atom is convex, 
( )n

kB  equals 

the convex hull of the vertices corresponding to
kA , i.e. 

( ) conv({  |      })n

k j i kB v V j F i A  

Considering the foregoing, we can determine the 
1n
 system 

described by the ( , , )V F A     decomposition data structure. 

With our notations 

1   ( , , )   ( , , )n nV F A V F A 
      

Let us suppose, that the plane intersects exactly L faces of the 

k-th atom, and the indices of the intersecting faces are  

1, , L ki i A  

As every face creates exactly two new vertices, let be the 

coordinates of intersecting vertices 
1 2 2 1 2, , ,L Lx x x x  of 

faces 
1, , Li i  respectively. 

Now let    be a permutation of{1, ,2 }L  , such that the 

intersecting vertices are sorted by polar angle when    is 

applied. Then we have a list of vertices 

(1) (2 )[ , , ]L x x  

wherein there are exactly two vertices at every polar angle 

which belong to adjacent faces. The new vertices can be 

obtained by taking every second vertices from the list, i.e. 

(2) (4) (2 ): [ , , , , ]LV V   
  x x x  

 

Notice, that the vertices belonging to the ji   face are 2 1jx   

and 2 jx  , after sorting the vertices receive new indices 

(2 1)j   and (2 )j  , leaving every second vertex and 

appending to the list V, we get, that the new indices of the 

intersecting vertices of ji   face in the 'V   list are 

 
Fig. 11: An atom is divided into two non-empty atoms. The 

non-intersecting faces are unchanged, the intersecting faces 

are divided into exactly two convex polygons. 

 
Fig. 12: Splitting an intersecting polygon by a plane 

 
Fig. 13: Caps of the intersecting surface can be computed by 

sorting vertices by polar angle. 
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(2 1)

| |
2

j
V

  
  
 

 and 
(2 )

| |
2

j
V

 
  
 

 where .     

denotes the ceiling function. So we can determine the new 

faces '
ji

p   and ''
ji

p   which are obtained after applying the 

dividing operation on the face ji  , where instead of 

, ,m
 v x x  

we use the corresponding indices: 
(2 1) (2 )

2 2
{  |  }, | | , | |

j

j j

im m F V V
          

If we have all of the intersecting faces, we need to add them to 

the face list. As 
jiF   does not exist anymore, the 

jiF  elements 

will be replaced by '
ji

p  and ''
ji

p  will be appended to the 

list. 

1

:   ( ), : [ , , , ]
j j L

i i i i
F p j F F p p  

     

Finally, we add the caps twice (in opposite direction too) to the 

list: 

: [ ,[| | 1, ,| | ],[| | , , 1]]F F V V L V L V         

At the last step, we need to update the list of atoms. Let 

11 , , Li i    and 
21 , , Li i    be the face indices of the 

kA   

atom that are above and below the dividing plane, respectively 

(this property can be easily checked). Similarly, as the face 

lists we redefine the 
kA  atom as 

11: [ , , ]k LA i i    

and we append the other atom to the list 

11: [ ,[ , , ]]LA A i i     

By this the decomposition data structure after the dividing 

operation is obtained.  

F. Getting results 

The decomposition is refined iteratively, in every step exactly 

one atom is chosen and split. There are many ways to export 

data from the data structure. It is worth mentioning, that we 

can export every single atoms separately for e.g. fracture 

simulation, or we can export the boundary of the 

decomposition for e.g. mesh simplification. The boundary of 

the decomposition is defined by the faces of atoms, such that 

the face-adjacent atom is not a part of the approximation. So 

if   is a boundary face if and only if it is a face of 
( )n

kB   

and
( )n

lB  , moreover
( )n

kb   , but
( )n

lb   , see the 

definition of  
nS . If it is needed the polygonal mesh trivially 

can be converted to a simple triangular mesh, since all the 

polygons are convex. 

VI. CONCLUSIONS AND FURTHER WORK 

We are working on the implementation of the data structure 

introduced in this paper to perform fast dividing operations on 

polyhedrons. Obviously the conversion between our data 

structure and the common data structures (vertexstrem-

indexstream) should be possible to design and to supervise 

VBA processes.  

Our goal was to give a theoretical foundation for some 

similar approaches of space partitioning. The topics mentioned 

are often thought to be different, but all them can be described 

by a simple iterative approximation process. This 

approximation process is based on the theory of Fourier-series 

in Hilbert-spaces, which is well-known topic in mathematics, 

there are many useful theorems, that can be used during our 

work. But there are not just theoretical advantages of the 

method, we have a convergence theorem, necessary and 

sufficient condition for the monotonicity, and an exact error 

formula. If we can calculate exactly the volume of an 

intersection of an atom and the input, then we can calculate the 

exact distance, as well. Intersection of polyhedra can be 

calculated, but it is a difficult problem. Our idea is to calculate 

the volume of intersection without producing the intersection 

itself. If we had the exact error formula, and the Fourier-

coefficients, we could optimize the performance of the 

approximation process, and maybe it would be more widely 

used. 
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